Last modified by Mengting Qiu on 2025/08/06 17:02

From version 174.9
edited by Xiaoling
on 2022/06/15 10:43
Change comment: There is no comment for this version
To version 138.6
edited by Xiaoling
on 2022/06/10 17:05
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,826 +1,1296 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
23 +
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25 +
26 +
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 +
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
31 31  )))
38 +)))
32 32  
40 +
41 +[[image:1654847051249-359.png]]
42 +
43 +
44 +
45 +== ​1.2  Features ==
46 +
47 +* LoRaWAN 1.0.3 Class A
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
59 +
60 +
61 +
62 +== 1.3  Specification ==
63 +
64 +=== 1.3.1  Rated environmental conditions ===
65 +
66 +[[image:image-20220610154839-1.png]]
67 +
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69 +
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 +
72 +
73 +
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
75 +
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
77 +
78 +
79 +
80 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
81 +
82 +(% style="display:none" %) (%%)
83 +
84 +
85 +
86 +== 1.5 ​ Applications ==
87 +
88 +* Horizontal distance measurement
89 +* Liquid level measurement
90 +* Parking management system
91 +* Object proximity and presence detection
92 +* Intelligent trash can management system
93 +* Robot obstacle avoidance
94 +* Automatic control
95 +* Sewer
96 +* Bottom water level monitoring
97 +
98 +
99 +
100 +== 1.6  Pin mapping and power on ==
101 +
102 +
103 +[[image:1654847583902-256.png]]
104 +
105 +
106 +
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
108 +
109 +== 2.1  How it works ==
110 +
33 33  (((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
35 35  )))
36 36  
37 37  (((
38 -
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
39 39  )))
40 40  
119 +
120 +
121 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
122 +
41 41  (((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
124 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
43 43  )))
44 44  
45 45  (((
46 -
128 +[[image:1654848616367-242.png]]
47 47  )))
48 48  
49 49  (((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
132 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
51 51  )))
52 52  
53 53  (((
54 -
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
55 55  )))
56 56  
57 57  (((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
59 59  )))
60 60  
143 +[[image:image-20220607170145-1.jpeg]]
144 +
145 +
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
147 +
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
149 +
150 +**Add APP EUI in the application**
151 +
152 +[[image:image-20220610161353-4.png]]
153 +
154 +[[image:image-20220610161353-5.png]]
155 +
156 +[[image:image-20220610161353-6.png]]
157 +
158 +
159 +[[image:image-20220610161353-7.png]]
160 +
161 +
162 +You can also choose to create the device manually.
163 +
164 + [[image:image-20220610161538-8.png]]
165 +
166 +
167 +
168 +**Add APP KEY and DEV EUI**
169 +
170 +[[image:image-20220610161538-9.png]]
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
175 +
176 +
177 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
178 +
179 +[[image:image-20220610161724-10.png]]
180 +
181 +
61 61  (((
62 -
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
63 63  )))
64 64  
186 +[[image:1654849068701-275.png]]
187 +
188 +
189 +
190 +== 2.3  ​Uplink Payload ==
191 +
65 65  (((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
194 +
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
67 67  )))
68 68  
69 69  (((
70 70  
71 71  )))
72 -)))
73 73  
74 -(((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 -)))
78 -)))
79 -)))
80 -)))
203 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
204 +|=(% style="width: 62.5px;" %)(((
205 +**Size (bytes)**
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
81 81  
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
82 82  
83 -[[image:1655255122126-327.png]]
215 +[[image:1654850511545-399.png]]
84 84  
85 85  
86 86  
87 -== ​1.Features ==
219 +=== 2.3.1  Battery Info ===
88 88  
89 -* LoRaWAN 1.0.3 Class A
90 -* Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 -* Cable Length : 25cm
96 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 -* AT Commands to change parameters
98 -* Uplink on periodically
99 -* Downlink to change configure
100 -* IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
102 102  
103 -== 1.3  Suitable Container & Liquid ==
222 +Check the battery voltage for LDDS75.
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
224 +Ex1: 0x0B45 = 2885mV
111 111  
112 -== 1.4  Mechanical ==
226 +Ex2: 0x0B49 = 2889mV
113 113  
114 -[[image:image-20220615090910-1.png]]
115 115  
116 116  
117 -[[image:image-20220615090910-2.png]]
230 +=== 2.3.2  Distance ===
118 118  
232 +Get the distance. Flat object range 280mm - 7500mm.
119 119  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
120 120  
121 -== 1.5  Install LDDS20 ==
122 122  
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
127 127  
128 -[[image:image-20220615091045-3.png]]
129 129  
243 +=== 2.3.3  Interrupt Pin ===
130 130  
245 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
247 +**Example:**
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
249 +0x00: Normal uplink packet.
135 135  
136 -[[image:image-20220615092010-11.png]]
251 +0x01: Interrupt Uplink Packet.
137 137  
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
140 140  
141 -[[image:image-20220615092044-12.png]]
255 +=== 2.3.4  DS18B20 Temperature sensor ===
142 142  
257 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
143 143  
259 +**Example**:
144 144  
145 -(% style="color:blue" %)**Step3  **(%%)Test the installation point.
261 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
263 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
148 148  
265 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
153 153  
269 +=== 2.3.5  Sensor Flag ===
154 154  
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
271 +0x01: Detect Ultrasonic Sensor
156 156  
273 +0x00: No Ultrasonic Sensor
157 157  
158 -(% style="color:red" %)**LED Status:**
159 159  
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
276 +===
277 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
161 161  
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
279 +While using TTN network, you can add the payload format to decode the payload.
164 164  
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 166  
282 +[[image:1654850829385-439.png]]
167 167  
168 -(% style="color:red" %)**Note 2:**
284 +The payload decoder function for TTN V3 is here:
169 169  
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
286 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
171 171  
172 172  
173 173  
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
290 +== 2.Uplink Interval ==
175 175  
176 -Prepare Eproxy AB glue.
292 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
177 177  
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 179  
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 181  
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
296 +== 2.5  ​Show Data in DataCake IoT Server ==
183 183  
298 +(((
299 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
300 +)))
184 184  
185 -(% style="color:red" %)**Note 1:**
302 +(((
303 +
304 +)))
186 186  
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
306 +(((
307 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
308 +)))
188 188  
310 +(((
311 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
312 +)))
189 189  
190 -(% style="color:red" %)**Note 2:**
191 191  
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
315 +[[image:1654592790040-760.png]]
193 193  
194 194  
318 +[[image:1654592800389-571.png]]
195 195  
196 -== 1.6 ​ Applications ==
197 197  
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
321 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
200 200  
201 -== 1.7  Precautions ==
323 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
202 202  
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
325 +[[image:1654851029373-510.png]]
206 206  
207 -== 1.8  Pin mapping and power on ==
208 208  
328 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
209 209  
210 -[[image:1655257026882-201.png]]
330 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
211 211  
212 212  
213 213  
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
334 +== 2.6  Frequency Plans ==
215 215  
336 +(((
337 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
338 +)))
216 216  
217 -== 2.1  How it works ==
218 218  
341 +
342 +=== 2.6.1  EU863-870 (EU868) ===
343 +
219 219  (((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
345 +(% style="color:blue" %)**Uplink:**
221 221  )))
222 222  
223 223  (((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
349 +868.1 - SF7BW125 to SF12BW125
225 225  )))
226 226  
352 +(((
353 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
354 +)))
227 227  
356 +(((
357 +868.5 - SF7BW125 to SF12BW125
358 +)))
228 228  
229 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
360 +(((
361 +867.1 - SF7BW125 to SF12BW125
362 +)))
230 230  
231 231  (((
232 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
365 +867.3 - SF7BW125 to SF12BW125
233 233  )))
234 234  
235 235  (((
236 -[[image:1655257698953-697.png]]
369 +867.5 - SF7BW125 to SF12BW125
237 237  )))
238 238  
239 239  (((
240 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
373 +867.7 - SF7BW125 to SF12BW125
241 241  )))
242 242  
243 243  (((
244 -
377 +867.9 - SF7BW125 to SF12BW125
378 +)))
245 245  
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
380 +(((
381 +868.8 - FSK
247 247  )))
248 248  
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
385 +
251 251  )))
252 252  
253 -[[image:image-20220607170145-1.jpeg]]
388 +(((
389 +(% style="color:blue" %)**Downlink:**
390 +)))
254 254  
255 -
256 256  (((
257 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
393 +Uplink channels 1-9 (RX1)
258 258  )))
259 259  
260 260  (((
261 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
397 +869.525 - SF9BW125 (RX2 downlink only)
262 262  )))
263 263  
400 +
401 +
402 +=== 2.6.2  US902-928(US915) ===
403 +
264 264  (((
265 -
405 +Used in USA, Canada and South America. Default use CHE=2
266 266  
267 -**Add APP EUI in the application**
268 -)))
407 +(% style="color:blue" %)**Uplink:**
269 269  
270 -[[image:image-20220610161353-4.png]]
409 +903.9 - SF7BW125 to SF10BW125
271 271  
272 -[[image:image-20220610161353-5.png]]
411 +904.1 - SF7BW125 to SF10BW125
273 273  
274 -[[image:image-20220610161353-6.png]]
413 +904.3 - SF7BW125 to SF10BW125
275 275  
415 +904.5 - SF7BW125 to SF10BW125
276 276  
277 -[[image:image-20220610161353-7.png]]
417 +904.7 - SF7BW125 to SF10BW125
278 278  
419 +904.9 - SF7BW125 to SF10BW125
279 279  
421 +905.1 - SF7BW125 to SF10BW125
280 280  
281 -You can also choose to create the device manually.
423 +905.3 - SF7BW125 to SF10BW125
282 282  
283 - [[image:image-20220610161538-8.png]]
284 284  
426 +(% style="color:blue" %)**Downlink:**
285 285  
428 +923.3 - SF7BW500 to SF12BW500
286 286  
287 -**Add APP KEY and DEV EUI**
430 +923.9 - SF7BW500 to SF12BW500
288 288  
289 -[[image:image-20220610161538-9.png]]
432 +924.5 - SF7BW500 to SF12BW500
290 290  
434 +925.1 - SF7BW500 to SF12BW500
291 291  
436 +925.7 - SF7BW500 to SF12BW500
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
438 +926.3 - SF7BW500 to SF12BW500
294 294  
440 +926.9 - SF7BW500 to SF12BW500
295 295  
296 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
442 +927.5 - SF7BW500 to SF12BW500
297 297  
298 -[[image:image-20220615095102-14.png]]
444 +923.3 - SF12BW500(RX2 downlink only)
299 299  
300 300  
447 +
448 +)))
301 301  
450 +=== 2.6.3  CN470-510 (CN470) ===
451 +
302 302  (((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
453 +Used in China, Default use CHE=1
304 304  )))
305 305  
306 -[[image:1654849068701-275.png]]
456 +(((
457 +(% style="color:blue" %)**Uplink:**
458 +)))
307 307  
460 +(((
461 +486.3 - SF7BW125 to SF12BW125
462 +)))
308 308  
464 +(((
465 +486.5 - SF7BW125 to SF12BW125
466 +)))
309 309  
310 -== 2.3  ​Uplink Payload ==
468 +(((
469 +486.7 - SF7BW125 to SF12BW125
470 +)))
311 311  
312 312  (((
473 +486.9 - SF7BW125 to SF12BW125
474 +)))
475 +
313 313  (((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
477 +487.1 - SF7BW125 to SF12BW125
478 +)))
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
480 +(((
481 +487.3 - SF7BW125 to SF12BW125
318 318  )))
483 +
484 +(((
485 +487.5 - SF7BW125 to SF12BW125
319 319  )))
320 320  
321 321  (((
489 +487.7 - SF7BW125 to SF12BW125
490 +)))
491 +
492 +(((
322 322  
323 323  )))
324 324  
325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 -|=(% style="width: 62.5px;" %)(((
327 -**Size (bytes)**
328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 -[[Distance>>||anchor="H2.3.2A0Distance"]]
496 +(((
497 +(% style="color:blue" %)**Downlink:**
498 +)))
331 331  
332 -(unit: mm)
333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
500 +(((
501 +506.7 - SF7BW125 to SF12BW125
502 +)))
336 336  
337 -[[image:1654850511545-399.png]]
504 +(((
505 +506.9 - SF7BW125 to SF12BW125
506 +)))
338 338  
508 +(((
509 +507.1 - SF7BW125 to SF12BW125
510 +)))
339 339  
512 +(((
513 +507.3 - SF7BW125 to SF12BW125
514 +)))
340 340  
341 -=== 2.3.1  Battery Info ===
516 +(((
517 +507.5 - SF7BW125 to SF12BW125
518 +)))
342 342  
520 +(((
521 +507.7 - SF7BW125 to SF12BW125
522 +)))
343 343  
344 -Check the battery voltage for LDDS20.
524 +(((
525 +507.9 - SF7BW125 to SF12BW125
526 +)))
345 345  
346 -Ex1: 0x0B45 = 2885mV
528 +(((
529 +508.1 - SF7BW125 to SF12BW125
530 +)))
347 347  
348 -Ex2: 0x0B49 = 2889mV
532 +(((
533 +505.3 - SF12BW125 (RX2 downlink only)
534 +)))
349 349  
350 350  
351 351  
352 -=== 2.3.2  Distance ===
353 353  
539 +=== 2.6.4  AU915-928(AU915) ===
540 +
354 354  (((
355 -Get the distance. Flat object range 20mm - 2000mm.
542 +Default use CHE=2
543 +
544 +(% style="color:blue" %)**Uplink:**
545 +
546 +916.8 - SF7BW125 to SF12BW125
547 +
548 +917.0 - SF7BW125 to SF12BW125
549 +
550 +917.2 - SF7BW125 to SF12BW125
551 +
552 +917.4 - SF7BW125 to SF12BW125
553 +
554 +917.6 - SF7BW125 to SF12BW125
555 +
556 +917.8 - SF7BW125 to SF12BW125
557 +
558 +918.0 - SF7BW125 to SF12BW125
559 +
560 +918.2 - SF7BW125 to SF12BW125
561 +
562 +
563 +(% style="color:blue" %)**Downlink:**
564 +
565 +923.3 - SF7BW500 to SF12BW500
566 +
567 +923.9 - SF7BW500 to SF12BW500
568 +
569 +924.5 - SF7BW500 to SF12BW500
570 +
571 +925.1 - SF7BW500 to SF12BW500
572 +
573 +925.7 - SF7BW500 to SF12BW500
574 +
575 +926.3 - SF7BW500 to SF12BW500
576 +
577 +926.9 - SF7BW500 to SF12BW500
578 +
579 +927.5 - SF7BW500 to SF12BW500
580 +
581 +923.3 - SF12BW500(RX2 downlink only)
582 +
583 +
584 +
356 356  )))
357 357  
587 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
588 +
358 358  (((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
590 +(% style="color:blue" %)**Default Uplink channel:**
360 360  )))
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
593 +(((
594 +923.2 - SF7BW125 to SF10BW125
595 +)))
364 364  
597 +(((
598 +923.4 - SF7BW125 to SF10BW125
599 +)))
365 365  
601 +(((
602 +
603 +)))
366 366  
367 -=== 2.3.3  Interrupt Pin ===
605 +(((
606 +(% style="color:blue" %)**Additional Uplink Channel**:
607 +)))
368 368  
369 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
609 +(((
610 +(OTAA mode, channel added by JoinAccept message)
611 +)))
370 370  
371 -**Example:**
613 +(((
614 +
615 +)))
372 372  
373 -0x00: Normal uplink packet.
617 +(((
618 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
619 +)))
374 374  
375 -0x01: Interrupt Uplink Packet.
621 +(((
622 +922.2 - SF7BW125 to SF10BW125
623 +)))
376 376  
625 +(((
626 +922.4 - SF7BW125 to SF10BW125
627 +)))
377 377  
629 +(((
630 +922.6 - SF7BW125 to SF10BW125
631 +)))
378 378  
379 -=== 2.3.4  DS18B20 Temperature sensor ===
633 +(((
634 +922.8 - SF7BW125 to SF10BW125
635 +)))
380 380  
381 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
637 +(((
638 +923.0 - SF7BW125 to SF10BW125
639 +)))
382 382  
383 -**Example**:
641 +(((
642 +922.0 - SF7BW125 to SF10BW125
643 +)))
384 384  
385 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
645 +(((
646 +
647 +)))
386 386  
387 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
649 +(((
650 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
651 +)))
388 388  
389 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
653 +(((
654 +923.6 - SF7BW125 to SF10BW125
655 +)))
390 390  
657 +(((
658 +923.8 - SF7BW125 to SF10BW125
659 +)))
391 391  
661 +(((
662 +924.0 - SF7BW125 to SF10BW125
663 +)))
392 392  
393 -=== 2.3.5  Sensor Flag ===
665 +(((
666 +924.2 - SF7BW125 to SF10BW125
667 +)))
394 394  
395 395  (((
396 -0x01: Detect Ultrasonic Sensor
670 +924.4 - SF7BW125 to SF10BW125
397 397  )))
398 398  
399 399  (((
400 -0x00: No Ultrasonic Sensor
674 +924.6 - SF7BW125 to SF10BW125
401 401  )))
402 402  
677 +(((
678 +
679 +)))
403 403  
681 +(((
682 +(% style="color:blue" %)**Downlink:**
683 +)))
404 404  
405 -=== 2.3.6  Decode payload in The Things Network ===
685 +(((
686 +Uplink channels 1-8 (RX1)
687 +)))
406 406  
407 -While using TTN network, you can add the payload format to decode the payload.
689 +(((
690 +923.2 - SF10BW125 (RX2)
691 +)))
408 408  
409 409  
410 -[[image:1654850829385-439.png]]
411 411  
412 -The payload decoder function for TTN V3 is here:
413 413  
696 +=== 2.6.6  KR920-923 (KR920) ===
697 +
414 414  (((
415 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
699 +(% style="color:blue" %)**Default channel:**
416 416  )))
417 417  
702 +(((
703 +922.1 - SF7BW125 to SF12BW125
704 +)))
418 418  
706 +(((
707 +922.3 - SF7BW125 to SF12BW125
708 +)))
419 419  
420 -== 2.4  Downlink Payload ==
710 +(((
711 +922.5 - SF7BW125 to SF12BW125
712 +)))
421 421  
422 -By default, LDDS20 prints the downlink payload to console port.
714 +(((
715 +
716 +)))
423 423  
424 -[[image:image-20220615100930-15.png]]
718 +(((
719 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
720 +)))
425 425  
722 +(((
723 +922.1 - SF7BW125 to SF12BW125
724 +)))
426 426  
427 -**Examples:**
726 +(((
727 +922.3 - SF7BW125 to SF12BW125
728 +)))
428 428  
730 +(((
731 +922.5 - SF7BW125 to SF12BW125
732 +)))
429 429  
430 -* (% style="color:blue" %)**Set TDC**
734 +(((
735 +922.7 - SF7BW125 to SF12BW125
736 +)))
431 431  
432 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
738 +(((
739 +922.9 - SF7BW125 to SF12BW125
740 +)))
433 433  
434 -Payload:    01 00 00 1E    TDC=30S
742 +(((
743 +923.1 - SF7BW125 to SF12BW125
744 +)))
435 435  
436 -Payload:    01 00 00 3C    TDC=60S
746 +(((
747 +923.3 - SF7BW125 to SF12BW125
748 +)))
437 437  
750 +(((
751 +
752 +)))
438 438  
439 -* (% style="color:blue" %)**Reset**
754 +(((
755 +(% style="color:blue" %)**Downlink:**
756 +)))
440 440  
441 -If payload = 0x04FF, it will reset the LDDS20
758 +(((
759 +Uplink channels 1-7(RX1)
760 +)))
442 442  
762 +(((
763 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
764 +)))
443 443  
444 -* (% style="color:blue" %)**CFM**
445 445  
446 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
447 447  
448 448  
769 +=== 2.6.7  IN865-867 (IN865) ===
449 449  
450 -== 2.5  ​Show Data in DataCake IoT Server ==
771 +(((
772 +(% style="color:blue" %)**Uplink:**
773 +)))
451 451  
452 452  (((
453 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
776 +865.0625 - SF7BW125 to SF12BW125
454 454  )))
455 455  
456 456  (((
780 +865.4025 - SF7BW125 to SF12BW125
781 +)))
782 +
783 +(((
784 +865.9850 - SF7BW125 to SF12BW125
785 +)))
786 +
787 +(((
457 457  
458 458  )))
459 459  
460 460  (((
461 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
792 +(% style="color:blue" %)**Downlink:**
462 462  )))
463 463  
464 464  (((
465 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
796 +Uplink channels 1-3 (RX1)
466 466  )))
467 467  
799 +(((
800 +866.550 - SF10BW125 (RX2)
801 +)))
468 468  
469 -[[image:1654592790040-760.png]]
470 470  
471 471  
472 -[[image:1654592800389-571.png]]
473 473  
806 +== 2.7  LED Indicator ==
474 474  
475 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
808 +The LLDS12 has an internal LED which is to show the status of different state.
476 476  
477 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
810 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
811 +* Blink once when device transmit a packet.
478 478  
479 -[[image:1654851029373-510.png]]
813 +== 2.8  ​Firmware Change Log ==
480 480  
481 481  
482 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
816 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
483 483  
484 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
485 485  
819 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
486 486  
487 487  
488 -== 2.6  LED Indicator ==
489 489  
490 -The LDDS20 has an internal LED which is to show the status of different state.
823 += 3.  LiDAR ToF Measurement =
491 491  
825 +== 3.1 Principle of Distance Measurement ==
492 492  
493 -* Blink once when device power on.
494 -* The device detects the sensor and flashes 5 times.
495 -* Solid ON for 5 seconds once device successful Join the network.
496 -* Blink once when device transmit a packet.
827 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
497 497  
829 +[[image:1654831757579-263.png]]
498 498  
499 499  
500 -== 2.7  ​Firmware Change Log ==
501 501  
833 +== 3.2 Distance Measurement Characteristics ==
502 502  
835 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
836 +
837 +[[image:1654831774373-275.png]]
838 +
839 +
503 503  (((
504 -**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
841 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
505 505  )))
506 506  
507 507  (((
508 -
845 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
509 509  )))
510 510  
511 511  (((
512 -**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
849 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
513 513  )))
514 514  
515 515  
853 +(((
854 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
855 +)))
516 516  
517 -== 2.8  Battery Analysis ==
518 518  
858 +[[image:1654831797521-720.png]]
519 519  
520 520  
861 +(((
862 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
863 +)))
521 521  
522 -=== 2.8.1  Battery Type ===
865 +[[image:1654831810009-716.png]]
523 523  
524 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
525 525  
868 +(((
869 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
870 +)))
526 526  
527 -The battery related documents as below:
528 528  
529 -* (((
530 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
873 +
874 +== 3.3 Notice of usage: ==
875 +
876 +Possible invalid /wrong reading for LiDAR ToF tech:
877 +
878 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
879 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
880 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
881 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
882 +
883 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
884 +
885 +(((
886 +(((
887 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
531 531  )))
889 +)))
890 +
532 532  * (((
533 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
892 +(((
893 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
534 534  )))
895 +)))
535 535  * (((
536 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
897 +(((
898 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
537 537  )))
900 +)))
538 538  
539 - [[image:image-20220615102527-16.png]]
902 +(((
903 +(((
904 +
905 +)))
540 540  
907 +(((
908 +There are two kinds of commands to configure LLDS12, they are:
909 +)))
910 +)))
541 541  
912 +* (((
913 +(((
914 +(% style="color:#4f81bd" %)** General Commands**.
915 +)))
916 +)))
542 542  
543 -== 2.8.2  Battery Note ==
918 +(((
919 +(((
920 +These commands are to configure:
921 +)))
922 +)))
544 544  
545 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
924 +* (((
925 +(((
926 +General system settings like: uplink interval.
927 +)))
928 +)))
929 +* (((
930 +(((
931 +LoRaWAN protocol & radio related command.
932 +)))
933 +)))
546 546  
547 -
548 -
549 -=== 2.8.3  Replace the battery ===
550 -
551 551  (((
552 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
936 +(((
937 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
553 553  )))
939 +)))
554 554  
555 555  (((
942 +(((
556 556  
557 557  )))
945 +)))
558 558  
947 +* (((
559 559  (((
560 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
949 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
561 561  )))
951 +)))
562 562  
953 +(((
954 +(((
955 +These commands only valid for LLDS12, as below:
956 +)))
957 +)))
563 563  
564 564  
565 -== 2.8.4  Battery Life Analyze ==
566 566  
567 -Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
961 +== 4.1  Set Transmit Interval Time ==
568 568  
569 -[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
963 +Feature: Change LoRaWAN End Node Transmit Interval.
570 570  
965 +(% style="color:#037691" %)**AT Command: AT+TDC**
571 571  
967 +[[image:image-20220607171554-8.png]]
572 572  
573 -= 3.  Using the AT Commands =
574 574  
575 575  (((
971 +(% style="color:#037691" %)**Downlink Command: 0x01**
972 +)))
973 +
576 576  (((
577 -
975 +Format: Command Code (0x01) followed by 3 bytes time value.
578 578  )))
977 +
978 +(((
979 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
579 579  )))
580 580  
581 -== 3.1  Access AT Commands ==
982 +* (((
983 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +)))
985 +* (((
986 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
987 +)))
582 582  
583 -LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below.
989 +== 4.2  Set Interrupt Mode ==
584 584  
991 +Feature, Set Interrupt mode for GPIO_EXIT.
585 585  
586 -[[image:image-20220610172924-4.png||height="483" width="988"]]
993 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
587 587  
995 +[[image:image-20220610105806-2.png]]
588 588  
589 -Or if you have below board, use below connection:
590 590  
998 +(((
999 +(% style="color:#037691" %)**Downlink Command: 0x06**
1000 +)))
591 591  
592 -[[image:image-20220610172924-5.png]]
1002 +(((
1003 +Format: Command Code (0x06) followed by 3 bytes.
1004 +)))
593 593  
594 -
595 595  (((
596 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below:
1007 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
597 597  )))
598 598  
1010 +* (((
1011 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1012 +)))
1013 +* (((
1014 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1015 +)))
599 599  
600 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1017 +== 4.3  Get Firmware Version Info ==
601 601  
602 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]].
1019 +Feature: use downlink to get firmware version.
603 603  
1021 +(% style="color:#037691" %)**Downlink Command: 0x26**
604 604  
605 -AT+<CMD>?  :  Help on <CMD>
1023 +[[image:image-20220607171917-10.png]]
606 606  
607 -AT+<CMD>  :  Run <CMD>
1025 +* Reply to the confirmation package: 26 01
1026 +* Reply to non-confirmed packet: 26 00
608 608  
609 -AT+<CMD>=<value Set the value
1028 +Device will send an uplink after got this downlink command. With below payload:
610 610  
611 -AT+<CMD>=?  :  Get the value
1030 +Configures info payload:
612 612  
1032 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1033 +|=(((
1034 +**Size(bytes)**
1035 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1036 +|**Value**|Software Type|(((
1037 +Frequency
613 613  
614 -**General Commands**      
1039 +Band
1040 +)))|Sub-band|(((
1041 +Firmware
615 615  
616 -AT                    : Attention       
1043 +Version
1044 +)))|Sensor Type|Reserve|(((
1045 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1046 +Always 0x02
1047 +)))
617 617  
618 -AT?                            : Short Help     
1049 +**Software Type**: Always 0x03 for LLDS12
619 619  
620 -ATZ                            : MCU Reset    
621 621  
622 -AT+TDC           : Application Data Transmission Interva
1052 +**Frequency Band**:
623 623  
1054 +*0x01: EU868
624 624  
625 -**Keys, IDs and EUIs management**
1056 +*0x02: US915
626 626  
627 -AT+APPEUI              : Application EUI      
1058 +*0x03: IN865
628 628  
629 -AT+APPKEY              : Application Key     
1060 +*0x04: AU915
630 630  
631 -AT+APPSKEY            : Application Session Key
1062 +*0x05: KZ865
632 632  
633 -AT+DADDR              : Device Address     
1064 +*0x06: RU864
634 634  
635 -AT+DEUI                   : Device EUI     
1066 +*0x07: AS923
636 636  
637 -AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
1068 +*0x08: AS923-1
638 638  
639 -AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
1070 +*0x09: AS923-2
640 640  
641 -AT+CFM          : Confirm Mode       
1072 +*0xa0: AS923-3
642 642  
643 -AT+CFS                     : Confirm Status       
644 644  
645 -AT+JOIN          : Join LoRa? Network       
1075 +**Sub-Band**: value 0x00 ~~ 0x08
646 646  
647 -AT+NJM          : LoRa? Network Join Mode    
648 648  
649 -AT+NJS                     : LoRa? Network Join Status    
1078 +**Firmware Version**: 0x0100, Means: v1.0.0 version
650 650  
651 -AT+RECV                  : Print Last Received Data in Raw Format
652 652  
653 -AT+RECVB                : Print Last Received Data in Binary Format      
1081 +**Sensor Type**:
654 654  
655 -AT+SEND                  : Send Text Data      
1083 +0x01: LSE01
656 656  
657 -AT+SENB                  : Send Hexadecimal Data
1085 +0x02: LDDS75
658 658  
1087 +0x03: LDDS20
659 659  
660 -**LoRa Network Management**
1089 +0x04: LLMS01
661 661  
662 -AT+ADR          : Adaptive Rate
1091 +0x05: LSPH01
663 663  
664 -AT+CLASS                : LoRa Class(Currently only support class A
1093 +0x06: LSNPK01
665 665  
666 -AT+DCS           : Duty Cycle Setting 
1095 +0x07: LLDS12
667 667  
668 -AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
669 669  
670 -AT+FCD           : Frame Counter Downlink       
671 671  
672 -AT+FCU           : Frame Counter Uplink   
1099 += 5.  Battery & How to replace =
673 673  
674 -AT+JN1DL                : Join Accept Delay1
1101 +== 5.Battery Type ==
675 675  
676 -AT+JN2DL                : Join Accept Delay2
1103 +(((
1104 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1105 +)))
677 677  
678 -AT+PNM                   : Public Network Mode   
1107 +(((
1108 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1109 +)))
679 679  
680 -AT+RX1DL                : Receive Delay1      
1111 +[[image:1654593587246-335.png]]
681 681  
682 -AT+RX2DL                : Receive Delay2      
683 683  
684 -AT+RX2DR               : Rx2 Window Data Rate 
1114 +Minimum Working Voltage for the LLDS12:
685 685  
686 -AT+RX2FQ               : Rx2 Window Frequency
1116 +LLDS12:  2.45v ~~ 3.6v
687 687  
688 -AT+TXP           : Transmit Power
689 689  
690 690  
691 -**Information** 
1120 +== 5.2  Replace Battery ==
692 692  
693 -AT+RSSI           : RSSI of the Last Received Packet   
1122 +(((
1123 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1124 +)))
694 694  
695 -AT+SNR           : SNR of the Last Received Packet   
1126 +(((
1127 +And make sure the positive and negative pins match.
1128 +)))
696 696  
697 -AT+VER           : Image Version and Frequency Band       
698 698  
699 -AT+FDR           : Factory Data Reset
700 700  
701 -AT+PORT                  : Application Port    
1132 +== 5.3  Power Consumption Analyze ==
702 702  
703 -AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1134 +(((
1135 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1136 +)))
704 704  
705 - AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
1138 +(((
1139 +Instruction to use as below:
1140 +)))
706 706  
707 707  
1143 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
708 708  
709 -== 3.2  Set Transmit Interval Time ==
1145 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
710 710  
711 -Feature: Change LoRaWAN End Node Transmit Interval.
712 712  
713 -(% style="color:#037691" %)**AT Command: AT+TDC**
1148 +**Step 2**: Open it and choose
714 714  
715 -[[image:image-20220610173409-7.png]]
1150 +* Product Model
1151 +* Uplink Interval
1152 +* Working Mode
716 716  
1154 +And the Life expectation in difference case will be shown on the right.
717 717  
718 -(((
719 -(% style="color:#037691" %)**Downlink Command: 0x01**
1156 +[[image:1654593605679-189.png]]
1157 +
1158 +
1159 +The battery related documents as below:
1160 +
1161 +* (((
1162 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
720 720  )))
1164 +* (((
1165 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1166 +)))
1167 +* (((
1168 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1169 +)))
721 721  
1171 +[[image:image-20220607172042-11.png]]
1172 +
1173 +
1174 +
1175 +=== 5.3.1  ​Battery Note ===
1176 +
722 722  (((
723 -(((
724 -Format: Command Code (0x01) followed by 3 bytes time value.
1178 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1179 +)))
725 725  
1181 +
1182 +
1183 +=== ​5.3.2  Replace the battery ===
1184 +
726 726  (((
727 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
1186 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
728 728  )))
729 729  
730 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
731 -* Example 2: Downlink Payload0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1189 +(((
1190 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
732 732  )))
733 -)))
734 734  
735 735  
736 736  
1195 += 6.  Use AT Command =
737 737  
1197 +== 6.1  Access AT Commands ==
738 738  
739 -== 3.3  Set Interrupt Mode ==
1199 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
740 740  
741 -Feature, Set Interrupt mode for GPIO_EXIT.
1201 +[[image:1654593668970-604.png]]
742 742  
743 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1203 +**Connection:**
744 744  
745 -[[image:image-20220610174917-9.png]]
1205 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
746 746  
1207 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
747 747  
748 -(% style="color:#037691" %)**Downlink Command: 0x06**
1209 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
749 749  
750 -Format: Command Code (0x06) followed by 3 bytes.
751 751  
752 752  (((
753 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1213 +(((
1214 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
754 754  )))
755 755  
756 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
757 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1217 +(((
1218 +LLDS12 will output system info once power on as below:
1219 +)))
1220 +)))
758 758  
759 -= 4.  FAQ =
760 760  
761 -== 4.1  What is the frequency plan for LDDS75? ==
1223 + [[image:1654593712276-618.png]]
762 762  
763 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1225 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
764 764  
765 765  
1228 += 7.  FAQ =
766 766  
767 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1230 +== 7.1  How to change the LoRa Frequency Bands/Region ==
768 768  
769 769  You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
770 770  When downloading the images, choose the required image file for download. ​
771 771  
772 772  
1236 += 8.  Trouble Shooting =
773 773  
774 -== 4.3  Can I use LDDS75 in condensation environment? ==
1238 +== 8.1  AT Commands input doesn’t work ==
775 775  
776 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
777 777  
1241 +(((
1242 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1243 +)))
778 778  
779 779  
780 -= 5Trouble Shooting =
1246 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
781 781  
782 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
783 783  
784 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1249 +(((
1250 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1251 +)))
785 785  
1253 +(((
1254 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1255 +)))
786 786  
787 -== 5.2  AT Command input doesn't work ==
788 -
789 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
790 -
791 791  (((
792 792  
793 793  )))
794 794  
1261 +(((
1262 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1263 +)))
795 795  
796 -= 6.  Order Info =
1265 +(((
1266 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1267 +)))
797 797  
798 798  
799 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
800 800  
1271 += 9.  Order Info =
801 801  
802 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
803 803  
804 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
805 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
806 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
807 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
808 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
809 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
810 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
811 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1274 +Part Number: (% style="color:blue" %)**LLDS12-XX**
812 812  
813 -(% style="color:blue" %)**YY**(%%): Battery Option
814 814  
815 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
816 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1277 +(% style="color:blue" %)**XX**(%%): The default frequency band
817 817  
818 -= 7. ​ Packing Info =
1279 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1280 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1281 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1282 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1283 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1284 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1285 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1286 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
819 819  
1288 += 10. ​ Packing Info =
820 820  
1290 +
821 821  **Package Includes**:
822 822  
823 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1293 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
824 824  
825 825  **Dimension and weight**:
826 826  
... ... @@ -829,7 +829,7 @@
829 829  * Package Size / pcs : cm
830 830  * Weight / pcs : g
831 831  
832 -= 8.  ​Support =
1302 += 11.  ​Support =
833 833  
834 834  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
835 835  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654852175653-550.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.6 KB
Content
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -182.9 KB
Content