Last modified by Mengting Qiu on 2025/08/06 17:02

From version 174.9
edited by Xiaoling
on 2022/06/15 10:43
Change comment: There is no comment for this version
To version 150.27
edited by Xiaoling
on 2022/06/11 09:05
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,11 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
6 +{{toc/}}
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
... ... @@ -11,76 +11,35 @@
11 11  
12 12  
13 13  
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
17 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
23 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
31 -)))
32 32  
33 -(((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
35 -)))
26 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
36 36  
37 -(((
38 -
39 -)))
40 40  
41 -(((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
43 -)))
29 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
44 44  
45 -(((
46 -
47 -)))
48 48  
49 -(((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
51 -)))
32 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
52 52  
53 -(((
54 -
55 -)))
56 56  
57 -(((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
59 -)))
35 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
60 60  
61 -(((
62 -
63 -)))
64 64  
65 -(((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 -)))
68 -
69 -(((
70 -
71 -)))
72 -)))
73 -
74 -(((
75 -(((
76 76  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 77  )))
78 78  )))
79 -)))
80 -)))
81 81  
82 82  
83 -[[image:1655255122126-327.png]]
43 +[[image:1654847051249-359.png]]
84 84  
85 85  
86 86  
... ... @@ -88,10 +88,9 @@
88 88  
89 89  * LoRaWAN 1.0.3 Class A
90 90  * Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Distance Detection by Ultrasonic technology
52 +* Flat object range 280mm - 7500mm
53 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
95 95  * Cable Length : 25cm
96 96  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 97  * AT Commands to change parameters
... ... @@ -98,130 +98,67 @@
98 98  * Uplink on periodically
99 99  * Downlink to change configure
100 100  * IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
60 +* 4000mAh or 8500mAh Battery for long term use
102 102  
103 -== 1.3  Suitable Container & Liquid ==
62 +== 1.3  Specification ==
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
64 +=== 1.3.1  Rated environmental conditions ===
111 111  
112 -== 1.4  Mechanical ==
66 +[[image:image-20220610154839-1.png]]
113 113  
114 -[[image:image-20220615090910-1.png]]
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
115 115  
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
116 116  
117 -[[image:image-20220615090910-2.png]]
118 118  
119 119  
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
120 120  
121 -== 1.5  Install LDDS20 ==
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
122 122  
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
80 +[[image:1654852253176-749.png]]
127 127  
128 -[[image:image-20220615091045-3.png]]
129 129  
130 130  
84 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
87 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
135 135  
136 -[[image:image-20220615092010-11.png]]
137 137  
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
91 +== 1.5 ​ Applications ==
140 140  
141 -[[image:image-20220615092044-12.png]]
93 +* Horizontal distance measurement
94 +* Liquid level measurement
95 +* Parking management system
96 +* Object proximity and presence detection
97 +* Intelligent trash can management system
98 +* Robot obstacle avoidance
99 +* Automatic control
100 +* Sewer
101 +* Bottom water level monitoring
142 142  
143 143  
104 +== 1.6  Pin mapping and power on ==
144 144  
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
107 +[[image:1654847583902-256.png]]
148 148  
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
111 += 2.  Configure LDDS75 to connect to LoRaWAN network =
153 153  
154 -
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 -
157 -
158 -(% style="color:red" %)**LED Status:**
159 -
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 -
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 -
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 -
167 -
168 -(% style="color:red" %)**Note 2:**
169 -
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 -
172 -
173 -
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 -
176 -Prepare Eproxy AB glue.
177 -
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 -
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 -
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 -
184 -
185 -(% style="color:red" %)**Note 1:**
186 -
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 -
189 -
190 -(% style="color:red" %)**Note 2:**
191 -
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 -
194 -
195 -
196 -== 1.6 ​ Applications ==
197 -
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
200 -
201 -== 1.7  Precautions ==
202 -
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 -
207 -== 1.8  Pin mapping and power on ==
208 -
209 -
210 -[[image:1655257026882-201.png]]
211 -
212 -
213 -
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
215 -
216 -
217 217  == 2.1  How it works ==
218 218  
219 219  (((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
116 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
221 221  )))
222 222  
223 223  (((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
120 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
225 225  )))
226 226  
227 227  
... ... @@ -233,7 +233,7 @@
233 233  )))
234 234  
235 235  (((
236 -[[image:1655257698953-697.png]]
132 +[[image:1654848616367-242.png]]
237 237  )))
238 238  
239 239  (((
... ... @@ -241,31 +241,21 @@
241 241  )))
242 242  
243 243  (((
244 -
245 -
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
140 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
247 247  )))
248 248  
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
144 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
251 251  )))
252 252  
253 253  [[image:image-20220607170145-1.jpeg]]
254 254  
255 255  
256 -(((
257 257  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
258 -)))
259 259  
260 -(((
261 261  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
262 -)))
263 263  
264 -(((
265 -
266 -
267 267  **Add APP EUI in the application**
268 -)))
269 269  
270 270  [[image:image-20220610161353-4.png]]
271 271  
... ... @@ -277,7 +277,6 @@
277 277  [[image:image-20220610161353-7.png]]
278 278  
279 279  
280 -
281 281  You can also choose to create the device manually.
282 282  
283 283   [[image:image-20220610161538-8.png]]
... ... @@ -290,17 +290,16 @@
290 290  
291 291  
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
178 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
294 294  
295 295  
296 296  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
297 297  
298 -[[image:image-20220615095102-14.png]]
183 +[[image:image-20220610161724-10.png]]
299 299  
300 300  
301 -
302 302  (((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
187 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304 304  )))
305 305  
306 306  [[image:1654849068701-275.png]]
... ... @@ -310,13 +310,11 @@
310 310  == 2.3  ​Uplink Payload ==
311 311  
312 312  (((
313 -(((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
197 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
199 +Uplink payload includes in total 4 bytes.
200 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
318 318  )))
319 -)))
320 320  
321 321  (((
322 322  
... ... @@ -341,7 +341,7 @@
341 341  === 2.3.1  Battery Info ===
342 342  
343 343  
344 -Check the battery voltage for LDDS20.
226 +Check the battery voltage for LDDS75.
345 345  
346 346  Ex1: 0x0B45 = 2885mV
347 347  
... ... @@ -351,22 +351,19 @@
351 351  
352 352  === 2.3.2  Distance ===
353 353  
354 -(((
355 -Get the distance. Flat object range 20mm - 2000mm.
356 -)))
236 +Get the distance. Flat object range 280mm - 7500mm.
357 357  
358 -(((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 -)))
238 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
364 364  
241 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
242 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
365 365  
366 366  
245 +
367 367  === 2.3.3  Interrupt Pin ===
368 368  
369 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
370 370  
371 371  **Example:**
372 372  
... ... @@ -392,13 +392,9 @@
392 392  
393 393  === 2.3.5  Sensor Flag ===
394 394  
395 -(((
396 396  0x01: Detect Ultrasonic Sensor
397 -)))
398 398  
399 -(((
400 400  0x00: No Ultrasonic Sensor
401 -)))
402 402  
403 403  
404 404  
... ... @@ -411,301 +411,691 @@
411 411  
412 412  The payload decoder function for TTN V3 is here:
413 413  
289 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
290 +
291 +
292 +
293 +== 2.4  Uplink Interval ==
294 +
295 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
296 +
297 +
298 +
299 +== 2.5  ​Show Data in DataCake IoT Server ==
300 +
414 414  (((
415 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
302 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
416 416  )))
417 417  
305 +(((
306 +
307 +)))
418 418  
309 +(((
310 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
311 +)))
419 419  
420 -== 2.4  Downlink Payload ==
313 +(((
314 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
315 +)))
421 421  
422 -By default, LDDS20 prints the downlink payload to console port.
423 423  
424 -[[image:image-20220615100930-15.png]]
318 +[[image:1654592790040-760.png]]
425 425  
426 426  
427 -**Examples:**
321 +[[image:1654592800389-571.png]]
428 428  
429 429  
430 -* (% style="color:blue" %)**Set TDC**
324 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
431 431  
432 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
326 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
433 433  
434 -Payload:    01 00 00 1E    TDC=30S
328 +[[image:1654851029373-510.png]]
435 435  
436 -Payload:    01 00 00 3C    TDC=60S
437 437  
331 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
438 438  
439 -* (% style="color:blue" %)**Reset**
333 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
440 440  
441 -If payload = 0x04FF, it will reset the LDDS20
442 442  
443 443  
444 -* (% style="color:blue" %)**CFM**
337 +== 2.6  Frequency Plans ==
445 445  
446 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
339 +(((
340 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
341 +)))
447 447  
448 448  
449 449  
450 -== 2.5  ​Show Data in DataCake IoT Server ==
345 +=== 2.6.1  EU863-870 (EU868) ===
451 451  
452 452  (((
453 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
348 +(% style="color:blue" %)**Uplink:**
454 454  )))
455 455  
456 456  (((
352 +868.1 - SF7BW125 to SF12BW125
353 +)))
354 +
355 +(((
356 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
357 +)))
358 +
359 +(((
360 +868.5 - SF7BW125 to SF12BW125
361 +)))
362 +
363 +(((
364 +867.1 - SF7BW125 to SF12BW125
365 +)))
366 +
367 +(((
368 +867.3 - SF7BW125 to SF12BW125
369 +)))
370 +
371 +(((
372 +867.5 - SF7BW125 to SF12BW125
373 +)))
374 +
375 +(((
376 +867.7 - SF7BW125 to SF12BW125
377 +)))
378 +
379 +(((
380 +867.9 - SF7BW125 to SF12BW125
381 +)))
382 +
383 +(((
384 +868.8 - FSK
385 +)))
386 +
387 +(((
457 457  
458 458  )))
459 459  
460 460  (((
461 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
392 +(% style="color:blue" %)**Downlink:**
462 462  )))
463 463  
464 464  (((
465 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
396 +Uplink channels 1-9 (RX1)
466 466  )))
467 467  
399 +(((
400 +869.525 - SF9BW125 (RX2 downlink only)
401 +)))
468 468  
469 -[[image:1654592790040-760.png]]
470 470  
471 471  
472 -[[image:1654592800389-571.png]]
405 +=== 2.6.2  US902-928(US915) ===
473 473  
407 +(((
408 +Used in USA, Canada and South America. Default use CHE=2
474 474  
475 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
410 +(% style="color:blue" %)**Uplink:**
476 476  
477 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
412 +903.9 - SF7BW125 to SF10BW125
478 478  
479 -[[image:1654851029373-510.png]]
414 +904.1 - SF7BW125 to SF10BW125
480 480  
416 +904.3 - SF7BW125 to SF10BW125
481 481  
482 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
418 +904.5 - SF7BW125 to SF10BW125
483 483  
484 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
420 +904.7 - SF7BW125 to SF10BW125
485 485  
422 +904.9 - SF7BW125 to SF10BW125
486 486  
424 +905.1 - SF7BW125 to SF10BW125
487 487  
488 -== 2. LED Indicator ==
426 +905.3 - SF7BW125 to SF10BW125
489 489  
490 -The LDDS20 has an internal LED which is to show the status of different state.
491 491  
429 +(% style="color:blue" %)**Downlink:**
492 492  
493 -* Blink once when device power on.
494 -* The device detects the sensor and flashes 5 times.
495 -* Solid ON for 5 seconds once device successful Join the network.
496 -* Blink once when device transmit a packet.
431 +923.3 - SF7BW500 to SF12BW500
497 497  
433 +923.9 - SF7BW500 to SF12BW500
498 498  
435 +924.5 - SF7BW500 to SF12BW500
499 499  
500 -== 2. Firmware Change Log ==
437 +925.1 - SF7BW500 to SF12BW500
501 501  
439 +925.7 - SF7BW500 to SF12BW500
502 502  
441 +926.3 - SF7BW500 to SF12BW500
442 +
443 +926.9 - SF7BW500 to SF12BW500
444 +
445 +927.5 - SF7BW500 to SF12BW500
446 +
447 +923.3 - SF12BW500(RX2 downlink only)
448 +
449 +
450 +
451 +)))
452 +
453 +=== 2.6.3  CN470-510 (CN470) ===
454 +
503 503  (((
504 -**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
456 +Used in China, Default use CHE=1
505 505  )))
506 506  
507 507  (((
460 +(% style="color:blue" %)**Uplink:**
461 +)))
462 +
463 +(((
464 +486.3 - SF7BW125 to SF12BW125
465 +)))
466 +
467 +(((
468 +486.5 - SF7BW125 to SF12BW125
469 +)))
470 +
471 +(((
472 +486.7 - SF7BW125 to SF12BW125
473 +)))
474 +
475 +(((
476 +486.9 - SF7BW125 to SF12BW125
477 +)))
478 +
479 +(((
480 +487.1 - SF7BW125 to SF12BW125
481 +)))
482 +
483 +(((
484 +487.3 - SF7BW125 to SF12BW125
485 +)))
486 +
487 +(((
488 +487.5 - SF7BW125 to SF12BW125
489 +)))
490 +
491 +(((
492 +487.7 - SF7BW125 to SF12BW125
493 +)))
494 +
495 +(((
508 508  
509 509  )))
510 510  
511 511  (((
512 -**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
500 +(% style="color:blue" %)**Downlink:**
513 513  )))
514 514  
503 +(((
504 +506.7 - SF7BW125 to SF12BW125
505 +)))
515 515  
507 +(((
508 +506.9 - SF7BW125 to SF12BW125
509 +)))
516 516  
517 -== 2.8  Battery Analysis ==
511 +(((
512 +507.1 - SF7BW125 to SF12BW125
513 +)))
518 518  
515 +(((
516 +507.3 - SF7BW125 to SF12BW125
517 +)))
519 519  
519 +(((
520 +507.5 - SF7BW125 to SF12BW125
521 +)))
520 520  
523 +(((
524 +507.7 - SF7BW125 to SF12BW125
525 +)))
521 521  
522 -=== 2.8.1  Battery Type ===
527 +(((
528 +507.9 - SF7BW125 to SF12BW125
529 +)))
523 523  
524 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
531 +(((
532 +508.1 - SF7BW125 to SF12BW125
533 +)))
525 525  
535 +(((
536 +505.3 - SF12BW125 (RX2 downlink only)
537 +)))
526 526  
527 -The battery related documents as below:
528 528  
529 -* (((
530 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
540 +
541 +=== 2.6.4  AU915-928(AU915) ===
542 +
543 +(((
544 +Default use CHE=2
545 +
546 +(% style="color:blue" %)**Uplink:**
547 +
548 +916.8 - SF7BW125 to SF12BW125
549 +
550 +917.0 - SF7BW125 to SF12BW125
551 +
552 +917.2 - SF7BW125 to SF12BW125
553 +
554 +917.4 - SF7BW125 to SF12BW125
555 +
556 +917.6 - SF7BW125 to SF12BW125
557 +
558 +917.8 - SF7BW125 to SF12BW125
559 +
560 +918.0 - SF7BW125 to SF12BW125
561 +
562 +918.2 - SF7BW125 to SF12BW125
563 +
564 +
565 +(% style="color:blue" %)**Downlink:**
566 +
567 +923.3 - SF7BW500 to SF12BW500
568 +
569 +923.9 - SF7BW500 to SF12BW500
570 +
571 +924.5 - SF7BW500 to SF12BW500
572 +
573 +925.1 - SF7BW500 to SF12BW500
574 +
575 +925.7 - SF7BW500 to SF12BW500
576 +
577 +926.3 - SF7BW500 to SF12BW500
578 +
579 +926.9 - SF7BW500 to SF12BW500
580 +
581 +927.5 - SF7BW500 to SF12BW500
582 +
583 +923.3 - SF12BW500(RX2 downlink only)
584 +
585 +
586 +
531 531  )))
532 -* (((
533 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
588 +
589 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
590 +
591 +(((
592 +(% style="color:blue" %)**Default Uplink channel:**
534 534  )))
535 -* (((
536 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
594 +
595 +(((
596 +923.2 - SF7BW125 to SF10BW125
537 537  )))
538 538  
539 - [[image:image-20220615102527-16.png]]
599 +(((
600 +923.4 - SF7BW125 to SF10BW125
601 +)))
540 540  
603 +(((
604 +
605 +)))
541 541  
607 +(((
608 +(% style="color:blue" %)**Additional Uplink Channel**:
609 +)))
542 542  
543 -== 2.8.2  Battery Note ==
611 +(((
612 +(OTAA mode, channel added by JoinAccept message)
613 +)))
544 544  
545 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
615 +(((
616 +
617 +)))
546 546  
619 +(((
620 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
621 +)))
547 547  
623 +(((
624 +922.2 - SF7BW125 to SF10BW125
625 +)))
548 548  
549 -=== 2.8.3  Replace the battery ===
627 +(((
628 +922.4 - SF7BW125 to SF10BW125
629 +)))
550 550  
551 551  (((
552 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
632 +922.6 - SF7BW125 to SF10BW125
553 553  )))
554 554  
555 555  (((
636 +922.8 - SF7BW125 to SF10BW125
637 +)))
638 +
639 +(((
640 +923.0 - SF7BW125 to SF10BW125
641 +)))
642 +
643 +(((
644 +922.0 - SF7BW125 to SF10BW125
645 +)))
646 +
647 +(((
556 556  
557 557  )))
558 558  
559 559  (((
560 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
652 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
561 561  )))
562 562  
655 +(((
656 +923.6 - SF7BW125 to SF10BW125
657 +)))
563 563  
659 +(((
660 +923.8 - SF7BW125 to SF10BW125
661 +)))
564 564  
565 -== 2.8.4  Battery Life Analyze ==
663 +(((
664 +924.0 - SF7BW125 to SF10BW125
665 +)))
566 566  
567 -Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
667 +(((
668 +924.2 - SF7BW125 to SF10BW125
669 +)))
568 568  
569 -[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
671 +(((
672 +924.4 - SF7BW125 to SF10BW125
673 +)))
570 570  
675 +(((
676 +924.6 - SF7BW125 to SF10BW125
677 +)))
571 571  
679 +(((
680 +
681 +)))
572 572  
573 -= 3.  Using the AT Commands =
683 +(((
684 +(% style="color:blue" %)**Downlink:**
685 +)))
574 574  
575 575  (((
688 +Uplink channels 1-8 (RX1)
689 +)))
690 +
576 576  (((
692 +923.2 - SF10BW125 (RX2)
693 +)))
694 +
695 +
696 +
697 +=== 2.6.6  KR920-923 (KR920) ===
698 +
699 +(((
700 +(% style="color:blue" %)**Default channel:**
701 +)))
702 +
703 +(((
704 +922.1 - SF7BW125 to SF12BW125
705 +)))
706 +
707 +(((
708 +922.3 - SF7BW125 to SF12BW125
709 +)))
710 +
711 +(((
712 +922.5 - SF7BW125 to SF12BW125
713 +)))
714 +
715 +(((
577 577  
578 578  )))
718 +
719 +(((
720 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
579 579  )))
580 580  
581 -== 3.1  Access AT Commands ==
723 +(((
724 +922.1 - SF7BW125 to SF12BW125
725 +)))
582 582  
583 -LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below.
727 +(((
728 +922.3 - SF7BW125 to SF12BW125
729 +)))
584 584  
731 +(((
732 +922.5 - SF7BW125 to SF12BW125
733 +)))
585 585  
586 -[[image:image-20220610172924-4.png||height="483" width="988"]]
735 +(((
736 +922.7 - SF7BW125 to SF12BW125
737 +)))
587 587  
739 +(((
740 +922.9 - SF7BW125 to SF12BW125
741 +)))
588 588  
589 -Or if you have below board, use below connection:
743 +(((
744 +923.1 - SF7BW125 to SF12BW125
745 +)))
590 590  
747 +(((
748 +923.3 - SF7BW125 to SF12BW125
749 +)))
591 591  
592 -[[image:image-20220610172924-5.png]]
751 +(((
752 +
753 +)))
593 593  
755 +(((
756 +(% style="color:blue" %)**Downlink:**
757 +)))
594 594  
595 595  (((
596 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below:
760 +Uplink channels 1-7(RX1)
597 597  )))
598 598  
763 +(((
764 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
765 +)))
599 599  
600 - [[image:image-20220610172924-6.png||height="601" width="860"]]
601 601  
602 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]].
603 603  
769 +=== 2.6.7  IN865-867 (IN865) ===
604 604  
605 -AT+<CMD>?  :  Help on <CMD>
771 +(((
772 +(% style="color:blue" %)**Uplink:**
773 +)))
606 606  
607 -AT+<CMD>  :  Run <CMD>
775 +(((
776 +865.0625 - SF7BW125 to SF12BW125
777 +)))
608 608  
609 -AT+<CMD>=<value>  :  Set the value
779 +(((
780 +865.4025 - SF7BW125 to SF12BW125
781 +)))
610 610  
611 -AT+<CMD>=?  :  Get the value
783 +(((
784 +865.9850 - SF7BW125 to SF12BW125
785 +)))
612 612  
787 +(((
788 +
789 +)))
613 613  
614 -**General Commands**      
791 +(((
792 +(% style="color:blue" %)**Downlink:**
793 +)))
615 615  
616 -AT                    : Attention       
795 +(((
796 +Uplink channels 1-3 (RX1)
797 +)))
617 617  
618 -AT?                            : Short Help     
799 +(((
800 +866.550 - SF10BW125 (RX2)
801 +)))
619 619  
620 -ATZ                            : MCU Reset    
621 621  
622 -AT+TDC           : Application Data Transmission Interval 
623 623  
805 +== 2.7  LED Indicator ==
624 624  
625 -**Keys, IDs and EUIs management**
807 +The LDDS75 has an internal LED which is to show the status of different state.
626 626  
627 -AT+APPEUI              : Application EUI      
628 628  
629 -AT+APPKEY              : Application Key     
810 +* Blink once when device power on.
811 +* The device detects the sensor and flashes 5 times.
812 +* Solid ON for 5 seconds once device successful Join the network.
813 +* Blink once when device transmit a packet.
630 630  
631 -AT+APPSKEY            : Application Session Key
632 632  
633 -AT+DADDR              : Device Address     
634 634  
635 -AT+DEUI                   : Device EUI     
817 +== 2.8  ​Firmware Change Log ==
636 636  
637 -AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
638 638  
639 -AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
820 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
640 640  
641 -AT+CFM          : Confirm Mode       
642 642  
643 -AT+CFS                     : Confirm Status       
823 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
644 644  
645 -AT+JOIN          : Join LoRa? Network       
646 646  
647 -AT+NJM          : LoRa? Network Join Mode    
648 648  
649 -AT+NJS                     : LoRa? Network Join Status    
827 +== 2.9  Mechanical ==
650 650  
651 -AT+RECV                  : Print Last Received Data in Raw Format
652 652  
653 -AT+RECVB                : Print Last Received Data in Binary Format      
830 +[[image:image-20220610172003-1.png]]
654 654  
655 -AT+SEND                  : Send Text Data      
656 656  
657 -AT+SENB                  : Send Hexadecimal Data
833 +[[image:image-20220610172003-2.png]]
658 658  
659 659  
660 -**LoRa Network Management**
661 661  
662 -AT+ADR          : Adaptive Rate
837 +== 2.10  Battery Analysis ==
663 663  
664 -AT+CLASS                : LoRa Class(Currently only support class A
839 +=== 2.10.1  Battery Type ===
665 665  
666 -AT+DCS           : Duty Cycle Setting 
841 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
667 667  
668 -AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
669 669  
670 -AT+FCD           : Frame Counter Downlink       
844 +The battery related documents as below:
671 671  
672 -AT+FCU           : Frame Counter Uplink   
846 +* (((
847 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
848 +)))
849 +* (((
850 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
851 +)))
852 +* (((
853 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
854 +)))
673 673  
674 -AT+JN1DL                : Join Accept Delay1
856 + [[image:image-20220610172400-3.png]]
675 675  
676 -AT+JN2DL                : Join Accept Delay2
677 677  
678 -AT+PNM                   : Public Network Mode   
679 679  
680 -AT+RX1DL                : Receive Delay1      
860 +=== 2.10.2  Replace the battery ===
681 681  
682 -AT+RX2DL                : Receive Delay2      
862 +(((
863 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
864 +)))
683 683  
684 -AT+RX2DR               : Rx2 Window Data Rate 
866 +(((
867 +
868 +)))
685 685  
686 -AT+RX2FQ               : Rx2 Window Frequency
870 +(((
871 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
872 +)))
687 687  
688 -AT+TXP           : Transmit Power
689 689  
690 690  
691 -**Information** 
876 += 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
692 692  
693 -AT+RSSI           : RSSI of the Last Received Packet   
878 +(((
879 +(((
880 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
881 +)))
882 +)))
694 694  
695 -AT+SNR           : SNR of the Last Received Packet   
884 +* (((
885 +(((
886 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
887 +)))
888 +)))
889 +* (((
890 +(((
891 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
892 +)))
893 +)))
696 696  
697 -AT+VER           : Image Version and Frequency Band       
895 +(((
896 +(((
897 +
898 +)))
698 698  
699 -AT+FDR           : Factory Data Reset
900 +(((
901 +There are two kinds of commands to configure LDDS75, they are:
902 +)))
903 +)))
700 700  
701 -AT+PORT                  : Application Port    
905 +* (((
906 +(((
907 +(% style="color:#4f81bd" %)** General Commands**.
908 +)))
909 +)))
702 702  
703 -AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
911 +(((
912 +(((
913 +These commands are to configure:
914 +)))
915 +)))
704 704  
705 - AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
917 +* (((
918 +(((
919 +General system settings like: uplink interval.
920 +)))
921 +)))
922 +* (((
923 +(((
924 +LoRaWAN protocol & radio related command.
925 +)))
926 +)))
706 706  
928 +(((
929 +(((
930 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
931 +)))
932 +)))
707 707  
934 +(((
935 +(((
936 +
937 +)))
938 +)))
708 708  
940 +* (((
941 +(((
942 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
943 +)))
944 +)))
945 +
946 +(((
947 +(((
948 +These commands only valid for LDDS75, as below:
949 +)))
950 +)))
951 +
952 +
953 +
954 +== 3.1  Access AT Commands ==
955 +
956 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
957 +
958 +[[image:image-20220610172924-4.png||height="483" width="988"]]
959 +
960 +
961 +Or if you have below board, use below connection:
962 +
963 +
964 +[[image:image-20220610172924-5.png]]
965 +
966 +
967 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
968 +
969 +
970 + [[image:image-20220610172924-6.png||height="601" width="860"]]
971 +
972 +
973 +
709 709  == 3.2  Set Transmit Interval Time ==
710 710  
711 711  Feature: Change LoRaWAN End Node Transmit Interval.
... ... @@ -723,19 +723,16 @@
723 723  (((
724 724  Format: Command Code (0x01) followed by 3 bytes time value.
725 725  
726 -(((
727 727  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
728 -)))
729 729  
730 730  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
731 731  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
732 732  )))
733 -)))
734 734  
735 735  
998 +
999 +)))
736 736  
737 -
738 -
739 739  == 3.3  Set Interrupt Mode ==
740 740  
741 741  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -749,9 +749,7 @@
749 749  
750 750  Format: Command Code (0x06) followed by 3 bytes.
751 751  
752 -(((
753 753  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
754 -)))
755 755  
756 756  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
757 757  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -182.9 KB
Content