Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 22 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- 1655261164557-670.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
- image-20220615102527-16.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 20- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,10 +1,11 @@ 1 1 (% style="text-align:center" %) 2 -[[image:165 5254599445-662.png]]2 +[[image:1654846127817-788.png]] 3 3 4 +**Contents:** 4 4 6 +{{toc/}} 5 5 6 6 7 -**Table of Contents:** 8 8 9 9 10 10 ... ... @@ -11,76 +11,35 @@ 11 11 12 12 13 13 14 - 15 - 16 16 = 1. Introduction = 17 17 18 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==17 +== 1.1 What is LoRaWAN Distance Detection Sensor == 19 19 20 20 ((( 21 21 22 22 23 23 ((( 24 -((( 25 -((( 26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 27 -))) 23 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 28 28 29 -((( 30 - 31 -))) 32 32 33 -((( 34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 35 -))) 26 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 36 36 37 -((( 38 - 39 -))) 40 40 41 -((( 42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 43 -))) 29 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 44 44 45 -((( 46 - 47 -))) 48 48 49 -((( 50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 51 -))) 32 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 52 52 53 -((( 54 - 55 -))) 56 56 57 -((( 58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 59 -))) 35 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 60 60 61 -((( 62 - 63 -))) 64 64 65 -((( 66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 67 -))) 68 - 69 -((( 70 - 71 -))) 72 -))) 73 - 74 -((( 75 -((( 76 76 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 77 77 ))) 78 78 ))) 79 -))) 80 -))) 81 81 82 82 83 -[[image:1655 255122126-327.png]]43 +[[image:1654847051249-359.png]] 84 84 85 85 86 86 ... ... @@ -88,10 +88,9 @@ 88 88 89 89 * LoRaWAN 1.0.3 Class A 90 90 * Ultra low power consumption 91 -* Liquid Level Measurement by Ultrasonic technology 92 -* Measure through container, No need to contact Liquid. 93 -* Valid level range 20mm - 2000mm 94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 51 +* Distance Detection by Ultrasonic technology 52 +* Flat object range 280mm - 7500mm 53 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 95 95 * Cable Length : 25cm 96 96 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 97 97 * AT Commands to change parameters ... ... @@ -98,130 +98,67 @@ 98 98 * Uplink on periodically 99 99 * Downlink to change configure 100 100 * IP66 Waterproof Enclosure 101 -* 8500mAh Battery for long term use 60 +* 4000mAh or 8500mAh Battery for long term use 102 102 103 -== 1.3 S uitable Container& Liquid==62 +== 1.3 Specification == 104 104 105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 -* Container shape is regular, and surface is smooth. 107 -* Container Thickness: 108 -** Pure metal material. 2~~8mm, best is 3~~5mm 109 -** Pure non metal material: <10 mm 110 -* Pure liquid without irregular deposition. 64 +=== 1.3.1 Rated environmental conditions === 111 111 112 - == 1.4 Mechanical ==66 +[[image:image-20220610154839-1.png]] 113 113 114 - [[image:image-20220615090910-1.png]]68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 115 115 70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 116 116 117 -[[image:image-20220615090910-2.png]] 118 118 119 119 74 +=== 1.3.2 Effective measurement range Reference beam pattern === 120 120 121 - ==1.5InstallLDDS20==76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 122 122 123 123 124 -(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 125 125 126 - LDDS20 (% style="color:red" %)**MUST**(%%) beinstalled on the container bottom middleposition.80 +[[image:1654852253176-749.png]] 127 127 128 -[[image:image-20220615091045-3.png]] 129 129 130 130 84 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 131 131 132 -(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 133 133 134 - For Metal Surfacewithpaint,it isimportant to polish thesurface, first use crude sand paper to polish thepaintlevel , then use exquisite sand paper topolish the metal level to make it shine&smooth.87 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 135 135 136 -[[image:image-20220615092010-11.png]] 137 137 138 138 139 - Nopolish needed if thecontainer is shine metal surface without paintor non-metal container.91 +== 1.5 Applications == 140 140 141 -[[image:image-20220615092044-12.png]] 93 +* Horizontal distance measurement 94 +* Liquid level measurement 95 +* Parking management system 96 +* Object proximity and presence detection 97 +* Intelligent trash can management system 98 +* Robot obstacle avoidance 99 +* Automatic control 100 +* Sewer 101 +* Bottom water level monitoring 142 142 143 143 104 +== 1.6 Pin mapping and power on == 144 144 145 -(% style="color:blue" %)**Step3: **(%%)Test the installation point. 146 146 147 - Power on LDDS75, checkif the blue LED is on, If the blue LED is on,means thesensor works.Thenput ultrasonic couplingpaste on the sensor and put it tightly on the installation point.107 +[[image:1654847583902-256.png]] 148 148 149 149 150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 151 151 152 - [[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]111 += 2. Configure LDDS75 to connect to LoRaWAN network = 153 153 154 - 155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 156 - 157 - 158 -(% style="color:red" %)**LED Status:** 159 - 160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 161 - 162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 164 - 165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 166 - 167 - 168 -(% style="color:red" %)**Note 2:** 169 - 170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 171 - 172 - 173 - 174 -(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 175 - 176 -Prepare Eproxy AB glue. 177 - 178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 179 - 180 -Reset LDDS20 and see if the BLUE LED is slowly blinking. 181 - 182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 183 - 184 - 185 -(% style="color:red" %)**Note 1:** 186 - 187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 188 - 189 - 190 -(% style="color:red" %)**Note 2:** 191 - 192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 193 - 194 - 195 - 196 -== 1.6 Applications == 197 - 198 -* Smart liquid control solution. 199 -* Smart liquefied gas solution. 200 - 201 -== 1.7 Precautions == 202 - 203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 206 - 207 -== 1.8 Pin mapping and power on == 208 - 209 - 210 -[[image:1655257026882-201.png]] 211 - 212 - 213 - 214 -= 2. Configure LDDS20 to connect to LoRaWAN network = 215 - 216 - 217 217 == 2.1 How it works == 218 218 219 219 ((( 220 -The LDDS 20is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.116 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 221 221 ))) 222 222 223 223 ((( 224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0 UsingtheATCommands"]]to set the keys in the LDDS20.120 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 225 225 ))) 226 226 227 227 ... ... @@ -233,7 +233,7 @@ 233 233 ))) 234 234 235 235 ((( 236 -[[image:165 5257698953-697.png]]132 +[[image:1654848616367-242.png]] 237 237 ))) 238 238 239 239 ((( ... ... @@ -241,31 +241,21 @@ 241 241 ))) 242 242 243 243 ((( 244 - 245 - 246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 140 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 247 247 ))) 248 248 249 249 ((( 250 -Each LDDS 20is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.144 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 251 251 ))) 252 252 253 253 [[image:image-20220607170145-1.jpeg]] 254 254 255 255 256 -((( 257 257 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 258 -))) 259 259 260 -((( 261 261 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 262 -))) 263 263 264 -((( 265 - 266 - 267 267 **Add APP EUI in the application** 268 -))) 269 269 270 270 [[image:image-20220610161353-4.png]] 271 271 ... ... @@ -277,7 +277,6 @@ 277 277 [[image:image-20220610161353-7.png]] 278 278 279 279 280 - 281 281 You can also choose to create the device manually. 282 282 283 283 [[image:image-20220610161538-8.png]] ... ... @@ -290,17 +290,16 @@ 290 290 291 291 292 292 293 -(% style="color:blue" %)**Step 2**(%%): 20178 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 294 294 295 295 296 296 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 297 297 298 -[[image:image-2022061 5095102-14.png]]183 +[[image:image-20220610161724-10.png]] 299 299 300 300 301 - 302 302 ((( 303 -(% style="color:blue" %)**Step 3**(%%)**:** 20will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.187 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 304 304 ))) 305 305 306 306 [[image:1654849068701-275.png]] ... ... @@ -310,13 +310,11 @@ 310 310 == 2.3 Uplink Payload == 311 311 312 312 ((( 313 -((( 314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 197 +LDDS75 will uplink payload via LoRaWAN with below payload format: 315 315 316 -Uplink payload includes in total 8bytes.317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on ly5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).199 +Uplink payload includes in total 4 bytes. 200 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 318 318 ))) 319 -))) 320 320 321 321 ((( 322 322 ... ... @@ -341,7 +341,7 @@ 341 341 === 2.3.1 Battery Info === 342 342 343 343 344 -Check the battery voltage for LDDS 20.226 +Check the battery voltage for LDDS75. 345 345 346 346 Ex1: 0x0B45 = 2885mV 347 347 ... ... @@ -351,21 +351,19 @@ 351 351 352 352 === 2.3.2 Distance === 353 353 354 -((( 355 -Get the distance. Flat object range 20mm - 2000mm. 356 -))) 236 +Get the distance. Flat object range 280mm - 7500mm. 357 357 358 -((( 359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 360 -))) 238 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 361 361 362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 364 364 241 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 242 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 365 365 244 + 245 + 366 366 === 2.3.3 Interrupt Pin === 367 367 368 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3. 2A0SetInterruptMode"]] for the hardware and software set up.248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up. 369 369 370 370 **Example:** 371 371 ... ... @@ -391,13 +391,9 @@ 391 391 392 392 === 2.3.5 Sensor Flag === 393 393 394 -((( 395 395 0x01: Detect Ultrasonic Sensor 396 -))) 397 397 398 -((( 399 399 0x00: No Ultrasonic Sensor 400 -))) 401 401 402 402 403 403 ... ... @@ -406,304 +406,695 @@ 406 406 While using TTN network, you can add the payload format to decode the payload. 407 407 408 408 409 -[[image:16552 61164557-670.png]]285 +[[image:1654850829385-439.png]] 410 410 411 411 The payload decoder function for TTN V3 is here: 412 412 289 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 290 + 291 + 292 + 293 +== 2.4 Uplink Interval == 294 + 295 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 296 + 297 + 298 + 299 +== 2.5 Show Data in DataCake IoT Server == 300 + 413 413 ((( 414 - LDDS20TTN V3 Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]302 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 415 415 ))) 416 416 305 +((( 306 + 307 +))) 417 417 309 +((( 310 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 311 +))) 418 418 419 -== 2.4 Downlink Payload == 313 +((( 314 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 315 +))) 420 420 421 -By default, LDDS20 prints the downlink payload to console port. 422 422 423 -[[image: image-20220615100930-15.png]]318 +[[image:1654592790040-760.png]] 424 424 425 425 426 - **Examples:**321 +[[image:1654592800389-571.png]] 427 427 428 428 429 - *(% style="color:blue" %)**SetTDC**324 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 430 430 431 - Ifthe payload=0100003C,itmeanssettheENDNode's TDC to 0x00003C=60(S),whiletype codeis 01.326 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 432 432 433 - Payload:0100 001E TDC=30S328 +[[image:1654851029373-510.png]] 434 434 435 -Payload: 01 00 00 3C TDC=60S 436 436 331 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 437 437 438 - * (% style="color:blue"%)**Reset**333 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 439 439 440 -If payload = 0x04FF, it will reset the LDDS20 441 441 442 442 443 - *(%style="color:blue"%)**CFM**337 +== 2.6 Frequency Plans == 444 444 445 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 339 +((( 340 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 341 +))) 446 446 447 447 448 448 449 -== 2. 5ShowDatain DataCake IoT Server==345 +=== 2.6.1 EU863-870 (EU868) === 450 450 451 451 ((( 452 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface toshow the sensordata, once we have data in TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the datainDATACAKE. Below are the steps:348 +(% style="color:blue" %)**Uplink:** 453 453 ))) 454 454 455 455 ((( 352 +868.1 - SF7BW125 to SF12BW125 353 +))) 354 + 355 +((( 356 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 357 +))) 358 + 359 +((( 360 +868.5 - SF7BW125 to SF12BW125 361 +))) 362 + 363 +((( 364 +867.1 - SF7BW125 to SF12BW125 365 +))) 366 + 367 +((( 368 +867.3 - SF7BW125 to SF12BW125 369 +))) 370 + 371 +((( 372 +867.5 - SF7BW125 to SF12BW125 373 +))) 374 + 375 +((( 376 +867.7 - SF7BW125 to SF12BW125 377 +))) 378 + 379 +((( 380 +867.9 - SF7BW125 to SF12BW125 381 +))) 382 + 383 +((( 384 +868.8 - FSK 385 +))) 386 + 387 +((( 456 456 457 457 ))) 458 458 459 459 ((( 460 -(% style="color:blue" %)** Step 1**(%%)**: Be sure that your device is programmed and properly connected to the networkat this time.**392 +(% style="color:blue" %)**Downlink:** 461 461 ))) 462 462 463 463 ((( 464 - (% style="color:blue" %)**Step2**(%%)**: To configure the Applicationto forward data to DATACAKE you willneed to add integration. To add the DATACAKE integration, perform the followingsteps:**396 +Uplink channels 1-9 (RX1) 465 465 ))) 466 466 399 +((( 400 +869.525 - SF9BW125 (RX2 downlink only) 401 +))) 467 467 468 -[[image:1654592790040-760.png]] 469 469 470 470 471 - [[image:1654592800389-571.png]]405 +=== 2.6.2 US902-928(US915) === 472 472 407 +((( 408 +Used in USA, Canada and South America. Default use CHE=2 473 473 474 -(% style="color:blue" %)** Step3**(%%)**: Create an account orloginDatacake.**410 +(% style="color:blue" %)**Uplink:** 475 475 476 - (%style="color:blue"%)**Step 4**(%%)**: Search the LDDS75and add DevEUI.(% style="color:red"%)(Note: LDDS20use same payload as LDDS75)(%%)**412 +903.9 - SF7BW125 to SF10BW125 477 477 478 - [[image:1654851029373-510.png]]414 +904.1 - SF7BW125 to SF10BW125 479 479 416 +904.3 - SF7BW125 to SF10BW125 480 480 481 - Afteradded,thesensor data arrive TTN V3, it will alsoarrive and show in Datacake.418 +904.5 - SF7BW125 to SF10BW125 482 482 483 - [[image:image-20220610165129-11.png||height="595"width="1088"]]420 +904.7 - SF7BW125 to SF10BW125 484 484 422 +904.9 - SF7BW125 to SF10BW125 485 485 424 +905.1 - SF7BW125 to SF10BW125 486 486 487 - == 2.6LEDIndicator==426 +905.3 - SF7BW125 to SF10BW125 488 488 489 -The LDDS20 has an internal LED which is to show the status of different state. 490 490 429 +(% style="color:blue" %)**Downlink:** 491 491 492 -* Blink once when device power on. 493 -* The device detects the sensor and flashes 5 times. 494 -* Solid ON for 5 seconds once device successful Join the network. 495 -* Blink once when device transmit a packet. 431 +923.3 - SF7BW500 to SF12BW500 496 496 433 +923.9 - SF7BW500 to SF12BW500 497 497 498 - ==2.7FirmwareChange Log==435 +924.5 - SF7BW500 to SF12BW500 499 499 437 +925.1 - SF7BW500 to SF12BW500 500 500 439 +925.7 - SF7BW500 to SF12BW500 440 + 441 +926.3 - SF7BW500 to SF12BW500 442 + 443 +926.9 - SF7BW500 to SF12BW500 444 + 445 +927.5 - SF7BW500 to SF12BW500 446 + 447 +923.3 - SF12BW500(RX2 downlink only) 448 + 449 + 450 + 451 +))) 452 + 453 +=== 2.6.3 CN470-510 (CN470) === 454 + 501 501 ((( 502 - **Firmwareownloadlink:**[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]456 +Used in China, Default use CHE=1 503 503 ))) 504 504 505 505 ((( 460 +(% style="color:blue" %)**Uplink:** 461 +))) 462 + 463 +((( 464 +486.3 - SF7BW125 to SF12BW125 465 +))) 466 + 467 +((( 468 +486.5 - SF7BW125 to SF12BW125 469 +))) 470 + 471 +((( 472 +486.7 - SF7BW125 to SF12BW125 473 +))) 474 + 475 +((( 476 +486.9 - SF7BW125 to SF12BW125 477 +))) 478 + 479 +((( 480 +487.1 - SF7BW125 to SF12BW125 481 +))) 482 + 483 +((( 484 +487.3 - SF7BW125 to SF12BW125 485 +))) 486 + 487 +((( 488 +487.5 - SF7BW125 to SF12BW125 489 +))) 490 + 491 +((( 492 +487.7 - SF7BW125 to SF12BW125 493 +))) 494 + 495 +((( 506 506 507 507 ))) 508 508 509 509 ((( 510 - **FirmwareUpgrade Method: [[Firmware Upgrade Instruction>>doc:Main.FirmwareUpgrade Instruction forSTM32baseproducts.WebHome]]**500 +(% style="color:blue" %)**Downlink:** 511 511 ))) 512 512 503 +((( 504 +506.7 - SF7BW125 to SF12BW125 505 +))) 513 513 507 +((( 508 +506.9 - SF7BW125 to SF12BW125 509 +))) 514 514 515 -== 2.8 Battery Analysis == 511 +((( 512 +507.1 - SF7BW125 to SF12BW125 513 +))) 516 516 515 +((( 516 +507.3 - SF7BW125 to SF12BW125 517 +))) 517 517 519 +((( 520 +507.5 - SF7BW125 to SF12BW125 521 +))) 518 518 523 +((( 524 +507.7 - SF7BW125 to SF12BW125 525 +))) 519 519 520 -=== 2.8.1 Battery Type === 527 +((( 528 +507.9 - SF7BW125 to SF12BW125 529 +))) 521 521 522 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 531 +((( 532 +508.1 - SF7BW125 to SF12BW125 533 +))) 523 523 535 +((( 536 +505.3 - SF12BW125 (RX2 downlink only) 537 +))) 524 524 525 -The battery related documents as below: 526 526 527 -* ((( 528 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 540 + 541 +=== 2.6.4 AU915-928(AU915) === 542 + 543 +((( 544 +Default use CHE=2 545 + 546 +(% style="color:blue" %)**Uplink:** 547 + 548 +916.8 - SF7BW125 to SF12BW125 549 + 550 +917.0 - SF7BW125 to SF12BW125 551 + 552 +917.2 - SF7BW125 to SF12BW125 553 + 554 +917.4 - SF7BW125 to SF12BW125 555 + 556 +917.6 - SF7BW125 to SF12BW125 557 + 558 +917.8 - SF7BW125 to SF12BW125 559 + 560 +918.0 - SF7BW125 to SF12BW125 561 + 562 +918.2 - SF7BW125 to SF12BW125 563 + 564 + 565 +(% style="color:blue" %)**Downlink:** 566 + 567 +923.3 - SF7BW500 to SF12BW500 568 + 569 +923.9 - SF7BW500 to SF12BW500 570 + 571 +924.5 - SF7BW500 to SF12BW500 572 + 573 +925.1 - SF7BW500 to SF12BW500 574 + 575 +925.7 - SF7BW500 to SF12BW500 576 + 577 +926.3 - SF7BW500 to SF12BW500 578 + 579 +926.9 - SF7BW500 to SF12BW500 580 + 581 +927.5 - SF7BW500 to SF12BW500 582 + 583 +923.3 - SF12BW500(RX2 downlink only) 584 + 585 + 586 + 529 529 ))) 530 -* ((( 531 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 588 + 589 +=== 2.6.5 AS920-923 & AS923-925 (AS923) === 590 + 591 +((( 592 +(% style="color:blue" %)**Default Uplink channel:** 532 532 ))) 533 -* ((( 534 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 594 + 595 +((( 596 +923.2 - SF7BW125 to SF10BW125 535 535 ))) 536 536 537 - [[image:image-20220615102527-16.png]] 599 +((( 600 +923.4 - SF7BW125 to SF10BW125 601 +))) 538 538 603 +((( 604 + 605 +))) 539 539 607 +((( 608 +(% style="color:blue" %)**Additional Uplink Channel**: 609 +))) 540 540 541 -== 2.8.2 Battery Note == 611 +((( 612 +(OTAA mode, channel added by JoinAccept message) 613 +))) 542 542 543 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased. 615 +((( 616 + 617 +))) 544 544 619 +((( 620 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 621 +))) 545 545 623 +((( 624 +922.2 - SF7BW125 to SF10BW125 625 +))) 546 546 547 -=== 2.8.3 Replace the battery === 627 +((( 628 +922.4 - SF7BW125 to SF10BW125 629 +))) 548 548 549 549 ((( 550 - Youcanchange the battery in the LDDS75.Thetypeofbattery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1and shortcut the two pads of it so there won't be voltage drop between battery and main board.632 +922.6 - SF7BW125 to SF10BW125 551 551 ))) 552 552 553 553 ((( 636 +922.8 - SF7BW125 to SF10BW125 637 +))) 638 + 639 +((( 640 +923.0 - SF7BW125 to SF10BW125 641 +))) 642 + 643 +((( 644 +922.0 - SF7BW125 to SF10BW125 645 +))) 646 + 647 +((( 554 554 555 555 ))) 556 556 557 557 ((( 558 - Thedefaultbatterypackof LDDS75 includesaER18505plus super capacitor.Ifusercan't findthis packlocally,they canfindER18505orequivalence,which willalsowork in mostcase.The SPC canenlarge the battery life for high frequency use (updateperiod below 5 minutes)652 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 559 559 ))) 560 560 655 +((( 656 +923.6 - SF7BW125 to SF10BW125 657 +))) 561 561 659 +((( 660 +923.8 - SF7BW125 to SF10BW125 661 +))) 562 562 563 -== 2.8.4 Battery Life Analyze == 663 +((( 664 +924.0 - SF7BW125 to SF10BW125 665 +))) 564 564 565 -Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life: 667 +((( 668 +924.2 - SF7BW125 to SF10BW125 669 +))) 566 566 567 -[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]] 671 +((( 672 +924.4 - SF7BW125 to SF10BW125 673 +))) 568 568 675 +((( 676 +924.6 - SF7BW125 to SF10BW125 677 +))) 569 569 679 +((( 680 + 681 +))) 570 570 571 -= 3. Using the AT Commands = 683 +((( 684 +(% style="color:blue" %)**Downlink:** 685 +))) 572 572 573 573 ((( 688 +Uplink channels 1-8 (RX1) 689 +))) 690 + 574 574 ((( 692 +923.2 - SF10BW125 (RX2) 693 +))) 694 + 695 + 696 + 697 +=== 2.6.6 KR920-923 (KR920) === 698 + 699 +((( 700 +(% style="color:blue" %)**Default channel:** 701 +))) 702 + 703 +((( 704 +922.1 - SF7BW125 to SF12BW125 705 +))) 706 + 707 +((( 708 +922.3 - SF7BW125 to SF12BW125 709 +))) 710 + 711 +((( 712 +922.5 - SF7BW125 to SF12BW125 713 +))) 714 + 715 +((( 575 575 576 576 ))) 718 + 719 +((( 720 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 577 577 ))) 578 578 579 -== 3.1 Access AT Commands == 723 +((( 724 +922.1 - SF7BW125 to SF12BW125 725 +))) 580 580 581 -LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below. 727 +((( 728 +922.3 - SF7BW125 to SF12BW125 729 +))) 582 582 731 +((( 732 +922.5 - SF7BW125 to SF12BW125 733 +))) 583 583 584 -[[image:image-20220610172924-4.png||height="483" width="988"]] 735 +((( 736 +922.7 - SF7BW125 to SF12BW125 737 +))) 585 585 739 +((( 740 +922.9 - SF7BW125 to SF12BW125 741 +))) 586 586 587 -Or if you have below board, use below connection: 743 +((( 744 +923.1 - SF7BW125 to SF12BW125 745 +))) 588 588 747 +((( 748 +923.3 - SF7BW125 to SF12BW125 749 +))) 589 589 590 -[[image:image-20220610172924-5.png]] 751 +((( 752 + 753 +))) 591 591 755 +((( 756 +(% style="color:blue" %)**Downlink:** 757 +))) 592 592 593 593 ((( 594 - In the PC, you need to set the serialbaud rate to (% style="color:green"%)**9600**(%%) to access the serial consolefor LDDS20. LDDS20 will outputsysteminfo once power on as below:760 +Uplink channels 1-7(RX1) 595 595 ))) 596 596 763 +((( 764 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 765 +))) 597 597 598 - [[image:image-20220610172924-6.png||height="601" width="860"]] 599 599 600 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]. 601 601 769 +=== 2.6.7 IN865-867 (IN865) === 602 602 603 -AT+<CMD>? : Help on <CMD> 771 +((( 772 +(% style="color:blue" %)**Uplink:** 773 +))) 604 604 605 -AT+<CMD> : Run <CMD> 775 +((( 776 +865.0625 - SF7BW125 to SF12BW125 777 +))) 606 606 607 -AT+<CMD>=<value> : Set the value 779 +((( 780 +865.4025 - SF7BW125 to SF12BW125 781 +))) 608 608 609 -AT+<CMD>=? : Get the value 783 +((( 784 +865.9850 - SF7BW125 to SF12BW125 785 +))) 610 610 787 +((( 788 + 789 +))) 611 611 612 -(% style="color:#037691" %)** General Commands :** 791 +((( 792 +(% style="color:blue" %)**Downlink:** 793 +))) 613 613 614 -AT : Attention 795 +((( 796 +Uplink channels 1-3 (RX1) 797 +))) 615 615 616 -AT? : Short Help 799 +((( 800 +866.550 - SF10BW125 (RX2) 801 +))) 617 617 618 -ATZ : MCU Reset 619 619 620 -AT+TDC : Application Data Transmission Interval 621 621 805 +== 2.7 LED Indicator == 622 622 623 - (%style="color:#037691"%)**Keys,IDsandEUIsmanagement:**807 +The LDDS75 has an internal LED which is to show the status of different state. 624 624 625 -AT+APPEUI : Application EUI 626 626 627 -AT+APPKEY : Application Key 810 +* Blink once when device power on. 811 +* The device detects the sensor and flashes 5 times. 812 +* Solid ON for 5 seconds once device successful Join the network. 813 +* Blink once when device transmit a packet. 628 628 629 -AT+APPSKEY : Application Session Key 630 630 631 -AT+DADDR : Device Address 632 632 633 - AT+DEUI: DeviceEUI817 +== 2.8 Firmware Change Log == 634 634 635 -AT+NWKID : Network ID (You can enter this command change only after successful network connection) 636 636 637 - AT+NWKSKEY:Network SessionKey Joiningandsendingdateontwork820 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 638 638 639 -AT+CFM : Confirm Mode 640 640 641 - AT+CFS:ConfirmStatus823 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 642 642 643 -AT+JOIN : Join LoRa? Network 644 644 645 -AT+NJM : LoRa? Network Join Mode 646 646 647 - AT+NJS: LoRa? Network JoinStatus827 +== 2.9 Mechanical == 648 648 649 -AT+RECV : Print Last Received Data in Raw Format 650 650 651 - AT+RECVB : Print Last Received Data in Binary Format830 +[[image:image-20220610172003-1.png]] 652 652 653 -AT+SEND : Send Text Data 654 654 655 - AT+SENB : Send Hexadecimal Data833 +[[image:image-20220610172003-2.png]] 656 656 657 657 658 -(% style="color:#037691" %)** LoRa Network Management :** 659 659 660 - AT+ADR: AdaptiveRate837 +== 2.10 Battery Analysis == 661 661 662 - AT+CLASS: LoRaClass(Currentlyonlysupportclass A839 +=== 2.10.1 Battery Type === 663 663 664 - AT+DCS:Duty CycleSetting841 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 665 665 666 -AT+DR : Data Rate (Can Only be Modified after ADR=0) 667 667 668 - AT+FCD:FrameCounterDownlink844 +The battery related documents as below: 669 669 670 -AT+FCU : Frame Counter Uplink 846 +* ((( 847 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 848 +))) 849 +* ((( 850 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 851 +))) 852 +* ((( 853 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 854 +))) 671 671 672 - AT+JN1DL: Join Accept Delay1856 + [[image:image-20220610172400-3.png]] 673 673 674 -AT+JN2DL : Join Accept Delay2 675 675 676 -AT+PNM : Public Network Mode 677 677 678 - AT+RX1DL:ReceiveDelay1860 +=== 2.10.2 Replace the battery === 679 679 680 -AT+RX2DL : Receive Delay2 862 +((( 863 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 864 +))) 681 681 682 -AT+RX2DR : Rx2 Window Data Rate 866 +((( 867 + 868 +))) 683 683 684 -AT+RX2FQ : Rx2 Window Frequency 870 +((( 871 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 872 +))) 685 685 686 -AT+TXP : Transmit Power 687 687 688 688 689 - (% style="color:#037691"%)**Information:**876 += 3. Configure LDDS75 via AT Command or LoRaWAN Downlink = 690 690 691 -AT+RSSI : RSSI of the Last Received Packet 878 +((( 879 +((( 880 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink. 881 +))) 882 +))) 692 692 693 -AT+SNR : SNR of the Last Received Packet 884 +* ((( 885 +((( 886 +AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]]. 887 +))) 888 +))) 889 +* ((( 890 +((( 891 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 892 +))) 893 +))) 694 694 695 -AT+VER : Image Version and Frequency Band 895 +((( 896 +((( 897 + 898 +))) 696 696 697 -AT+FDR : Factory Data Reset 900 +((( 901 +There are two kinds of commands to configure LDDS75, they are: 902 +))) 903 +))) 698 698 699 -AT+PORT : Application Port 905 +* ((( 906 +((( 907 +(% style="color:#4f81bd" %)** General Commands**. 908 +))) 909 +))) 700 700 701 -AT+CHS : Get or Set Frequency (Unit: Hz) for Single Channel Mode 911 +((( 912 +((( 913 +These commands are to configure: 914 +))) 915 +))) 702 702 703 - AT+CHE : Get or Set eight channels mode, Only for US915, AU915, CN470 917 +* ((( 918 +((( 919 +General system settings like: uplink interval. 920 +))) 921 +))) 922 +* ((( 923 +((( 924 +LoRaWAN protocol & radio related command. 925 +))) 926 +))) 704 704 928 +((( 929 +((( 930 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 931 +))) 932 +))) 705 705 934 +((( 935 +((( 936 + 937 +))) 938 +))) 706 706 940 +* ((( 941 +((( 942 +(% style="color:#4f81bd" %)** Commands special design for LDDS75** 943 +))) 944 +))) 945 + 946 +((( 947 +((( 948 +These commands only valid for LDDS75, as below: 949 +))) 950 +))) 951 + 952 + 953 + 954 +== 3.1 Access AT Commands == 955 + 956 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below. 957 + 958 +[[image:image-20220610172924-4.png||height="483" width="988"]] 959 + 960 + 961 +Or if you have below board, use below connection: 962 + 963 + 964 +[[image:image-20220610172924-5.png]] 965 + 966 + 967 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 968 + 969 + 970 + [[image:image-20220610172924-6.png||height="601" width="860"]] 971 + 972 + 973 + 707 707 == 3.2 Set Transmit Interval Time == 708 708 709 709 Feature: Change LoRaWAN End Node Transmit Interval. ... ... @@ -721,19 +721,16 @@ 721 721 ((( 722 722 Format: Command Code (0x01) followed by 3 bytes time value. 723 723 724 -((( 725 725 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 726 -))) 727 727 728 728 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 729 729 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 730 730 ))) 731 -))) 732 732 733 733 998 + 999 +))) 734 734 735 - 736 - 737 737 == 3.3 Set Interrupt Mode == 738 738 739 739 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -747,9 +747,7 @@ 747 747 748 748 Format: Command Code (0x06) followed by 3 bytes. 749 749 750 -((( 751 751 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 752 -))) 753 753 754 754 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 755 755 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- 1655261164557-670.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -59.2 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.5 KB - Content
- image-20220615102527-16.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -182.9 KB - Content