Last modified by Mengting Qiu on 2025/08/06 17:02

From version 175.3
edited by Xiaoling
on 2022/06/15 10:47
Change comment: There is no comment for this version
To version 143.2
edited by Xiaoling
on 2022/06/10 17:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,824 +1,1330 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
23 +
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25 +
26 +
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 +
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
31 31  )))
38 +)))
32 32  
40 +
41 +[[image:1654847051249-359.png]]
42 +
43 +
44 +
45 +== ​1.2  Features ==
46 +
47 +* LoRaWAN 1.0.3 Class A
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
59 +
60 +
61 +
62 +== 1.3  Specification ==
63 +
64 +=== 1.3.1  Rated environmental conditions ===
65 +
66 +[[image:image-20220610154839-1.png]]
67 +
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69 +
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 +
72 +
73 +
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
75 +
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
77 +
78 +
79 +
80 +[[image:1654852253176-749.png]]
81 +
82 +
83 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
84 +
85 +
86 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
87 +
88 +
89 +
90 +== 1.5 ​ Applications ==
91 +
92 +* Horizontal distance measurement
93 +* Liquid level measurement
94 +* Parking management system
95 +* Object proximity and presence detection
96 +* Intelligent trash can management system
97 +* Robot obstacle avoidance
98 +* Automatic control
99 +* Sewer
100 +* Bottom water level monitoring
101 +
102 +
103 +
104 +== 1.6  Pin mapping and power on ==
105 +
106 +
107 +[[image:1654847583902-256.png]]
108 +
109 +
110 +
111 += 2.  Configure LDDS75 to connect to LoRaWAN network =
112 +
113 +== 2.1  How it works ==
114 +
33 33  (((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
116 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
35 35  )))
36 36  
37 37  (((
38 -
120 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
39 39  )))
40 40  
123 +
124 +
125 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126 +
41 41  (((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
128 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
43 43  )))
44 44  
45 45  (((
46 -
132 +[[image:1654848616367-242.png]]
47 47  )))
48 48  
49 49  (((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
136 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
51 51  )))
52 52  
53 53  (((
54 -
140 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
55 55  )))
56 56  
57 57  (((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
144 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
59 59  )))
60 60  
147 +[[image:image-20220607170145-1.jpeg]]
148 +
149 +
150 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
151 +
152 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
153 +
154 +**Add APP EUI in the application**
155 +
156 +[[image:image-20220610161353-4.png]]
157 +
158 +[[image:image-20220610161353-5.png]]
159 +
160 +[[image:image-20220610161353-6.png]]
161 +
162 +
163 +[[image:image-20220610161353-7.png]]
164 +
165 +
166 +You can also choose to create the device manually.
167 +
168 + [[image:image-20220610161538-8.png]]
169 +
170 +
171 +
172 +**Add APP KEY and DEV EUI**
173 +
174 +[[image:image-20220610161538-9.png]]
175 +
176 +
177 +
178 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
179 +
180 +
181 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182 +
183 +[[image:image-20220610161724-10.png]]
184 +
185 +
61 61  (((
62 -
187 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
63 63  )))
64 64  
190 +[[image:1654849068701-275.png]]
191 +
192 +
193 +
194 +== 2.3  ​Uplink Payload ==
195 +
65 65  (((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
197 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
198 +
199 +Uplink payload includes in total 4 bytes.
200 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
67 67  )))
68 68  
69 69  (((
70 70  
71 71  )))
72 -)))
73 73  
74 -(((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 -)))
78 -)))
79 -)))
80 -)))
207 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
208 +|=(% style="width: 62.5px;" %)(((
209 +**Size (bytes)**
210 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
211 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
212 +[[Distance>>||anchor="H2.3.3A0Distance"]]
81 81  
214 +(unit: mm)
215 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
82 82  
83 -[[image:1655255122126-327.png]]
219 +[[image:1654850511545-399.png]]
84 84  
85 85  
86 86  
87 -== ​1.Features ==
223 +=== 2.3.1  Battery Info ===
88 88  
89 -* LoRaWAN 1.0.3 Class A
90 -* Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 -* Cable Length : 25cm
96 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 -* AT Commands to change parameters
98 -* Uplink on periodically
99 -* Downlink to change configure
100 -* IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
102 102  
103 -== 1.3  Suitable Container & Liquid ==
226 +Check the battery voltage for LDDS75.
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
228 +Ex1: 0x0B45 = 2885mV
111 111  
112 -== 1.4  Mechanical ==
230 +Ex2: 0x0B49 = 2889mV
113 113  
114 -[[image:image-20220615090910-1.png]]
115 115  
116 116  
117 -[[image:image-20220615090910-2.png]]
234 +=== 2.3.2  Distance ===
118 118  
236 +Get the distance. Flat object range 280mm - 7500mm.
119 119  
238 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
120 120  
121 -== 1.5  Install LDDS20 ==
122 122  
241 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
242 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
127 127  
128 -[[image:image-20220615091045-3.png]]
246 +=== 2.3.3  Interrupt Pin ===
129 129  
248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
130 130  
250 +**Example:**
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
252 +0x00: Normal uplink packet.
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
254 +0x01: Interrupt Uplink Packet.
135 135  
136 -[[image:image-20220615092010-11.png]]
137 137  
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
258 +=== 2.3.4  DS18B20 Temperature sensor ===
140 140  
141 -[[image:image-20220615092044-12.png]]
260 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
142 142  
262 +**Example**:
143 143  
264 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
144 144  
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
266 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
268 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
148 148  
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
272 +=== 2.3.5  Sensor Flag ===
153 153  
274 +0x01: Detect Ultrasonic Sensor
154 154  
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
276 +0x00: No Ultrasonic Sensor
156 156  
157 157  
158 -(% style="color:red" %)**LED Status:**
279 +===
280 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
159 159  
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
282 +While using TTN network, you can add the payload format to decode the payload.
161 161  
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 164  
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
285 +[[image:1654850829385-439.png]]
166 166  
287 +The payload decoder function for TTN V3 is here:
167 167  
168 -(% style="color:red" %)**Note 2:**
289 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
169 169  
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 171  
172 172  
293 +== 2.4  Uplink Interval ==
173 173  
174 -(% style="color:blue" %)**Step4  **(%%)Install use Epoxy ab glue.
295 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link[[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
175 175  
176 -Prepare Eproxy AB glue.
177 177  
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 179  
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
299 +== 2.5  ​Show Data in DataCake IoT Server ==
181 181  
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
301 +(((
302 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
303 +)))
183 183  
305 +(((
306 +
307 +)))
184 184  
185 -(% style="color:red" %)**Note 1:**
309 +(((
310 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
311 +)))
186 186  
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
313 +(((
314 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
315 +)))
188 188  
189 189  
190 -(% style="color:red" %)**Note 2:**
318 +[[image:1654592790040-760.png]]
191 191  
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 193  
321 +[[image:1654592800389-571.png]]
194 194  
195 195  
196 -== 1.6 Applications ==
324 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
197 197  
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
326 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
200 200  
201 -== 1.7  Precautions ==
328 +[[image:1654851029373-510.png]]
202 202  
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 206  
207 -== 1.8  Pin mapping and power on ==
331 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
208 208  
333 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
209 209  
210 -[[image:1655257026882-201.png]]
211 211  
212 212  
337 +== 2.6  Frequency Plans ==
213 213  
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
339 +(((
340 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
341 +)))
215 215  
216 216  
217 -== 2.1  How it works ==
218 218  
345 +=== 2.6.1  EU863-870 (EU868) ===
346 +
219 219  (((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
348 +(% style="color:blue" %)**Uplink:**
221 221  )))
222 222  
223 223  (((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
352 +868.1 - SF7BW125 to SF12BW125
225 225  )))
226 226  
355 +(((
356 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
357 +)))
227 227  
359 +(((
360 +868.5 - SF7BW125 to SF12BW125
361 +)))
228 228  
229 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
363 +(((
364 +867.1 - SF7BW125 to SF12BW125
365 +)))
230 230  
231 231  (((
232 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
368 +867.3 - SF7BW125 to SF12BW125
233 233  )))
234 234  
235 235  (((
236 -[[image:1655257698953-697.png]]
372 +867.5 - SF7BW125 to SF12BW125
237 237  )))
238 238  
239 239  (((
240 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
376 +867.7 - SF7BW125 to SF12BW125
241 241  )))
242 242  
243 243  (((
244 -
380 +867.9 - SF7BW125 to SF12BW125
381 +)))
245 245  
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
383 +(((
384 +868.8 - FSK
247 247  )))
248 248  
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
388 +
251 251  )))
252 252  
253 -[[image:image-20220607170145-1.jpeg]]
391 +(((
392 +(% style="color:blue" %)**Downlink:**
393 +)))
254 254  
255 -
256 256  (((
257 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
396 +Uplink channels 1-9 (RX1)
258 258  )))
259 259  
260 260  (((
261 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
400 +869.525 - SF9BW125 (RX2 downlink only)
262 262  )))
263 263  
403 +
404 +
405 +=== 2.6.2  US902-928(US915) ===
406 +
264 264  (((
265 -
408 +Used in USA, Canada and South America. Default use CHE=2
266 266  
267 -**Add APP EUI in the application**
268 -)))
410 +(% style="color:blue" %)**Uplink:**
269 269  
270 -[[image:image-20220610161353-4.png]]
412 +903.9 - SF7BW125 to SF10BW125
271 271  
272 -[[image:image-20220610161353-5.png]]
414 +904.1 - SF7BW125 to SF10BW125
273 273  
274 -[[image:image-20220610161353-6.png]]
416 +904.3 - SF7BW125 to SF10BW125
275 275  
418 +904.5 - SF7BW125 to SF10BW125
276 276  
277 -[[image:image-20220610161353-7.png]]
420 +904.7 - SF7BW125 to SF10BW125
278 278  
422 +904.9 - SF7BW125 to SF10BW125
279 279  
424 +905.1 - SF7BW125 to SF10BW125
280 280  
281 -You can also choose to create the device manually.
426 +905.3 - SF7BW125 to SF10BW125
282 282  
283 - [[image:image-20220610161538-8.png]]
284 284  
429 +(% style="color:blue" %)**Downlink:**
285 285  
431 +923.3 - SF7BW500 to SF12BW500
286 286  
287 -**Add APP KEY and DEV EUI**
433 +923.9 - SF7BW500 to SF12BW500
288 288  
289 -[[image:image-20220610161538-9.png]]
435 +924.5 - SF7BW500 to SF12BW500
290 290  
437 +925.1 - SF7BW500 to SF12BW500
291 291  
439 +925.7 - SF7BW500 to SF12BW500
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
441 +926.3 - SF7BW500 to SF12BW500
294 294  
443 +926.9 - SF7BW500 to SF12BW500
295 295  
296 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
445 +927.5 - SF7BW500 to SF12BW500
297 297  
298 -[[image:image-20220615095102-14.png]]
447 +923.3 - SF12BW500(RX2 downlink only)
299 299  
300 300  
450 +
451 +)))
301 301  
453 +=== 2.6.3  CN470-510 (CN470) ===
454 +
302 302  (((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
456 +Used in China, Default use CHE=1
304 304  )))
305 305  
306 -[[image:1654849068701-275.png]]
459 +(((
460 +(% style="color:blue" %)**Uplink:**
461 +)))
307 307  
463 +(((
464 +486.3 - SF7BW125 to SF12BW125
465 +)))
308 308  
467 +(((
468 +486.5 - SF7BW125 to SF12BW125
469 +)))
309 309  
310 -== 2.3  ​Uplink Payload ==
471 +(((
472 +486.7 - SF7BW125 to SF12BW125
473 +)))
311 311  
312 312  (((
476 +486.9 - SF7BW125 to SF12BW125
477 +)))
478 +
313 313  (((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
480 +487.1 - SF7BW125 to SF12BW125
481 +)))
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
483 +(((
484 +487.3 - SF7BW125 to SF12BW125
318 318  )))
486 +
487 +(((
488 +487.5 - SF7BW125 to SF12BW125
319 319  )))
320 320  
321 321  (((
492 +487.7 - SF7BW125 to SF12BW125
493 +)))
494 +
495 +(((
322 322  
323 323  )))
324 324  
325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 -|=(% style="width: 62.5px;" %)(((
327 -**Size (bytes)**
328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 -[[Distance>>||anchor="H2.3.2A0Distance"]]
499 +(((
500 +(% style="color:blue" %)**Downlink:**
501 +)))
331 331  
332 -(unit: mm)
333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
503 +(((
504 +506.7 - SF7BW125 to SF12BW125
505 +)))
336 336  
337 -[[image:1654850511545-399.png]]
507 +(((
508 +506.9 - SF7BW125 to SF12BW125
509 +)))
338 338  
511 +(((
512 +507.1 - SF7BW125 to SF12BW125
513 +)))
339 339  
515 +(((
516 +507.3 - SF7BW125 to SF12BW125
517 +)))
340 340  
341 -=== 2.3.1  Battery Info ===
519 +(((
520 +507.5 - SF7BW125 to SF12BW125
521 +)))
342 342  
523 +(((
524 +507.7 - SF7BW125 to SF12BW125
525 +)))
343 343  
344 -Check the battery voltage for LDDS20.
527 +(((
528 +507.9 - SF7BW125 to SF12BW125
529 +)))
345 345  
346 -Ex1: 0x0B45 = 2885mV
531 +(((
532 +508.1 - SF7BW125 to SF12BW125
533 +)))
347 347  
348 -Ex2: 0x0B49 = 2889mV
535 +(((
536 +505.3 - SF12BW125 (RX2 downlink only)
537 +)))
349 349  
350 350  
351 351  
352 -=== 2.3.2  Distance ===
541 +=== 2.6.4  AU915-928(AU915) ===
353 353  
354 354  (((
355 -Get the distance. Flat object range 20mm - 2000mm.
356 -)))
544 +Default use CHE=2
357 357  
358 -(((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 -)))
546 +(% style="color:blue" %)**Uplink:**
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
548 +916.8 - SF7BW125 to SF12BW125
364 364  
550 +917.0 - SF7BW125 to SF12BW125
365 365  
366 -=== 2.3.3  Interrupt Pin ===
552 +917.2 - SF7BW125 to SF12BW125
367 367  
368 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
554 +917.4 - SF7BW125 to SF12BW125
369 369  
370 -**Example:**
556 +917.6 - SF7BW125 to SF12BW125
371 371  
372 -0x00: Normal uplink packet.
558 +917.8 - SF7BW125 to SF12BW125
373 373  
374 -0x01: Interrupt Uplink Packet.
560 +918.0 - SF7BW125 to SF12BW125
375 375  
562 +918.2 - SF7BW125 to SF12BW125
376 376  
377 377  
378 -=== 2.3.4  DS18B20 Temperature sensor ===
565 +(% style="color:blue" %)**Downlink:**
379 379  
380 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
567 +923.3 - SF7BW500 to SF12BW500
381 381  
382 -**Example**:
569 +923.9 - SF7BW500 to SF12BW500
383 383  
384 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
571 +924.5 - SF7BW500 to SF12BW500
385 385  
386 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
573 +925.1 - SF7BW500 to SF12BW500
387 387  
388 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
575 +925.7 - SF7BW500 to SF12BW500
389 389  
577 +926.3 - SF7BW500 to SF12BW500
390 390  
579 +926.9 - SF7BW500 to SF12BW500
391 391  
392 -=== 2.3.5  Sensor Flag ===
581 +927.5 - SF7BW500 to SF12BW500
393 393  
583 +923.3 - SF12BW500(RX2 downlink only)
584 +
585 +
586 +
587 +)))
588 +
589 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
590 +
394 394  (((
395 -0x01: Detect Ultrasonic Sensor
592 +(% style="color:blue" %)**Default Uplink channel:**
396 396  )))
397 397  
398 398  (((
399 -0x00: No Ultrasonic Sensor
596 +923.2 - SF7BW125 to SF10BW125
400 400  )))
401 401  
599 +(((
600 +923.4 - SF7BW125 to SF10BW125
601 +)))
402 402  
603 +(((
604 +
605 +)))
403 403  
404 -=== 2.3.6  Decode payload in The Things Network ===
607 +(((
608 +(% style="color:blue" %)**Additional Uplink Channel**:
609 +)))
405 405  
406 -While using TTN network, you can add the payload format to decode the payload.
611 +(((
612 +(OTAA mode, channel added by JoinAccept message)
613 +)))
407 407  
615 +(((
616 +
617 +)))
408 408  
409 -[[image:1655261164557-670.png]]
619 +(((
620 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
621 +)))
410 410  
411 -The payload decoder function for TTN V3 is here:
623 +(((
624 +922.2 - SF7BW125 to SF10BW125
625 +)))
412 412  
413 413  (((
414 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
628 +922.4 - SF7BW125 to SF10BW125
415 415  )))
416 416  
631 +(((
632 +922.6 - SF7BW125 to SF10BW125
633 +)))
417 417  
635 +(((
636 +922.8 - SF7BW125 to SF10BW125
637 +)))
418 418  
419 -== 2.4  Downlink Payload ==
639 +(((
640 +923.0 - SF7BW125 to SF10BW125
641 +)))
420 420  
421 -By default, LDDS20 prints the downlink payload to console port.
643 +(((
644 +922.0 - SF7BW125 to SF10BW125
645 +)))
422 422  
423 -[[image:image-20220615100930-15.png]]
647 +(((
648 +
649 +)))
424 424  
651 +(((
652 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
653 +)))
425 425  
426 -**Examples:**
655 +(((
656 +923.6 - SF7BW125 to SF10BW125
657 +)))
427 427  
659 +(((
660 +923.8 - SF7BW125 to SF10BW125
661 +)))
428 428  
429 -* (% style="color:blue" %)**Set TDC**
663 +(((
664 +924.0 - SF7BW125 to SF10BW125
665 +)))
430 430  
431 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
667 +(((
668 +924.2 - SF7BW125 to SF10BW125
669 +)))
432 432  
433 -Payload:    01 00 00 1E    TDC=30S
671 +(((
672 +924.4 - SF7BW125 to SF10BW125
673 +)))
434 434  
435 -Payload:    01 00 00 3C    TDC=60S
675 +(((
676 +924.6 - SF7BW125 to SF10BW125
677 +)))
436 436  
679 +(((
680 +
681 +)))
437 437  
438 -* (% style="color:blue" %)**Reset**
683 +(((
684 +(% style="color:blue" %)**Downlink:**
685 +)))
439 439  
440 -If payload = 0x04FF, it will reset the LDDS20
687 +(((
688 +Uplink channels 1-8 (RX1)
689 +)))
441 441  
691 +(((
692 +923.2 - SF10BW125 (RX2)
693 +)))
442 442  
443 -* (% style="color:blue" %)**CFM**
444 444  
445 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
446 446  
697 +=== 2.6.6  KR920-923 (KR920) ===
447 447  
699 +(((
700 +(% style="color:blue" %)**Default channel:**
701 +)))
448 448  
449 -== 2.5  ​Show Data in DataCake IoT Server ==
703 +(((
704 +922.1 - SF7BW125 to SF12BW125
705 +)))
450 450  
451 451  (((
452 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
708 +922.3 - SF7BW125 to SF12BW125
453 453  )))
454 454  
455 455  (((
712 +922.5 - SF7BW125 to SF12BW125
713 +)))
714 +
715 +(((
456 456  
457 457  )))
458 458  
459 459  (((
460 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
720 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
461 461  )))
462 462  
463 463  (((
464 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
724 +922.1 - SF7BW125 to SF12BW125
465 465  )))
466 466  
727 +(((
728 +922.3 - SF7BW125 to SF12BW125
729 +)))
467 467  
468 -[[image:1654592790040-760.png]]
731 +(((
732 +922.5 - SF7BW125 to SF12BW125
733 +)))
469 469  
735 +(((
736 +922.7 - SF7BW125 to SF12BW125
737 +)))
470 470  
471 -[[image:1654592800389-571.png]]
739 +(((
740 +922.9 - SF7BW125 to SF12BW125
741 +)))
472 472  
743 +(((
744 +923.1 - SF7BW125 to SF12BW125
745 +)))
473 473  
474 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
747 +(((
748 +923.3 - SF7BW125 to SF12BW125
749 +)))
475 475  
476 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
751 +(((
752 +
753 +)))
477 477  
478 -[[image:1654851029373-510.png]]
755 +(((
756 +(% style="color:blue" %)**Downlink:**
757 +)))
479 479  
759 +(((
760 +Uplink channels 1-7(RX1)
761 +)))
480 480  
481 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
763 +(((
764 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
765 +)))
482 482  
483 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
484 484  
485 485  
769 +=== 2.6.7  IN865-867 (IN865) ===
486 486  
487 -== 2.6  LED Indicator ==
771 +(((
772 +(% style="color:blue" %)**Uplink:**
773 +)))
488 488  
489 -The LDDS20 has an internal LED which is to show the status of different state.
775 +(((
776 +865.0625 - SF7BW125 to SF12BW125
777 +)))
490 490  
779 +(((
780 +865.4025 - SF7BW125 to SF12BW125
781 +)))
491 491  
492 -* Blink once when device power on.
493 -* The device detects the sensor and flashes 5 times.
494 -* Solid ON for 5 seconds once device successful Join the network.
495 -* Blink once when device transmit a packet.
783 +(((
784 +865.9850 - SF7BW125 to SF12BW125
785 +)))
496 496  
787 +(((
788 +
789 +)))
497 497  
498 -== 2.7  ​Firmware Change Log ==
499 -
500 -
501 501  (((
502 -**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
792 +(% style="color:blue" %)**Downlink:**
503 503  )))
504 504  
505 505  (((
506 -
796 +Uplink channels 1-3 (RX1)
507 507  )))
508 508  
509 509  (((
510 -**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
800 +866.550 - SF10BW125 (RX2)
511 511  )))
512 512  
513 513  
514 514  
515 -== 2.8  Battery Analysis ==
805 +== 2.7  LED Indicator ==
516 516  
807 +The LDDS75 has an internal LED which is to show the status of different state.
517 517  
518 518  
810 +* Blink once when device power on.
811 +* The device detects the sensor and flashes 5 times.
812 +* Solid ON for 5 seconds once device successful Join the network.
813 +* Blink once when device transmit a packet.
519 519  
520 -=== 2.8.1  Battery Type ===
521 521  
522 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
523 523  
817 +== 2.8  ​Firmware Change Log ==
524 524  
819 +
820 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
821 +
822 +
823 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
824 +
825 +
826 +
827 +== 2.9  Mechanical ==
828 +
829 +
830 +[[image:image-20220610172003-1.png]]
831 +
832 +[[image:image-20220610172003-2.png]]
833 +
834 +
835 +== 2.10  Battery Analysis  ==
836 +
837 +=== 2.10.1  Battery Type ===
838 +
839 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 +
841 +
525 525  The battery related documents as below:
526 526  
527 527  * (((
528 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
845 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
529 529  )))
530 530  * (((
531 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
848 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
532 532  )))
533 533  * (((
534 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
851 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
535 535  )))
536 536  
537 - [[image:image-20220615102527-16.png]]
854 + [[image:image-20220610172400-3.png]]
538 538  
539 539  
857 += 3.  LiDAR ToF Measurement =
540 540  
541 -== 2.8.2  Battery Note ==
859 +== 3.1 Principle of Distance Measurement ==
542 542  
543 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
861 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
544 544  
863 +[[image:1654831757579-263.png]]
545 545  
546 546  
547 -=== 2.8.3  Replace the battery ===
548 548  
867 +== 3.2 Distance Measurement Characteristics ==
868 +
869 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
870 +
871 +[[image:1654831774373-275.png]]
872 +
873 +
549 549  (((
550 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
875 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
551 551  )))
552 552  
553 553  (((
554 -
879 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
555 555  )))
556 556  
557 557  (((
558 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
883 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
559 559  )))
560 560  
561 561  
887 +(((
888 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
889 +)))
562 562  
563 -== 2.8.4  Battery Life Analyze ==
564 564  
565 -Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
892 +[[image:1654831797521-720.png]]
566 566  
567 -[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
568 568  
895 +(((
896 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
897 +)))
569 569  
899 +[[image:1654831810009-716.png]]
570 570  
571 -= 3.  Using the AT Commands =
572 572  
573 573  (((
903 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
904 +)))
905 +
906 +
907 +
908 +== 3.3 Notice of usage: ==
909 +
910 +Possible invalid /wrong reading for LiDAR ToF tech:
911 +
912 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
913 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
914 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
915 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
916 +
917 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
918 +
574 574  (((
575 -
920 +(((
921 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
576 576  )))
577 577  )))
578 578  
579 -== 3.1  Access AT Commands ==
925 +* (((
926 +(((
927 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
928 +)))
929 +)))
930 +* (((
931 +(((
932 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
933 +)))
934 +)))
580 580  
581 -LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below.
936 +(((
937 +(((
938 +
939 +)))
582 582  
941 +(((
942 +There are two kinds of commands to configure LLDS12, they are:
943 +)))
944 +)))
583 583  
584 -[[image:image-20220610172924-4.png||height="483" width="988"]]
946 +* (((
947 +(((
948 +(% style="color:#4f81bd" %)** General Commands**.
949 +)))
950 +)))
585 585  
952 +(((
953 +(((
954 +These commands are to configure:
955 +)))
956 +)))
586 586  
587 -Or if you have below board, use below connection:
958 +* (((
959 +(((
960 +General system settings like: uplink interval.
961 +)))
962 +)))
963 +* (((
964 +(((
965 +LoRaWAN protocol & radio related command.
966 +)))
967 +)))
588 588  
969 +(((
970 +(((
971 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
972 +)))
973 +)))
589 589  
590 -[[image:image-20220610172924-5.png]]
975 +(((
976 +(((
977 +
978 +)))
979 +)))
591 591  
981 +* (((
982 +(((
983 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
984 +)))
985 +)))
592 592  
593 593  (((
594 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below:
988 +(((
989 +These commands only valid for LLDS12, as below:
595 595  )))
991 +)))
596 596  
597 597  
598 - [[image:image-20220610172924-6.png||height="601" width="860"]]
599 599  
600 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]].
995 +== 4.1  Set Transmit Interval Time ==
601 601  
997 +Feature: Change LoRaWAN End Node Transmit Interval.
602 602  
603 -AT+<CMD>?  :  Help on <CMD>
999 +(% style="color:#037691" %)**AT Command: AT+TDC**
604 604  
605 -AT+<CMD>  :  Run <CMD>
1001 +[[image:image-20220607171554-8.png]]
606 606  
607 -AT+<CMD>=<value>  :  Set the value
608 608  
609 -AT+<CMD>=?  :  Get the value
1004 +(((
1005 +(% style="color:#037691" %)**Downlink Command: 0x01**
1006 +)))
610 610  
1008 +(((
1009 +Format: Command Code (0x01) followed by 3 bytes time value.
1010 +)))
611 611  
612 -(% style="color:#037691" %)** General Commands :**     
1012 +(((
1013 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1014 +)))
613 613  
614 -AT  :  Attention       
1016 +* (((
1017 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1018 +)))
1019 +* (((
1020 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1021 +)))
615 615  
616 -AT?  :  Short Help     
1023 +== 4.2  Set Interrupt Mode ==
617 617  
618 -ATZ MCU Reset    
1025 +Feature, Set Interrupt mode for GPIO_EXIT.
619 619  
620 -AT+TDC :  Application Data Transmission Interval 
1027 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
621 621  
1029 +[[image:image-20220610105806-2.png]]
622 622  
623 -(% style="color:#037691" %)** Keys, IDs and EUIs management :**
624 624  
625 -AT+APPEUI              : Application EUI      
1032 +(((
1033 +(% style="color:#037691" %)**Downlink Command: 0x06**
1034 +)))
626 626  
627 -AT+APPKEY              : Application Key     
1036 +(((
1037 +Format: Command Code (0x06) followed by 3 bytes.
1038 +)))
628 628  
629 -AT+APPSKEY            : Application Session Key
1040 +(((
1041 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1042 +)))
630 630  
631 -AT+DADDR              : Device Address     
1044 +* (((
1045 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1046 +)))
1047 +* (((
1048 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1049 +)))
632 632  
633 -AT+DEUI                   : Device EUI     
1051 +== 4.3  Get Firmware Version Info ==
634 634  
635 -AT+NWKID               : Network ID (You can enter this command change only after successful network connection
1053 +Feature: use downlink to get firmware version.
636 636  
637 -AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
1055 +(% style="color:#037691" %)**Downlink Command: 0x26**
638 638  
639 -AT+CFM          : Confirm Mode       
1057 +[[image:image-20220607171917-10.png]]
640 640  
641 -AT+CFS                     : Confirm Status       
1059 +* Reply to the confirmation package: 26 01
1060 +* Reply to non-confirmed packet: 26 00
642 642  
643 -AT+JOIN          : Join LoRa? Network       
1062 +Device will send an uplink after got this downlink command. With below payload:
644 644  
645 -AT+NJM          : LoRa? Network Join Mode    
1064 +Configures info payload:
646 646  
647 -AT+NJS                     : LoRa? Network Join Status    
1066 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1067 +|=(((
1068 +**Size(bytes)**
1069 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1070 +|**Value**|Software Type|(((
1071 +Frequency
648 648  
649 -AT+RECV                  : Print Last Received Data in Raw Format
1073 +Band
1074 +)))|Sub-band|(((
1075 +Firmware
650 650  
651 -AT+RECVB                : Print Last Received Data in Binary Format      
1077 +Version
1078 +)))|Sensor Type|Reserve|(((
1079 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1080 +Always 0x02
1081 +)))
652 652  
653 -AT+SEND                  : Send Text Data      
1083 +**Software Type**: Always 0x03 for LLDS12
654 654  
655 -AT+SENB                  : Send Hexadecimal Data
656 656  
1086 +**Frequency Band**:
657 657  
658 -(% style="color:#037691" %)** LoRa Network Management :**
1088 +*0x01: EU868
659 659  
660 -AT+ADR          : Adaptive Rate
1090 +*0x02: US915
661 661  
662 -AT+CLASS                : LoRa Class(Currently only support class A
1092 +*0x03: IN865
663 663  
664 -AT+DCS           : Duty Cycle Setting 
1094 +*0x04: AU915
665 665  
666 -AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
1096 +*0x05: KZ865
667 667  
668 -AT+FCD           : Frame Counter Downlink       
1098 +*0x06: RU864
669 669  
670 -AT+FCU           : Frame Counter Uplink   
1100 +*0x07: AS923
671 671  
672 -AT+JN1DL                : Join Accept Delay1
1102 +*0x08: AS923-1
673 673  
674 -AT+JN2DL                : Join Accept Delay2
1104 +*0x09: AS923-2
675 675  
676 -AT+PNM                   : Public Network Mode   
1106 +*0xa0: AS923-3
677 677  
678 -AT+RX1DL                : Receive Delay1      
679 679  
680 -AT+RX2DL                : Receive Delay2      
1109 +**Sub-Band**: value 0x00 ~~ 0x08
681 681  
682 -AT+RX2DR               : Rx2 Window Data Rate 
683 683  
684 -AT+RX2FQ               : Rx2 Window Frequency
1112 +**Firmware Version**: 0x0100, Means: v1.0.0 version
685 685  
686 -AT+TXP           : Transmit Power
687 687  
1115 +**Sensor Type**:
688 688  
689 -(% style="color:#037691" %)** Information :**
1117 +0x01: LSE01
690 690  
691 -AT+RSSI           : RSSI of the Last Received Packet   
1119 +0x02: LDDS75
692 692  
693 -AT+SNR           : SNR of the Last Received Packet   
1121 +0x03: LDDS20
694 694  
695 -AT+VER           : Image Version and Frequency Band       
1123 +0x04: LLMS01
696 696  
697 -AT+FDR           : Factory Data Reset
1125 +0x05: LSPH01
698 698  
699 -AT+PORT                  : Application Port    
1127 +0x06: LSNPK01
700 700  
701 -AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1129 +0x07: LLDS12
702 702  
703 - AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
704 704  
705 705  
1133 += 5.  Battery & How to replace =
706 706  
707 -== 3.2  Set Transmit Interval Time ==
1135 +== 5.1  Battery Type ==
708 708  
709 -Feature: Change LoRaWAN End Node Transmit Interval.
1137 +(((
1138 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1139 +)))
710 710  
711 -(% style="color:#037691" %)**AT Command: AT+TDC**
1141 +(((
1142 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1143 +)))
712 712  
713 -[[image:image-20220610173409-7.png]]
1145 +[[image:1654593587246-335.png]]
714 714  
715 715  
1148 +Minimum Working Voltage for the LLDS12:
1149 +
1150 +LLDS12:  2.45v ~~ 3.6v
1151 +
1152 +
1153 +
1154 +== 5.2  Replace Battery ==
1155 +
716 716  (((
717 -(% style="color:#037691" %)**Downlink Command: 0x01**
1157 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
718 718  )))
719 719  
720 720  (((
1161 +And make sure the positive and negative pins match.
1162 +)))
1163 +
1164 +
1165 +
1166 +== 5.3  Power Consumption Analyze ==
1167 +
721 721  (((
722 -Format: Command Code (0x01) followed by 3 bytes time value.
1169 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1170 +)))
723 723  
724 724  (((
725 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1173 +Instruction to use as below:
726 726  )))
727 727  
728 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
729 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1176 +
1177 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1178 +
1179 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1180 +
1181 +
1182 +**Step 2**: Open it and choose
1183 +
1184 +* Product Model
1185 +* Uplink Interval
1186 +* Working Mode
1187 +
1188 +And the Life expectation in difference case will be shown on the right.
1189 +
1190 +[[image:1654593605679-189.png]]
1191 +
1192 +
1193 +The battery related documents as below:
1194 +
1195 +* (((
1196 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
730 730  )))
1198 +* (((
1199 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
731 731  )))
1201 +* (((
1202 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1203 +)))
732 732  
1205 +[[image:image-20220607172042-11.png]]
733 733  
734 734  
735 735  
1209 +=== 5.3.1  ​Battery Note ===
736 736  
737 -== 3.3  Set Interrupt Mode ==
1211 +(((
1212 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1213 +)))
738 738  
739 -Feature, Set Interrupt mode for GPIO_EXIT.
740 740  
741 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
742 742  
743 -[[image:image-20220610174917-9.png]]
1217 +=== ​5.3.2  Replace the battery ===
744 744  
1219 +(((
1220 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1221 +)))
745 745  
746 -(% style="color:#037691" %)**Downlink Command: 0x06**
1223 +(((
1224 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1225 +)))
747 747  
748 -Format: Command Code (0x06) followed by 3 bytes.
749 749  
1228 +
1229 += 6.  Use AT Command =
1230 +
1231 +== 6.1  Access AT Commands ==
1232 +
1233 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1234 +
1235 +[[image:1654593668970-604.png]]
1236 +
1237 +**Connection:**
1238 +
1239 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1240 +
1241 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1242 +
1243 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1244 +
1245 +
750 750  (((
751 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1247 +(((
1248 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
752 752  )))
753 753  
754 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
755 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1251 +(((
1252 +LLDS12 will output system info once power on as below:
1253 +)))
1254 +)))
756 756  
757 -= 4.  FAQ =
758 758  
759 -== 4.1  What is the frequency plan for LDDS75? ==
1257 + [[image:1654593712276-618.png]]
760 760  
761 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1259 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
762 762  
763 763  
1262 += 7.  FAQ =
764 764  
765 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1264 +== 7.1  How to change the LoRa Frequency Bands/Region ==
766 766  
767 767  You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
768 768  When downloading the images, choose the required image file for download. ​
769 769  
770 770  
1270 += 8.  Trouble Shooting =
771 771  
772 -== 4.3  Can I use LDDS75 in condensation environment? ==
1272 +== 8.1  AT Commands input doesn’t work ==
773 773  
774 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
775 775  
1275 +(((
1276 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1277 +)))
776 776  
777 777  
778 -= 5Trouble Shooting =
1280 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
779 779  
780 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
781 781  
782 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1283 +(((
1284 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1285 +)))
783 783  
1287 +(((
1288 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1289 +)))
784 784  
785 -== 5.2  AT Command input doesn't work ==
786 -
787 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
788 -
789 789  (((
790 790  
791 791  )))
792 792  
1295 +(((
1296 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1297 +)))
793 793  
794 -= 6.  Order Info =
1299 +(((
1300 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1301 +)))
795 795  
796 796  
797 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
798 798  
1305 += 9.  Order Info =
799 799  
800 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
801 801  
802 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
803 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
804 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
805 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
806 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
807 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
808 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
809 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1308 +Part Number: (% style="color:blue" %)**LLDS12-XX**
810 810  
811 -(% style="color:blue" %)**YY**(%%): Battery Option
812 812  
813 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
814 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1311 +(% style="color:blue" %)**XX**(%%): The default frequency band
815 815  
816 -= 7. ​ Packing Info =
1313 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1314 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1315 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1316 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1317 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1318 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1319 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1320 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
817 817  
1322 += 10. ​ Packing Info =
818 818  
1324 +
819 819  **Package Includes**:
820 820  
821 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1327 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
822 822  
823 823  **Dimension and weight**:
824 824  
... ... @@ -827,7 +827,7 @@
827 827  * Package Size / pcs : cm
828 828  * Weight / pcs : g
829 829  
830 -= 8.  ​Support =
1336 += 11.  ​Support =
831 831  
832 832  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
833 833  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655261164557-670.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -182.9 KB
Content