Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 27 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220610172924-4.png
- image-20220610172924-5.png
- image-20220610172924-6.png
- image-20220610173409-7.png
- image-20220610174836-8.png
- image-20220610174917-9.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
- image-20220615102527-16.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 20- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,495 +1,812 @@ 1 1 (% style="text-align:center" %) 2 -[[image:165 5254599445-662.png]]2 +[[image:1654846127817-788.png]] 3 3 4 +**Contents:** 4 4 5 5 6 6 7 -**Table of Contents:** 8 8 9 9 10 10 11 11 12 12 13 - 14 - 15 - 16 16 = 1. Introduction = 17 17 18 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==15 +== 1.1 What is LoRaWAN Distance Detection Sensor == 19 19 20 20 ((( 21 21 22 22 23 23 ((( 24 -((( 25 -((( 26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 27 -))) 21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 28 28 29 -((( 30 - 23 + 24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 25 + 26 + 27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 28 + 29 + 30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 + 32 + 33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 + 35 + 36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 31 31 ))) 38 +))) 32 32 40 + 41 +[[image:1654847051249-359.png]] 42 + 43 + 44 + 45 +== 1.2 Features == 46 + 47 +* LoRaWAN 1.0.3 Class A 48 +* Ultra low power consumption 49 +* Distance Detection by Ultrasonic technology 50 +* Flat object range 280mm - 7500mm 51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 52 +* Cable Length : 25cm 53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 +* AT Commands to change parameters 55 +* Uplink on periodically 56 +* Downlink to change configure 57 +* IP66 Waterproof Enclosure 58 +* 4000mAh or 8500mAh Battery for long term use 59 + 60 + 61 + 62 +== 1.3 Specification == 63 + 64 +=== 1.3.1 Rated environmental conditions === 65 + 66 +[[image:image-20220610154839-1.png]] 67 + 68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 69 + 70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 71 + 72 + 73 + 74 +=== 1.3.2 Effective measurement range Reference beam pattern === 75 + 76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 77 + 78 + 79 + 80 +[[image:1654852253176-749.png]] 81 + 82 + 83 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 84 + 85 + 86 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 87 + 88 + 89 + 90 +== 1.5 Applications == 91 + 92 +* Horizontal distance measurement 93 +* Liquid level measurement 94 +* Parking management system 95 +* Object proximity and presence detection 96 +* Intelligent trash can management system 97 +* Robot obstacle avoidance 98 +* Automatic control 99 +* Sewer 100 +* Bottom water level monitoring 101 + 102 + 103 + 104 +== 1.6 Pin mapping and power on == 105 + 106 + 107 +[[image:1654847583902-256.png]] 108 + 109 + 110 + 111 += 2. Configure LDDS75 to connect to LoRaWAN network = 112 + 113 +== 2.1 How it works == 114 + 33 33 ((( 34 -The LDDS 20sensorisinstalleddirectlybelowthecontainertodetecttheheight oftheliquidlevel.Userdoesn’tneedto openahole on thecontainerto betested.The(%style="color:#4472c4"%)**none-contactmeasurementkesthemeasurement safety,easierandpossibleforsomestrictsituation**.116 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 35 35 ))) 36 36 37 37 ((( 38 - 120 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 39 39 ))) 40 40 123 + 124 + 125 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 126 + 41 41 ((( 42 - LDDS20 uses ultrasonic sensingtechnology for distancemeasurement.LDDS20 is of highaccuracytomeasurevariousliquid suchas:(%style="color:#4472c4" %)**toxicsubstances**(%%), (% style="color:#4472c4"%)**strongacids**(%%),(% style="color:#4472c4"%)**strong alkalis**(%%)and (%style="color:#4472c4" %)**various pureliquids**(%%)inhigh-temperature and high-pressureairtightcontainers.128 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 43 43 ))) 44 44 45 45 ((( 46 - 132 +[[image:1654848616367-242.png]] 47 47 ))) 48 48 49 49 ((( 50 -The L oRawirelesstechnology usedin LDDS20 allowsdevicetosend data and reach extremelylongranges atlowdata-rates. Itrovidesultra-longrangespread spectrumcommunicationandhigh interferenceimmunitywhilstminimizingcurrentconsumption.136 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 51 51 ))) 52 52 53 53 ((( 54 - 140 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 55 55 ))) 56 56 57 57 ((( 58 -LDDS 20is poweredby(%style="color:#4472c4"%)**8500mA Li-SOCI2battery**(%%);It isdesignedforlongtermuseupto10years*.144 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 59 59 ))) 60 60 147 +[[image:image-20220607170145-1.jpeg]] 148 + 149 + 150 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 151 + 152 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 153 + 154 +**Add APP EUI in the application** 155 + 156 +[[image:image-20220610161353-4.png]] 157 + 158 +[[image:image-20220610161353-5.png]] 159 + 160 +[[image:image-20220610161353-6.png]] 161 + 162 + 163 +[[image:image-20220610161353-7.png]] 164 + 165 + 166 +You can also choose to create the device manually. 167 + 168 + [[image:image-20220610161538-8.png]] 169 + 170 + 171 + 172 +**Add APP KEY and DEV EUI** 173 + 174 +[[image:image-20220610161538-9.png]] 175 + 176 + 177 + 178 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 179 + 180 + 181 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 182 + 183 +[[image:image-20220610161724-10.png]] 184 + 185 + 61 61 ((( 62 - 187 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 63 63 ))) 64 64 190 +[[image:1654849068701-275.png]] 191 + 192 + 193 + 194 +== 2.3 Uplink Payload == 195 + 65 65 ((( 66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 197 +LDDS75 will uplink payload via LoRaWAN with below payload format: 198 + 199 +Uplink payload includes in total 4 bytes. 200 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 67 67 ))) 68 68 69 69 ((( 70 70 71 71 ))) 72 -))) 73 73 74 -((( 75 -((( 76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 77 -))) 78 -))) 79 -))) 80 -))) 207 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 208 +|=(% style="width: 62.5px;" %)((( 209 +**Size (bytes)** 210 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 211 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 212 +[[Distance>>||anchor="H2.3.3A0Distance"]] 81 81 214 +(unit: mm) 215 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 216 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 217 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 82 82 83 -[[image:1655 255122126-327.png]]219 +[[image:1654850511545-399.png]] 84 84 85 85 86 86 87 -== 1.2Features==223 +=== 2.3.1 Battery Info === 88 88 89 -* LoRaWAN 1.0.3 Class A 90 -* Ultra low power consumption 91 -* Liquid Level Measurement by Ultrasonic technology 92 -* Measure through container, No need to contact Liquid. 93 -* Valid level range 20mm - 2000mm 94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 95 -* Cable Length : 25cm 96 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 97 -* AT Commands to change parameters 98 -* Uplink on periodically 99 -* Downlink to change configure 100 -* IP66 Waterproof Enclosure 101 -* 8500mAh Battery for long term use 102 102 103 - ==1.3 SuitableContainer&Liquid ==226 +Check the battery voltage for LDDS75. 104 104 105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 -* Container shape is regular, and surface is smooth. 107 -* Container Thickness: 108 -** Pure metal material. 2~~8mm, best is 3~~5mm 109 -** Pure non metal material: <10 mm 110 -* Pure liquid without irregular deposition. 228 +Ex1: 0x0B45 = 2885mV 111 111 112 - ==1.4Mechanical==230 +Ex2: 0x0B49 = 2889mV 113 113 114 -[[image:image-20220615090910-1.png]] 115 115 116 116 117 - [[image:image-20220615090910-2.png]]234 +=== 2.3.2 Distance === 118 118 236 +Get the distance. Flat object range 280mm - 7500mm. 119 119 238 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 120 120 121 -== 1.5 Install LDDS20 == 122 122 241 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 242 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 123 123 124 -(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 125 125 126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 127 127 128 - [[image:image-20220615091045-3.png]]246 +=== 2.3.3 Interrupt Pin === 129 129 248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 130 130 250 +**Example:** 131 131 132 - (%style="color:blue"%)**Step2**(%%): Polish the installationpoint.252 +0x00: Normal uplink packet. 133 133 134 - ForMetal Surface with paint, it is important to polish thesurface, firstuse crude sandpapertopolish the paintlevel , then use exquisite sand paper to polish the metal level to makeitshine & smooth.254 +0x01: Interrupt Uplink Packet. 135 135 136 -[[image:image-20220615092010-11.png]] 137 137 138 138 139 - Nopolishneededif thecontainer is shinemetal surface without paint ornon-metalcontainer.258 +=== 2.3.4 DS18B20 Temperature sensor === 140 140 141 - [[image:image-20220615092044-12.png]]260 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 142 142 262 +**Example**: 143 143 264 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 144 144 145 - (%style="color:blue"%)**Step3:**(%%)Testtheinstallationpoint.266 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 146 146 147 - Power onLDDS75,check iftheblueLEDis on, Iftheblue LEDis on,meansthesensororks. Thenput ultrasonic couplingpasteonthesensorandputit tightly ontheinstallationpoint.268 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 148 148 149 149 150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 151 151 152 - [[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]272 +=== 2.3.5 Sensor Flag === 153 153 274 +0x01: Detect Ultrasonic Sensor 154 154 155 - After paste the LDDS20well, power on LDDS20. In the first 30secondsof booting, device will checkthe sensors statusand BLUE LED willshow thestatus as below. After 30 seconds, BLUE LED will beoff to save battery life.276 +0x00: No Ultrasonic Sensor 156 156 157 157 158 -(% style="color:red" %)**LED Status:** 279 +=== 280 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 159 159 160 - * Onboard LED:Whenpower on device,the onboardLED willfastblink 4timeswhich meansdetectthesensor well.282 +While using TTN network, you can add the payload format to decode the payload. 161 161 162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 164 164 165 - LDDS20 will enter into low powermodeat 30 seconds after system reset orpower on, Blue LED will be off after that.285 +[[image:1654850829385-439.png]] 166 166 287 +The payload decoder function for TTN V3 is here: 167 167 168 - (%style="color:red" %)**Note2:**289 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 169 169 170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 171 171 172 172 293 +== 2.4 Uplink Interval == 173 173 174 - (%style="color:blue"%)**Step4:**(%%)InstalluseEpoxyabue.295 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 175 175 176 -Prepare Eproxy AB glue. 177 177 178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 179 179 180 - ResetLDDS20andseeiftheBLUE LED is slowlyblinking.299 +== 2.5 Show Data in DataCake IoT Server == 181 181 182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 301 +((( 302 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 303 +))) 183 183 305 +((( 306 + 307 +))) 184 184 185 -(% style="color:red" %)**Note 1:** 309 +((( 310 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 311 +))) 186 186 187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 313 +((( 314 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 315 +))) 188 188 189 189 190 - (% style="color:red" %)**Note2:**318 +[[image:1654592790040-760.png]] 191 191 192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 193 193 321 +[[image:1654592800389-571.png]] 194 194 195 195 196 -= =1.6Applications==324 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 197 197 198 -* Smart liquid control solution. 199 -* Smart liquefied gas solution. 326 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 200 200 201 - ==1.7Precautions ==328 +[[image:1654851029373-510.png]] 202 202 203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 206 206 207 - ==1.8Pinmappingandpoweron==331 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 208 208 333 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 209 209 210 -[[image:1655257026882-201.png]] 211 211 212 212 337 +== 2.6 Frequency Plans == 213 213 214 -= 2. Configure LDDS20 to connect to LoRaWAN network = 339 +((( 340 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 341 +))) 215 215 216 216 217 -== 2.1 How it works == 218 218 345 +=== 2.6.1 EU863-870 (EU868) === 346 + 219 219 ((( 220 - TheLDDS20 isconfigured as LoRaWAN OTAA Class A mode bydefault. It has OTAA keys to join LoRaWAN network. Toconnect a LoRaWAN network, youneedto input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically jointhe networkvia OTAA and start to send the sensor value.348 +(% style="color:blue" %)**Uplink:** 221 221 ))) 222 222 223 223 ((( 224 - Incaseyou can't set the OTAA keys in the LoRaWANOTAA server, and you havetouse the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.352 +868.1 - SF7BW125 to SF12BW125 225 225 ))) 226 226 355 +((( 356 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 357 +))) 227 227 359 +((( 360 +868.5 - SF7BW125 to SF12BW125 361 +))) 228 228 229 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 363 +((( 364 +867.1 - SF7BW125 to SF12BW125 365 +))) 230 230 231 231 ((( 232 - Following is an example for how to join the [[TTN v3LoRaWANNetwork>>url:https://console.cloud.thethings.network/]].Belowisthe networkstructure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.368 +867.3 - SF7BW125 to SF12BW125 233 233 ))) 234 234 235 235 ((( 236 - [[image:1655257698953-697.png]]372 +867.5 - SF7BW125 to SF12BW125 237 237 ))) 238 238 239 239 ((( 240 - The LG308is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]],sowhatwe needtonow is configure the TTN server.376 +867.7 - SF7BW125 to SF12BW125 241 241 ))) 242 242 243 243 ((( 244 - 380 +867.9 - SF7BW125 to SF12BW125 381 +))) 245 245 246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 383 +((( 384 +868.8 - FSK 247 247 ))) 248 248 249 249 ((( 250 - EachLDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.388 + 251 251 ))) 252 252 253 -[[image:image-20220607170145-1.jpeg]] 391 +((( 392 +(% style="color:blue" %)**Downlink:** 393 +))) 254 254 255 - 256 256 ((( 257 - For OTAA registration,we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server mightnoneed tosetAPPEUI.396 +Uplink channels 1-9 (RX1) 258 258 ))) 259 259 260 260 ((( 261 - Enterthesekeysin the LoRaWANServer portal. Belows TTN V3 screenshot:400 +869.525 - SF9BW125 (RX2 downlink only) 262 262 ))) 263 263 403 + 404 + 405 +=== 2.6.2 US902-928(US915) === 406 + 264 264 ((( 265 - 408 +Used in USA, Canada and South America. Default use CHE=2 266 266 267 -**Add APP EUI in the application** 268 -))) 410 +(% style="color:blue" %)**Uplink:** 269 269 270 - [[image:image-20220610161353-4.png]]412 +903.9 - SF7BW125 to SF10BW125 271 271 272 - [[image:image-20220610161353-5.png]]414 +904.1 - SF7BW125 to SF10BW125 273 273 274 - [[image:image-20220610161353-6.png]]416 +904.3 - SF7BW125 to SF10BW125 275 275 418 +904.5 - SF7BW125 to SF10BW125 276 276 277 - [[image:image-20220610161353-7.png]]420 +904.7 - SF7BW125 to SF10BW125 278 278 422 +904.9 - SF7BW125 to SF10BW125 279 279 424 +905.1 - SF7BW125 to SF10BW125 280 280 281 - Youcanalsochoosetocreate the device manually.426 +905.3 - SF7BW125 to SF10BW125 282 282 283 - [[image:image-20220610161538-8.png]] 284 284 429 +(% style="color:blue" %)**Downlink:** 285 285 431 +923.3 - SF7BW500 to SF12BW500 286 286 287 - **AddAPPKEYandDEV EUI**433 +923.9 - SF7BW500 to SF12BW500 288 288 289 - [[image:image-20220610161538-9.png]]435 +924.5 - SF7BW500 to SF12BW500 290 290 437 +925.1 - SF7BW500 to SF12BW500 291 291 439 +925.7 - SF7BW500 to SF12BW500 292 292 293 - (%style="color:blue"%)**Step2**(%%): Poweron LDDS20441 +926.3 - SF7BW500 to SF12BW500 294 294 443 +926.9 - SF7BW500 to SF12BW500 295 295 296 - Put a Jumper on JP2to power on the device.(TheSwitch must be inFLASHposition).445 +927.5 - SF7BW500 to SF12BW500 297 297 298 - [[image:image-20220615095102-14.png]]447 +923.3 - SF12BW500(RX2 downlink only) 299 299 300 300 450 + 451 +))) 301 301 453 +=== 2.6.3 CN470-510 (CN470) === 454 + 302 302 ((( 303 - (%style="color:blue"%)**Step 3**(%%)**:** The LDDS20 will auto jointo the TTN network. After joinsuccess,it will start toupload messagestoTTN and youcanseethe messages in the panel.456 +Used in China, Default use CHE=1 304 304 ))) 305 305 306 -[[image:1654849068701-275.png]] 459 +((( 460 +(% style="color:blue" %)**Uplink:** 461 +))) 307 307 463 +((( 464 +486.3 - SF7BW125 to SF12BW125 465 +))) 308 308 467 +((( 468 +486.5 - SF7BW125 to SF12BW125 469 +))) 309 309 310 -== 2.3 Uplink Payload == 471 +((( 472 +486.7 - SF7BW125 to SF12BW125 473 +))) 311 311 312 312 ((( 476 +486.9 - SF7BW125 to SF12BW125 477 +))) 478 + 313 313 ((( 314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 480 +487.1 - SF7BW125 to SF12BW125 481 +))) 315 315 316 - Uplink payload includes in total 8 bytes.317 - Payload for firmware version v1.1.4..Before v1.1.3,there isonly5 bytes:BAT and Distance(Please check manual v1.2.0 if you have5bytes payload).483 +((( 484 +487.3 - SF7BW125 to SF12BW125 318 318 ))) 486 + 487 +((( 488 +487.5 - SF7BW125 to SF12BW125 319 319 ))) 320 320 321 321 ((( 492 +487.7 - SF7BW125 to SF12BW125 493 +))) 494 + 495 +((( 322 322 323 323 ))) 324 324 325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 326 -|=(% style="width: 62.5px;" %)((( 327 -**Size (bytes)** 328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 330 -[[Distance>>||anchor="H2.3.2A0Distance"]] 499 +((( 500 +(% style="color:blue" %)**Downlink:** 501 +))) 331 331 332 -(unit: mm) 333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 503 +((( 504 +506.7 - SF7BW125 to SF12BW125 505 +))) 336 336 337 -[[image:1654850511545-399.png]] 507 +((( 508 +506.9 - SF7BW125 to SF12BW125 509 +))) 338 338 511 +((( 512 +507.1 - SF7BW125 to SF12BW125 513 +))) 339 339 515 +((( 516 +507.3 - SF7BW125 to SF12BW125 517 +))) 340 340 341 -=== 2.3.1 Battery Info === 519 +((( 520 +507.5 - SF7BW125 to SF12BW125 521 +))) 342 342 523 +((( 524 +507.7 - SF7BW125 to SF12BW125 525 +))) 343 343 344 -Check the battery voltage for LDDS20. 527 +((( 528 +507.9 - SF7BW125 to SF12BW125 529 +))) 345 345 346 -Ex1: 0x0B45 = 2885mV 531 +((( 532 +508.1 - SF7BW125 to SF12BW125 533 +))) 347 347 348 -Ex2: 0x0B49 = 2889mV 535 +((( 536 +505.3 - SF12BW125 (RX2 downlink only) 537 +))) 349 349 350 350 351 351 352 -=== 2. 3.2Distance===541 +=== 2.6.4 AU915-928(AU915) === 353 353 354 354 ((( 355 -Get the distance. Flat object range 20mm - 2000mm. 356 -))) 544 +Default use CHE=2 357 357 358 -((( 359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 360 -))) 546 +(% style="color:blue" %)**Uplink:** 361 361 362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 548 +916.8 - SF7BW125 to SF12BW125 364 364 550 +917.0 - SF7BW125 to SF12BW125 365 365 552 +917.2 - SF7BW125 to SF12BW125 366 366 367 - ===2.3.3InterruptPin ===554 +917.4 - SF7BW125 to SF12BW125 368 368 369 - This data field shows if this packet is generated by interrupt or not.[[Clickhere>>||anchor="H3.2A0SetInterruptMode"]]forthe hardware and softwareset up.556 +917.6 - SF7BW125 to SF12BW125 370 370 371 - **Example:**558 +917.8 - SF7BW125 to SF12BW125 372 372 373 -0 x00:Normaluplinkpacket.560 +918.0 - SF7BW125 to SF12BW125 374 374 375 - 0x01:InterruptUplinkPacket.562 +918.2 - SF7BW125 to SF12BW125 376 376 377 377 565 +(% style="color:blue" %)**Downlink:** 378 378 379 - ===2.3.4DS18B20Temperature sensor===567 +923.3 - SF7BW500 to SF12BW500 380 380 381 - This is optional, user can connect external DS18B20 sensor to the +3.3v,1-wireandGND pin . andthis field will reporttemperature.569 +923.9 - SF7BW500 to SF12BW500 382 382 383 - **Example**:571 +924.5 - SF7BW500 to SF12BW500 384 384 385 - If payload is: 0105H: (0105&FC00== 0),temp= 0105H /10= 26.1 degree573 +925.1 - SF7BW500 to SF12BW500 386 386 387 - Ifpayloadis:FF3FH : (FF3F & FC00== 1) ,temp= (FF3FH - 65536)/10= -19.3 degrees.575 +925.7 - SF7BW500 to SF12BW500 388 388 389 - (%style="color:red"%)Note: DS18B20feature is supportedin the hardware version > v1.3 which made since early of2021.577 +926.3 - SF7BW500 to SF12BW500 390 390 579 +926.9 - SF7BW500 to SF12BW500 391 391 581 +927.5 - SF7BW500 to SF12BW500 392 392 393 - ===2.3.5SensorFlag===583 +923.3 - SF12BW500(RX2 downlink only) 394 394 585 + 586 + 587 +))) 588 + 589 +=== 2.6.5 AS920-923 & AS923-925 (AS923) === 590 + 395 395 ((( 396 - 0x01: DetectUltrasonicSensor592 +(% style="color:blue" %)**Default Uplink channel:** 397 397 ))) 398 398 399 399 ((( 400 - 0x00:NoUltrasonicSensor596 +923.2 - SF7BW125 to SF10BW125 401 401 ))) 402 402 599 +((( 600 +923.4 - SF7BW125 to SF10BW125 601 +))) 403 403 603 +((( 604 + 605 +))) 404 404 405 -=== 2.3.6 Decode payload in The Things Network === 607 +((( 608 +(% style="color:blue" %)**Additional Uplink Channel**: 609 +))) 406 406 407 -While using TTN network, you can add the payload format to decode the payload. 611 +((( 612 +(OTAA mode, channel added by JoinAccept message) 613 +))) 408 408 615 +((( 616 + 617 +))) 409 409 410 -[[image:1654850829385-439.png]] 619 +((( 620 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 621 +))) 411 411 412 -The payload decoder function for TTN V3 is here: 623 +((( 624 +922.2 - SF7BW125 to SF10BW125 625 +))) 413 413 414 414 ((( 415 - LDDS20TTNV3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]628 +922.4 - SF7BW125 to SF10BW125 416 416 ))) 417 417 631 +((( 632 +922.6 - SF7BW125 to SF10BW125 633 +))) 418 418 635 +((( 636 +922.8 - SF7BW125 to SF10BW125 637 +))) 419 419 420 -== 2.4 Downlink Payload == 639 +((( 640 +923.0 - SF7BW125 to SF10BW125 641 +))) 421 421 422 -By default, LDDS20 prints the downlink payload to console port. 643 +((( 644 +922.0 - SF7BW125 to SF10BW125 645 +))) 423 423 424 -[[image:image-20220615100930-15.png]] 647 +((( 648 + 649 +))) 425 425 651 +((( 652 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 653 +))) 426 426 427 -**Examples:** 655 +((( 656 +923.6 - SF7BW125 to SF10BW125 657 +))) 428 428 659 +((( 660 +923.8 - SF7BW125 to SF10BW125 661 +))) 429 429 430 -* (% style="color:blue" %)**Set TDC** 663 +((( 664 +924.0 - SF7BW125 to SF10BW125 665 +))) 431 431 432 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 667 +((( 668 +924.2 - SF7BW125 to SF10BW125 669 +))) 433 433 434 -Payload: 01 00 00 1E TDC=30S 671 +((( 672 +924.4 - SF7BW125 to SF10BW125 673 +))) 435 435 436 -Payload: 01 00 00 3C TDC=60S 675 +((( 676 +924.6 - SF7BW125 to SF10BW125 677 +))) 437 437 679 +((( 680 + 681 +))) 438 438 439 -* (% style="color:blue" %)**Reset** 683 +((( 684 +(% style="color:blue" %)**Downlink:** 685 +))) 440 440 441 -If payload = 0x04FF, it will reset the LDDS20 687 +((( 688 +Uplink channels 1-8 (RX1) 689 +))) 442 442 691 +((( 692 +923.2 - SF10BW125 (RX2) 693 +))) 443 443 444 -* (% style="color:blue" %)**CFM** 445 445 446 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 447 447 697 +=== 2.6.6 KR920-923 (KR920) === 448 448 699 +((( 700 +(% style="color:blue" %)**Default channel:** 701 +))) 449 449 450 -== 2.5 Show Data in DataCake IoT Server == 703 +((( 704 +922.1 - SF7BW125 to SF12BW125 705 +))) 451 451 452 452 ((( 453 - [[DATACAKE>>url:https://datacake.co/]]providesahuman friendly interface toshow the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE.Below are the steps:708 +922.3 - SF7BW125 to SF12BW125 454 454 ))) 455 455 456 456 ((( 712 +922.5 - SF7BW125 to SF12BW125 713 +))) 714 + 715 +((( 457 457 458 458 ))) 459 459 460 460 ((( 461 -(% style="color:blue" %)** Step1**(%%)**:Be sure that yourdeviceis programmedandproperlyconnectedtothenetwork at thistime.**720 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 462 462 ))) 463 463 464 464 ((( 465 - (%style="color:blue"%)**Step2**(%%)**:To configurethe Applicationto forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**724 +922.1 - SF7BW125 to SF12BW125 466 466 ))) 467 467 727 +((( 728 +922.3 - SF7BW125 to SF12BW125 729 +))) 468 468 469 -[[image:1654592790040-760.png]] 731 +((( 732 +922.5 - SF7BW125 to SF12BW125 733 +))) 470 470 735 +((( 736 +922.7 - SF7BW125 to SF12BW125 737 +))) 471 471 472 -[[image:1654592800389-571.png]] 739 +((( 740 +922.9 - SF7BW125 to SF12BW125 741 +))) 473 473 743 +((( 744 +923.1 - SF7BW125 to SF12BW125 745 +))) 474 474 475 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 747 +((( 748 +923.3 - SF7BW125 to SF12BW125 749 +))) 476 476 477 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 751 +((( 752 + 753 +))) 478 478 479 -[[image:1654851029373-510.png]] 755 +((( 756 +(% style="color:blue" %)**Downlink:** 757 +))) 480 480 759 +((( 760 +Uplink channels 1-7(RX1) 761 +))) 481 481 482 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 763 +((( 764 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 765 +))) 483 483 484 -[[image:image-20220610165129-11.png||height="595" width="1088"]] 485 485 486 486 769 +=== 2.6.7 IN865-867 (IN865) === 487 487 488 -== 2.6 LED Indicator == 771 +((( 772 +(% style="color:blue" %)**Uplink:** 773 +))) 489 489 490 -The LDDS20 has an internal LED which is to show the status of different state. 775 +((( 776 +865.0625 - SF7BW125 to SF12BW125 777 +))) 491 491 779 +((( 780 +865.4025 - SF7BW125 to SF12BW125 781 +))) 492 492 783 +((( 784 +865.9850 - SF7BW125 to SF12BW125 785 +))) 786 + 787 +((( 788 + 789 +))) 790 + 791 +((( 792 +(% style="color:blue" %)**Downlink:** 793 +))) 794 + 795 +((( 796 +Uplink channels 1-3 (RX1) 797 +))) 798 + 799 +((( 800 +866.550 - SF10BW125 (RX2) 801 +))) 802 + 803 + 804 + 805 +== 2.7 LED Indicator == 806 + 807 +The LDDS75 has an internal LED which is to show the status of different state. 808 + 809 + 493 493 * Blink once when device power on. 494 494 * The device detects the sensor and flashes 5 times. 495 495 * Solid ON for 5 seconds once device successful Join the network. ... ... @@ -497,225 +497,517 @@ 497 497 498 498 499 499 500 -== 2. 7Firmware Change Log ==817 +== 2.8 Firmware Change Log == 501 501 502 502 820 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 821 + 822 + 823 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 824 + 825 + 826 + 827 +== 2.9 Mechanical == 828 + 829 + 830 +[[image:image-20220610172003-1.png]] 831 + 832 +[[image:image-20220610172003-2.png]] 833 + 834 + 835 +== 2.10 Battery Analysis == 836 + 837 +=== 2.10.1 Battery Type === 838 + 839 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 840 + 841 + 842 +The battery related documents as below: 843 + 844 +* ((( 845 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 846 +))) 847 +* ((( 848 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 849 +))) 850 +* ((( 851 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 852 +))) 853 + 854 + [[image:image-20220610172400-3.png]] 855 + 856 + 857 += 3. LiDAR ToF Measurement = 858 + 859 +== 3.1 Principle of Distance Measurement == 860 + 861 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 862 + 863 +[[image:1654831757579-263.png]] 864 + 865 + 866 + 867 +== 3.2 Distance Measurement Characteristics == 868 + 869 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 870 + 871 +[[image:1654831774373-275.png]] 872 + 873 + 503 503 ((( 504 - **Firmwaredownloadlink:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]875 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 505 505 ))) 506 506 507 507 ((( 508 - 879 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 509 509 ))) 510 510 511 511 ((( 512 - **FirmwareUpgradeMethod: [[FirmwareUpgrade Instruction>>doc:Main.FirmwareUpgradeInstructionforSTM32 baseproducts.WebHome]]**883 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 513 513 ))) 514 514 515 515 887 +((( 888 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 889 +))) 516 516 517 -== 2.8 Battery Analysis == 518 518 892 +[[image:1654831797521-720.png]] 519 519 520 520 895 +((( 896 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 897 +))) 521 521 522 - === 2.8.1 Battery Type ===899 +[[image:1654831810009-716.png]] 523 523 524 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 525 525 902 +((( 903 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 904 +))) 526 526 527 -The battery related documents as below: 528 528 907 + 908 +== 3.3 Notice of usage: == 909 + 910 +Possible invalid /wrong reading for LiDAR ToF tech: 911 + 912 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 913 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong. 914 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 915 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window. 916 + 917 += 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 918 + 919 +((( 920 +((( 921 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink. 922 +))) 923 +))) 924 + 529 529 * ((( 530 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 926 +((( 927 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]]. 531 531 ))) 929 +))) 532 532 * ((( 533 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 931 +((( 932 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 534 534 ))) 934 +))) 935 + 936 +((( 937 +((( 938 + 939 +))) 940 + 941 +((( 942 +There are two kinds of commands to configure LLDS12, they are: 943 +))) 944 +))) 945 + 535 535 * ((( 536 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 947 +((( 948 +(% style="color:#4f81bd" %)** General Commands**. 537 537 ))) 950 +))) 538 538 539 - [[image:image-20220615102527-16.png]] 952 +((( 953 +((( 954 +These commands are to configure: 955 +))) 956 +))) 540 540 958 +* ((( 959 +((( 960 +General system settings like: uplink interval. 961 +))) 962 +))) 963 +* ((( 964 +((( 965 +LoRaWAN protocol & radio related command. 966 +))) 967 +))) 541 541 969 +((( 970 +((( 971 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 972 +))) 973 +))) 542 542 543 -== 2.8.2 Battery Note == 975 +((( 976 +((( 977 + 978 +))) 979 +))) 544 544 545 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased. 981 +* ((( 982 +((( 983 +(% style="color:#4f81bd" %)** Commands special design for LLDS12** 984 +))) 985 +))) 546 546 987 +((( 988 +((( 989 +These commands only valid for LLDS12, as below: 990 +))) 991 +))) 547 547 548 548 549 -=== 2.8.3 Replace the battery === 550 550 995 +== 4.1 Set Transmit Interval Time == 996 + 997 +Feature: Change LoRaWAN End Node Transmit Interval. 998 + 999 +(% style="color:#037691" %)**AT Command: AT+TDC** 1000 + 1001 +[[image:image-20220607171554-8.png]] 1002 + 1003 + 551 551 ((( 552 - Youcan changethe batteryin theLDDS75.The typeof battery is notlimited as long as the output is between3v to 3.6v. On the main board, there is a diode (D1)between the battery and the main circuit. If you need to use a batterywith less than3.3v, please remove the D1 and shortcut the two pads ofit so there won'tbe voltage drop between battery andmainboard.1005 +(% style="color:#037691" %)**Downlink Command: 0x01** 553 553 ))) 554 554 555 555 ((( 556 - 1009 +Format: Command Code (0x01) followed by 3 bytes time value. 557 557 ))) 558 558 559 559 ((( 560 - The defaultbatterypackof LDDS75 includesaER18505plus super capacitor.If user can'tfind thispack locally,theycan findER18505orequivalence, which will alsowork inmostcase. The SPC canenlargethebatterylifeforhigh frequencyuse (updateperiodbelow5 minutes)1013 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 561 561 ))) 562 562 1016 +* ((( 1017 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1018 +))) 1019 +* ((( 1020 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1021 +))) 563 563 1023 +== 4.2 Set Interrupt Mode == 564 564 565 - == 2.8.4 BatteryLifeAnalyze==1025 +Feature, Set Interrupt mode for GPIO_EXIT. 566 566 567 - Draginobatterypowered products are all run in Low Powermode.User can check the guideline fromthis link to calculate the estimate battery life:1027 +(% style="color:#037691" %)**AT Command: AT+INTMOD** 568 568 569 -[[ https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]1029 +[[image:image-20220610105806-2.png]] 570 570 571 571 1032 +((( 1033 +(% style="color:#037691" %)**Downlink Command: 0x06** 1034 +))) 572 572 573 -= 3. Using the AT Commands = 1036 +((( 1037 +Format: Command Code (0x06) followed by 3 bytes. 1038 +))) 574 574 575 575 ((( 576 -((( 577 - 1041 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 578 578 ))) 1043 + 1044 +* ((( 1045 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 579 579 ))) 1047 +* ((( 1048 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1049 +))) 580 580 581 -== 3.1AccessAT Commands ==1051 +== 4.3 Get Firmware Version Info == 582 582 583 - LDDS20 supportsAT Commandsetin thestockfirmware.You can usea USB to TTL adapterto connect to LDDS20 for using AT command, as below.1053 +Feature: use downlink to get firmware version. 584 584 1055 +(% style="color:#037691" %)**Downlink Command: 0x26** 585 585 586 -[[image:image-202206 10172924-4.png||height="483" width="988"]]1057 +[[image:image-20220607171917-10.png]] 587 587 1059 +* Reply to the confirmation package: 26 01 1060 +* Reply to non-confirmed packet: 26 00 588 588 589 - Orifyouhavebelowboard,usebelowconnection:1062 +Device will send an uplink after got this downlink command. With below payload: 590 590 1064 +Configures info payload: 591 591 592 -[[image:image-20220610172924-5.png]] 1066 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 1067 +|=((( 1068 +**Size(bytes)** 1069 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1** 1070 +|**Value**|Software Type|((( 1071 +Frequency 593 593 1073 +Band 1074 +)))|Sub-band|((( 1075 +Firmware 594 594 595 -((( 596 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 1077 +Version 1078 +)))|Sensor Type|Reserve|((( 1079 +[[Message Type>>||anchor="H2.3.7A0MessageType"]] 1080 +Always 0x02 597 597 ))) 598 598 1083 +**Software Type**: Always 0x03 for LLDS12 599 599 600 - [[image:image-20220610172924-6.png||height="601" width="860"]] 601 601 1086 +**Frequency Band**: 602 602 1088 +*0x01: EU868 603 603 604 - == 3.2et Transmit Interval Time ==1090 +*0x02: US915 605 605 606 - Feature:Change LoRaWAN End Node TransmitInterval.1092 +*0x03: IN865 607 607 608 - (% style="color:#037691" %)**AT Command: AT+TDC**1094 +*0x04: AU915 609 609 610 - [[image:image-20220610173409-7.png]]1096 +*0x05: KZ865 611 611 1098 +*0x06: RU864 612 612 1100 +*0x07: AS923 1101 + 1102 +*0x08: AS923-1 1103 + 1104 +*0x09: AS923-2 1105 + 1106 +*0xa0: AS923-3 1107 + 1108 + 1109 +**Sub-Band**: value 0x00 ~~ 0x08 1110 + 1111 + 1112 +**Firmware Version**: 0x0100, Means: v1.0.0 version 1113 + 1114 + 1115 +**Sensor Type**: 1116 + 1117 +0x01: LSE01 1118 + 1119 +0x02: LDDS75 1120 + 1121 +0x03: LDDS20 1122 + 1123 +0x04: LLMS01 1124 + 1125 +0x05: LSPH01 1126 + 1127 +0x06: LSNPK01 1128 + 1129 +0x07: LLDS12 1130 + 1131 + 1132 + 1133 += 5. Battery & How to replace = 1134 + 1135 +== 5.1 Battery Type == 1136 + 613 613 ((( 614 - (%style="color:#037691"%)**DownlinkCommand:0x01**1138 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 615 615 ))) 616 616 617 617 ((( 1142 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 1143 +))) 1144 + 1145 +[[image:1654593587246-335.png]] 1146 + 1147 + 1148 +Minimum Working Voltage for the LLDS12: 1149 + 1150 +LLDS12: 2.45v ~~ 3.6v 1151 + 1152 + 1153 + 1154 +== 5.2 Replace Battery == 1155 + 618 618 ((( 619 -Format: Command Code (0x01) followed by 3 bytes time value. 1157 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery. 1158 +))) 620 620 621 621 ((( 622 - If the downlink payload=0100003C,itmeanssettheEND Node’sTransmitIntervalto 0x00003C=60(S), whiletype codeis01.1161 +And make sure the positive and negative pins match. 623 623 ))) 624 624 625 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 626 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1164 + 1165 + 1166 +== 5.3 Power Consumption Analyze == 1167 + 1168 +((( 1169 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 627 627 ))) 1171 + 1172 +((( 1173 +Instruction to use as below: 628 628 ))) 629 629 630 630 1177 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 631 631 1179 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 632 632 633 633 634 - ==3.3SetInterruptMode==1182 +**Step 2**: Open it and choose 635 635 636 -Feature, Set Interrupt mode for GPIO_EXIT. 1184 +* Product Model 1185 +* Uplink Interval 1186 +* Working Mode 637 637 638 - (%style="color:#037691"%)**DownlinkCommand:AT+INTMOD**1188 +And the Life expectation in difference case will be shown on the right. 639 639 640 -[[image: image-20220610174917-9.png]]1190 +[[image:1654593605679-189.png]] 641 641 642 642 643 - (%style="color:#037691"%)**DownlinkCommand:0x06**1193 +The battery related documents as below: 644 644 645 -Format: Command Code (0x06) followed by 3 bytes. 1195 +* ((( 1196 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 1197 +))) 1198 +* ((( 1199 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 1200 +))) 1201 +* ((( 1202 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 1203 +))) 646 646 1205 +[[image:image-20220607172042-11.png]] 1206 + 1207 + 1208 + 1209 +=== 5.3.1 Battery Note === 1210 + 647 647 ((( 648 -This means that theinterruptmodeofthe end nodeissetto0x000003=3(risingedgetrigger),andthe typecodeis06.1212 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 649 649 ))) 650 650 651 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 652 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 653 653 654 -= 4. FAQ = 655 655 656 -== 4.1Whatisthefrequencyplan for LDDS75?==1217 +=== 5.3.2 Replace the battery === 657 657 658 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 1219 +((( 1220 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 1221 +))) 659 659 1223 +((( 1224 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 1225 +))) 660 660 661 661 662 -== 4.2 How to change the LoRa Frequency Bands/Region == 663 663 664 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]]. 665 -When downloading the images, choose the required image file for download. 1229 += 6. Use AT Command = 666 666 1231 +== 6.1 Access AT Commands == 667 667 1233 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below. 668 668 669 - == 4.3 Can I useLDDS75incondensation environment? ==1235 +[[image:1654593668970-604.png]] 670 670 671 - LDDS75 is not suitable to be used in condensation environment.Condensation on theLDDS75 probe will affectthe reading and always got 0.1237 +**Connection:** 672 672 1239 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND** 673 673 1241 +(% style="background-color:yellow" %)** USB TTL TXD <~-~-~-~-> UART_RXD** 674 674 675 - =5. Trouble Shooting=1243 +(% style="background-color:yellow" %)** USB TTL RXD <~-~-~-~-> UART_TXD** 676 676 677 -== 5.1 Why I can’t join TTN V3 in US915 / AU915 bands? == 678 678 679 -It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 1246 +((( 1247 +((( 1248 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12. 1249 +))) 680 680 1251 +((( 1252 +LLDS12 will output system info once power on as below: 1253 +))) 1254 +))) 681 681 682 -== 5.2 AT Command input doesn't work == 683 683 1257 + [[image:1654593712276-618.png]] 1258 + 1259 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]]. 1260 + 1261 + 1262 += 7. FAQ = 1263 + 1264 +== 7.1 How to change the LoRa Frequency Bands/Region == 1265 + 1266 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]]. 1267 +When downloading the images, choose the required image file for download. 1268 + 1269 + 1270 += 8. Trouble Shooting = 1271 + 1272 +== 8.1 AT Commands input doesn’t work == 1273 + 1274 + 1275 +((( 684 684 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1277 +))) 685 685 1279 + 1280 +== 8.2 Significant error between the output distant value of LiDAR and actual distance == 1281 + 1282 + 686 686 ((( 1284 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 1285 +))) 1286 + 1287 +((( 1288 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 1289 +))) 1290 + 1291 +((( 687 687 688 688 ))) 689 689 1295 +((( 1296 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 1297 +))) 690 690 691 -= 6. Order Info = 1299 +((( 1300 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 1301 +))) 692 692 693 693 694 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY** 695 695 1305 += 9. Order Info = 696 696 697 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band 698 698 699 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band 700 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band 701 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band 702 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band 703 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band 704 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band 705 -* (% style="color:red" %)**IN865 **(%%)**:** LoRaWAN IN865 band 706 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band 1308 +Part Number: (% style="color:blue" %)**LLDS12-XX** 707 707 708 -(% style="color:blue" %)**YY**(%%): Battery Option 709 709 710 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery 711 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery 1311 +(% style="color:blue" %)**XX**(%%): The default frequency band 712 712 713 -= 7. Packing Info = 1313 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1314 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1315 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1316 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1317 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1318 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1319 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1320 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 714 714 1322 += 10. Packing Info = 715 715 1324 + 716 716 **Package Includes**: 717 717 718 -* LD DS75LoRaWAN DistanceDetectionSensor x 11327 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1 719 719 720 720 **Dimension and weight**: 721 721 ... ... @@ -724,7 +724,7 @@ 724 724 * Package Size / pcs : cm 725 725 * Weight / pcs : g 726 726 727 -= 8. Support =1336 += 11. Support = 728 728 729 729 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 730 730 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- image-20220610172924-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20220610172924-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -901.4 KB - Content
- image-20220610172924-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.6 KB - Content
- image-20220610173409-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.8 KB - Content
- image-20220610174836-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -34.3 KB - Content
- image-20220610174917-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -34.3 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.5 KB - Content
- image-20220615102527-16.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -182.9 KB - Content