Last modified by Mengting Qiu on 2025/08/06 17:02

From version 174.9
edited by Xiaoling
on 2022/06/15 10:43
Change comment: There is no comment for this version
To version 152.3
edited by Xiaoling
on 2022/06/14 17:18
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,11 +1,13 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 4  
5 5  
6 6  
7 +
7 7  **Table of Contents:**
8 8  
10 +{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -13,9 +13,10 @@
13 13  
14 14  
15 15  
18 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
21 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
... ... @@ -22,65 +22,33 @@
22 22  
23 23  (((
24 24  (((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
28 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
27 27  )))
28 28  
29 29  (((
30 -
32 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  )))
32 32  
33 33  (((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
36 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
35 35  )))
36 36  
37 37  (((
38 -
40 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
39 39  )))
40 40  
41 41  (((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
44 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
43 43  )))
44 44  
45 45  (((
46 -
47 -)))
48 -
49 -(((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
51 -)))
52 -
53 -(((
54 -
55 -)))
56 -
57 -(((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
59 -)))
60 -
61 -(((
62 -
63 -)))
64 -
65 -(((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 -)))
68 -
69 -(((
70 -
71 -)))
72 -)))
73 -
74 -(((
75 -(((
76 76  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 77  )))
78 78  )))
79 79  )))
80 -)))
81 81  
82 82  
83 -[[image:1655255122126-327.png]]
54 +[[image:1654847051249-359.png]]
84 84  
85 85  
86 86  
... ... @@ -88,10 +88,9 @@
88 88  
89 89  * LoRaWAN 1.0.3 Class A
90 90  * Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
62 +* Distance Detection by Ultrasonic technology
63 +* Flat object range 280mm - 7500mm
64 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
95 95  * Cable Length : 25cm
96 96  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 97  * AT Commands to change parameters
... ... @@ -98,130 +98,72 @@
98 98  * Uplink on periodically
99 99  * Downlink to change configure
100 100  * IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
71 +* 4000mAh or 8500mAh Battery for long term use
102 102  
103 -== 1.3  Suitable Container & Liquid ==
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
111 111  
112 -== 1.4  Mechanical ==
75 +== 1.3  Specification ==
113 113  
114 -[[image:image-20220615090910-1.png]]
77 +=== 1.3.1  Rated environmental conditions ===
115 115  
79 +[[image:image-20220610154839-1.png]]
116 116  
117 -[[image:image-20220615090910-2.png]]
81 +(((
82 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
83 +)))
118 118  
119 119  
120 120  
121 -== 1.5  Install LDDS20 ==
87 +=== 1.3.2  Effective measurement range Reference beam pattern ===
122 122  
89 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
127 127  
128 -[[image:image-20220615091045-3.png]]
93 +[[image:1654852253176-749.png]]
129 129  
130 130  
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
97 +(((
98 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
99 +)))
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
135 135  
136 -[[image:image-20220615092010-11.png]]
102 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
137 137  
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
140 140  
141 -[[image:image-20220615092044-12.png]]
106 +== 1.5 ​ Applications ==
142 142  
108 +* Horizontal distance measurement
109 +* Liquid level measurement
110 +* Parking management system
111 +* Object proximity and presence detection
112 +* Intelligent trash can management system
113 +* Robot obstacle avoidance
114 +* Automatic control
115 +* Sewer
116 +* Bottom water level monitoring
143 143  
144 144  
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
120 +== 1.6  Pin mapping and power on ==
148 148  
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
123 +[[image:1654847583902-256.png]]
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
153 153  
154 154  
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
127 += 2 Configure LDDS75 to connect to LoRaWAN network =
156 156  
157 -
158 -(% style="color:red" %)**LED Status:**
159 -
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 -
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 -
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 -
167 -
168 -(% style="color:red" %)**Note 2:**
169 -
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 -
172 -
173 -
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 -
176 -Prepare Eproxy AB glue.
177 -
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 -
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 -
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 -
184 -
185 -(% style="color:red" %)**Note 1:**
186 -
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 -
189 -
190 -(% style="color:red" %)**Note 2:**
191 -
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 -
194 -
195 -
196 -== 1.6 ​ Applications ==
197 -
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
200 -
201 -== 1.7  Precautions ==
202 -
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 -
207 -== 1.8  Pin mapping and power on ==
208 -
209 -
210 -[[image:1655257026882-201.png]]
211 -
212 -
213 -
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
215 -
216 -
217 217  == 2.1  How it works ==
218 218  
219 219  (((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
132 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
221 221  )))
222 222  
223 223  (((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
136 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
225 225  )))
226 226  
227 227  
... ... @@ -233,7 +233,7 @@
233 233  )))
234 234  
235 235  (((
236 -[[image:1655257698953-697.png]]
148 +[[image:1654848616367-242.png]]
237 237  )))
238 238  
239 239  (((
... ... @@ -241,13 +241,11 @@
241 241  )))
242 242  
243 243  (((
244 -
245 -
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
156 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
247 247  )))
248 248  
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
160 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
251 251  )))
252 252  
253 253  [[image:image-20220607170145-1.jpeg]]
... ... @@ -262,8 +262,6 @@
262 262  )))
263 263  
264 264  (((
265 -
266 -
267 267  **Add APP EUI in the application**
268 268  )))
269 269  
... ... @@ -277,7 +277,6 @@
277 277  [[image:image-20220610161353-7.png]]
278 278  
279 279  
280 -
281 281  You can also choose to create the device manually.
282 282  
283 283   [[image:image-20220610161538-8.png]]
... ... @@ -290,17 +290,16 @@
290 290  
291 291  
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
200 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
294 294  
295 295  
296 296  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
297 297  
298 -[[image:image-20220615095102-14.png]]
205 +[[image:image-20220610161724-10.png]]
299 299  
300 300  
301 -
302 302  (((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
209 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304 304  )))
305 305  
306 306  [[image:1654849068701-275.png]]
... ... @@ -311,10 +311,12 @@
311 311  
312 312  (((
313 313  (((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
220 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
221 +)))
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
223 +(((
224 +Uplink payload includes in total 4 bytes.
225 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
318 318  )))
319 319  )))
320 320  
... ... @@ -341,7 +341,7 @@
341 341  === 2.3.1  Battery Info ===
342 342  
343 343  
344 -Check the battery voltage for LDDS20.
252 +Check the battery voltage for LDDS75.
345 345  
346 346  Ex1: 0x0B45 = 2885mV
347 347  
... ... @@ -352,21 +352,22 @@
352 352  === 2.3.2  Distance ===
353 353  
354 354  (((
355 -Get the distance. Flat object range 20mm - 2000mm.
263 +Get the distance. Flat object range 280mm - 7500mm.
356 356  )))
357 357  
358 358  (((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
267 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
360 360  )))
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
364 364  
271 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
272 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
365 365  
366 366  
275 +
367 367  === 2.3.3  Interrupt Pin ===
368 368  
369 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
278 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
370 370  
371 371  **Example:**
372 372  
... ... @@ -412,300 +412,701 @@
412 412  The payload decoder function for TTN V3 is here:
413 413  
414 414  (((
415 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
324 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
416 416  )))
417 417  
418 418  
419 419  
420 -== 2.4  Downlink Payload ==
329 +== 2.4  Uplink Interval ==
421 421  
422 -By default, LDDS20 prints the downlink payload to console port.
331 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
423 423  
424 -[[image:image-20220615100930-15.png]]
425 425  
426 426  
427 -**Examples:**
335 +== 2.5  ​Show Data in DataCake IoT Server ==
428 428  
337 +(((
338 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
339 +)))
429 429  
430 -* (% style="color:blue" %)**Set TDC**
341 +(((
342 +
343 +)))
431 431  
432 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
345 +(((
346 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
347 +)))
433 433  
434 -Payload:    01 00 00 1E    TDC=30S
349 +(((
350 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
351 +)))
435 435  
436 -Payload:    01 00 00 3C    TDC=60S
437 437  
354 +[[image:1654592790040-760.png]]
438 438  
439 -* (% style="color:blue" %)**Reset**
440 440  
441 -If payload = 0x04FF, it will reset the LDDS20
357 +[[image:1654592800389-571.png]]
442 442  
443 443  
444 -* (% style="color:blue" %)**CFM**
360 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
445 445  
446 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
362 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
447 447  
364 +[[image:1654851029373-510.png]]
448 448  
449 449  
450 -== 2.5  ​Show Data in DataCake IoT Server ==
367 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
451 451  
369 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
370 +
371 +
372 +
373 +== 2.6  Frequency Plans ==
374 +
452 452  (((
453 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
376 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
454 454  )))
455 455  
379 +
380 +
381 +=== 2.6.1  EU863-870 (EU868) ===
382 +
456 456  (((
384 +(% style="color:blue" %)**Uplink:**
385 +)))
386 +
387 +(((
388 +868.1 - SF7BW125 to SF12BW125
389 +)))
390 +
391 +(((
392 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
393 +)))
394 +
395 +(((
396 +868.5 - SF7BW125 to SF12BW125
397 +)))
398 +
399 +(((
400 +867.1 - SF7BW125 to SF12BW125
401 +)))
402 +
403 +(((
404 +867.3 - SF7BW125 to SF12BW125
405 +)))
406 +
407 +(((
408 +867.5 - SF7BW125 to SF12BW125
409 +)))
410 +
411 +(((
412 +867.7 - SF7BW125 to SF12BW125
413 +)))
414 +
415 +(((
416 +867.9 - SF7BW125 to SF12BW125
417 +)))
418 +
419 +(((
420 +868.8 - FSK
421 +)))
422 +
423 +(((
457 457  
458 458  )))
459 459  
460 460  (((
461 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
428 +(% style="color:blue" %)**Downlink:**
462 462  )))
463 463  
464 464  (((
465 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
432 +Uplink channels 1-9 (RX1)
466 466  )))
467 467  
435 +(((
436 +869.525 - SF9BW125 (RX2 downlink only)
437 +)))
468 468  
469 -[[image:1654592790040-760.png]]
470 470  
471 471  
472 -[[image:1654592800389-571.png]]
441 +=== 2.6.2  US902-928(US915) ===
473 473  
443 +(((
444 +Used in USA, Canada and South America. Default use CHE=2
474 474  
475 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
446 +(% style="color:blue" %)**Uplink:**
476 476  
477 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
448 +903.9 - SF7BW125 to SF10BW125
478 478  
479 -[[image:1654851029373-510.png]]
450 +904.1 - SF7BW125 to SF10BW125
480 480  
452 +904.3 - SF7BW125 to SF10BW125
481 481  
482 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
454 +904.5 - SF7BW125 to SF10BW125
483 483  
484 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
456 +904.7 - SF7BW125 to SF10BW125
485 485  
458 +904.9 - SF7BW125 to SF10BW125
486 486  
460 +905.1 - SF7BW125 to SF10BW125
487 487  
488 -== 2. LED Indicator ==
462 +905.3 - SF7BW125 to SF10BW125
489 489  
490 -The LDDS20 has an internal LED which is to show the status of different state.
491 491  
465 +(% style="color:blue" %)**Downlink:**
492 492  
493 -* Blink once when device power on.
494 -* The device detects the sensor and flashes 5 times.
495 -* Solid ON for 5 seconds once device successful Join the network.
496 -* Blink once when device transmit a packet.
467 +923.3 - SF7BW500 to SF12BW500
497 497  
469 +923.9 - SF7BW500 to SF12BW500
498 498  
471 +924.5 - SF7BW500 to SF12BW500
499 499  
500 -== 2. Firmware Change Log ==
473 +925.1 - SF7BW500 to SF12BW500
501 501  
475 +925.7 - SF7BW500 to SF12BW500
502 502  
477 +926.3 - SF7BW500 to SF12BW500
478 +
479 +926.9 - SF7BW500 to SF12BW500
480 +
481 +927.5 - SF7BW500 to SF12BW500
482 +
483 +923.3 - SF12BW500(RX2 downlink only)
484 +
485 +
486 +
487 +)))
488 +
489 +=== 2.6.3  CN470-510 (CN470) ===
490 +
503 503  (((
504 -**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
492 +Used in China, Default use CHE=1
505 505  )))
506 506  
507 507  (((
496 +(% style="color:blue" %)**Uplink:**
497 +)))
498 +
499 +(((
500 +486.3 - SF7BW125 to SF12BW125
501 +)))
502 +
503 +(((
504 +486.5 - SF7BW125 to SF12BW125
505 +)))
506 +
507 +(((
508 +486.7 - SF7BW125 to SF12BW125
509 +)))
510 +
511 +(((
512 +486.9 - SF7BW125 to SF12BW125
513 +)))
514 +
515 +(((
516 +487.1 - SF7BW125 to SF12BW125
517 +)))
518 +
519 +(((
520 +487.3 - SF7BW125 to SF12BW125
521 +)))
522 +
523 +(((
524 +487.5 - SF7BW125 to SF12BW125
525 +)))
526 +
527 +(((
528 +487.7 - SF7BW125 to SF12BW125
529 +)))
530 +
531 +(((
508 508  
509 509  )))
510 510  
511 511  (((
512 -**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
536 +(% style="color:blue" %)**Downlink:**
513 513  )))
514 514  
539 +(((
540 +506.7 - SF7BW125 to SF12BW125
541 +)))
515 515  
543 +(((
544 +506.9 - SF7BW125 to SF12BW125
545 +)))
516 516  
517 -== 2.8  Battery Analysis ==
547 +(((
548 +507.1 - SF7BW125 to SF12BW125
549 +)))
518 518  
551 +(((
552 +507.3 - SF7BW125 to SF12BW125
553 +)))
519 519  
555 +(((
556 +507.5 - SF7BW125 to SF12BW125
557 +)))
520 520  
559 +(((
560 +507.7 - SF7BW125 to SF12BW125
561 +)))
521 521  
522 -=== 2.8.1  Battery Type ===
563 +(((
564 +507.9 - SF7BW125 to SF12BW125
565 +)))
523 523  
524 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
567 +(((
568 +508.1 - SF7BW125 to SF12BW125
569 +)))
525 525  
571 +(((
572 +505.3 - SF12BW125 (RX2 downlink only)
573 +)))
526 526  
527 -The battery related documents as below:
528 528  
529 -* (((
530 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
576 +
577 +=== 2.6.4  AU915-928(AU915) ===
578 +
579 +(((
580 +Default use CHE=2
581 +
582 +(% style="color:blue" %)**Uplink:**
583 +
584 +916.8 - SF7BW125 to SF12BW125
585 +
586 +917.0 - SF7BW125 to SF12BW125
587 +
588 +917.2 - SF7BW125 to SF12BW125
589 +
590 +917.4 - SF7BW125 to SF12BW125
591 +
592 +917.6 - SF7BW125 to SF12BW125
593 +
594 +917.8 - SF7BW125 to SF12BW125
595 +
596 +918.0 - SF7BW125 to SF12BW125
597 +
598 +918.2 - SF7BW125 to SF12BW125
599 +
600 +
601 +(% style="color:blue" %)**Downlink:**
602 +
603 +923.3 - SF7BW500 to SF12BW500
604 +
605 +923.9 - SF7BW500 to SF12BW500
606 +
607 +924.5 - SF7BW500 to SF12BW500
608 +
609 +925.1 - SF7BW500 to SF12BW500
610 +
611 +925.7 - SF7BW500 to SF12BW500
612 +
613 +926.3 - SF7BW500 to SF12BW500
614 +
615 +926.9 - SF7BW500 to SF12BW500
616 +
617 +927.5 - SF7BW500 to SF12BW500
618 +
619 +923.3 - SF12BW500(RX2 downlink only)
620 +
621 +
622 +
531 531  )))
532 -* (((
533 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
624 +
625 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
626 +
627 +(((
628 +(% style="color:blue" %)**Default Uplink channel:**
534 534  )))
535 -* (((
536 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
630 +
631 +(((
632 +923.2 - SF7BW125 to SF10BW125
537 537  )))
538 538  
539 - [[image:image-20220615102527-16.png]]
635 +(((
636 +923.4 - SF7BW125 to SF10BW125
637 +)))
540 540  
639 +(((
640 +
641 +)))
541 541  
643 +(((
644 +(% style="color:blue" %)**Additional Uplink Channel**:
645 +)))
542 542  
543 -== 2.8.2  Battery Note ==
647 +(((
648 +(OTAA mode, channel added by JoinAccept message)
649 +)))
544 544  
545 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
651 +(((
652 +
653 +)))
546 546  
655 +(((
656 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
657 +)))
547 547  
659 +(((
660 +922.2 - SF7BW125 to SF10BW125
661 +)))
548 548  
549 -=== 2.8.3  Replace the battery ===
663 +(((
664 +922.4 - SF7BW125 to SF10BW125
665 +)))
550 550  
551 551  (((
552 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
668 +922.6 - SF7BW125 to SF10BW125
553 553  )))
554 554  
555 555  (((
672 +922.8 - SF7BW125 to SF10BW125
673 +)))
674 +
675 +(((
676 +923.0 - SF7BW125 to SF10BW125
677 +)))
678 +
679 +(((
680 +922.0 - SF7BW125 to SF10BW125
681 +)))
682 +
683 +(((
556 556  
557 557  )))
558 558  
559 559  (((
560 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
688 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
561 561  )))
562 562  
691 +(((
692 +923.6 - SF7BW125 to SF10BW125
693 +)))
563 563  
695 +(((
696 +923.8 - SF7BW125 to SF10BW125
697 +)))
564 564  
565 -== 2.8.4  Battery Life Analyze ==
699 +(((
700 +924.0 - SF7BW125 to SF10BW125
701 +)))
566 566  
567 -Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
703 +(((
704 +924.2 - SF7BW125 to SF10BW125
705 +)))
568 568  
569 -[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
707 +(((
708 +924.4 - SF7BW125 to SF10BW125
709 +)))
570 570  
711 +(((
712 +924.6 - SF7BW125 to SF10BW125
713 +)))
571 571  
715 +(((
716 +
717 +)))
572 572  
573 -= 3.  Using the AT Commands =
719 +(((
720 +(% style="color:blue" %)**Downlink:**
721 +)))
574 574  
575 575  (((
724 +Uplink channels 1-8 (RX1)
725 +)))
726 +
576 576  (((
728 +923.2 - SF10BW125 (RX2)
729 +)))
730 +
731 +
732 +
733 +=== 2.6.6  KR920-923 (KR920) ===
734 +
735 +(((
736 +(% style="color:blue" %)**Default channel:**
737 +)))
738 +
739 +(((
740 +922.1 - SF7BW125 to SF12BW125
741 +)))
742 +
743 +(((
744 +922.3 - SF7BW125 to SF12BW125
745 +)))
746 +
747 +(((
748 +922.5 - SF7BW125 to SF12BW125
749 +)))
750 +
751 +(((
577 577  
578 578  )))
754 +
755 +(((
756 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
579 579  )))
580 580  
581 -== 3.1  Access AT Commands ==
759 +(((
760 +922.1 - SF7BW125 to SF12BW125
761 +)))
582 582  
583 -LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below.
763 +(((
764 +922.3 - SF7BW125 to SF12BW125
765 +)))
584 584  
767 +(((
768 +922.5 - SF7BW125 to SF12BW125
769 +)))
585 585  
586 -[[image:image-20220610172924-4.png||height="483" width="988"]]
771 +(((
772 +922.7 - SF7BW125 to SF12BW125
773 +)))
587 587  
775 +(((
776 +922.9 - SF7BW125 to SF12BW125
777 +)))
588 588  
589 -Or if you have below board, use below connection:
779 +(((
780 +923.1 - SF7BW125 to SF12BW125
781 +)))
590 590  
783 +(((
784 +923.3 - SF7BW125 to SF12BW125
785 +)))
591 591  
592 -[[image:image-20220610172924-5.png]]
787 +(((
788 +
789 +)))
593 593  
791 +(((
792 +(% style="color:blue" %)**Downlink:**
793 +)))
594 594  
595 595  (((
596 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below:
796 +Uplink channels 1-7(RX1)
597 597  )))
598 598  
799 +(((
800 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 +)))
599 599  
600 - [[image:image-20220610172924-6.png||height="601" width="860"]]
601 601  
602 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]].
603 603  
805 +=== 2.6.7  IN865-867 (IN865) ===
604 604  
605 -AT+<CMD>?  :  Help on <CMD>
807 +(((
808 +(% style="color:blue" %)**Uplink:**
809 +)))
606 606  
607 -AT+<CMD>  :  Run <CMD>
811 +(((
812 +865.0625 - SF7BW125 to SF12BW125
813 +)))
608 608  
609 -AT+<CMD>=<value>  :  Set the value
815 +(((
816 +865.4025 - SF7BW125 to SF12BW125
817 +)))
610 610  
611 -AT+<CMD>=?  :  Get the value
819 +(((
820 +865.9850 - SF7BW125 to SF12BW125
821 +)))
612 612  
823 +(((
824 +
825 +)))
613 613  
614 -**General Commands**      
827 +(((
828 +(% style="color:blue" %)**Downlink:**
829 +)))
615 615  
616 -AT                    : Attention       
831 +(((
832 +Uplink channels 1-3 (RX1)
833 +)))
617 617  
618 -AT?                            : Short Help     
835 +(((
836 +866.550 - SF10BW125 (RX2)
837 +)))
619 619  
620 -ATZ                            : MCU Reset    
621 621  
622 -AT+TDC           : Application Data Transmission Interval 
623 623  
841 +== 2.7  LED Indicator ==
624 624  
625 -**Keys, IDs and EUIs management**
843 +The LDDS75 has an internal LED which is to show the status of different state.
626 626  
627 -AT+APPEUI              : Application EUI      
628 628  
629 -AT+APPKEY              : Application Key     
846 +* Blink once when device power on.
847 +* The device detects the sensor and flashes 5 times.
848 +* Solid ON for 5 seconds once device successful Join the network.
849 +* Blink once when device transmit a packet.
630 630  
631 -AT+APPSKEY            : Application Session Key
632 632  
633 -AT+DADDR              : Device Address     
634 634  
635 -AT+DEUI                   : Device EUI     
853 +== 2.8  ​Firmware Change Log ==
636 636  
637 -AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
638 638  
639 -AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
856 +(((
857 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
858 +)))
640 640  
641 -AT+CFM          : Confirm Mode       
860 +(((
861 +
862 +)))
642 642  
643 -AT+CFS                     : Confirm Status       
864 +(((
865 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
866 +)))
644 644  
645 -AT+JOIN          : Join LoRa? Network       
646 646  
647 -AT+NJM          : LoRa? Network Join Mode    
648 648  
649 -AT+NJS                     : LoRa? Network Join Status    
870 +== 2.9  Mechanical ==
650 650  
651 -AT+RECV                  : Print Last Received Data in Raw Format
652 652  
653 -AT+RECVB                : Print Last Received Data in Binary Format      
873 +[[image:image-20220610172003-1.png]]
654 654  
655 -AT+SEND                  : Send Text Data      
656 656  
657 -AT+SENB                  : Send Hexadecimal Data
876 +[[image:image-20220610172003-2.png]]
658 658  
659 659  
660 -**LoRa Network Management**
661 661  
662 -AT+ADR          : Adaptive Rate
880 +== 2.10  Battery Analysis ==
663 663  
664 -AT+CLASS                : LoRa Class(Currently only support class A
882 +=== 2.10.1  Battery Type ===
665 665  
666 -AT+DCS           : Duty Cycle Setting 
884 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
667 667  
668 -AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
669 669  
670 -AT+FCD           : Frame Counter Downlink       
887 +The battery related documents as below:
671 671  
672 -AT+FCU           : Frame Counter Uplink   
889 +* (((
890 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
891 +)))
892 +* (((
893 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
894 +)))
895 +* (((
896 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
897 +)))
673 673  
674 -AT+JN1DL                : Join Accept Delay1
899 + [[image:image-20220610172400-3.png]]
675 675  
676 -AT+JN2DL                : Join Accept Delay2
677 677  
678 -AT+PNM                   : Public Network Mode   
679 679  
680 -AT+RX1DL                : Receive Delay1      
903 +=== 2.10.2  Replace the battery ===
681 681  
682 -AT+RX2DL                : Receive Delay2      
905 +(((
906 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
907 +)))
683 683  
684 -AT+RX2DR               : Rx2 Window Data Rate 
909 +(((
910 +
911 +)))
685 685  
686 -AT+RX2FQ               : Rx2 Window Frequency
913 +(((
914 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
915 +)))
687 687  
688 -AT+TXP           : Transmit Power
689 689  
690 690  
691 -**Information** 
919 += 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
692 692  
693 -AT+RSSI           : RSSI of the Last Received Packet   
921 +(((
922 +(((
923 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
924 +)))
925 +)))
694 694  
695 -AT+SNR           : SNR of the Last Received Packet   
927 +* (((
928 +(((
929 +AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
930 +)))
931 +)))
932 +* (((
933 +(((
934 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
935 +)))
936 +)))
696 696  
697 -AT+VER           : Image Version and Frequency Band       
938 +(((
939 +(((
940 +
941 +)))
698 698  
699 -AT+FDR           : Factory Data Reset
943 +(((
944 +There are two kinds of commands to configure LDDS75, they are:
945 +)))
946 +)))
700 700  
701 -AT+PORT                  : Application Port    
948 +* (((
949 +(((
950 +(% style="color:#4f81bd" %)** General Commands**.
951 +)))
952 +)))
702 702  
703 -AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
954 +(((
955 +(((
956 +These commands are to configure:
957 +)))
958 +)))
704 704  
705 - AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
960 +* (((
961 +(((
962 +General system settings like: uplink interval.
963 +)))
964 +)))
965 +* (((
966 +(((
967 +LoRaWAN protocol & radio related command.
968 +)))
969 +)))
706 706  
971 +(((
972 +(((
973 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
974 +)))
975 +)))
707 707  
977 +(((
978 +(((
979 +
980 +)))
981 +)))
708 708  
983 +* (((
984 +(((
985 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
986 +)))
987 +)))
988 +
989 +(((
990 +(((
991 +These commands only valid for LDDS75, as below:
992 +)))
993 +)))
994 +
995 +
996 +
997 +== 3.1  Access AT Commands ==
998 +
999 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
1000 +
1001 +[[image:image-20220610172924-4.png||height="483" width="988"]]
1002 +
1003 +
1004 +Or if you have below board, use below connection:
1005 +
1006 +
1007 +[[image:image-20220610172924-5.png]]
1008 +
1009 +
1010 +(((
1011 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1012 +)))
1013 +
1014 +
1015 + [[image:image-20220610172924-6.png||height="601" width="860"]]
1016 +
1017 +
1018 +
709 709  == 3.2  Set Transmit Interval Time ==
710 710  
711 711  Feature: Change LoRaWAN End Node Transmit Interval.
... ... @@ -756,6 +756,8 @@
756 756  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
757 757  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
758 758  
1069 +
1070 +
759 759  = 4.  FAQ =
760 760  
761 761  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -815,6 +815,8 @@
815 815  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
816 816  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
817 817  
1130 +
1131 +
818 818  = 7. ​ Packing Info =
819 819  
820 820  
... ... @@ -829,6 +829,8 @@
829 829  * Package Size / pcs : cm
830 830  * Weight / pcs : g
831 831  
1146 +
1147 +
832 832  = 8.  ​Support =
833 833  
834 834  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -182.9 KB
Content