Last modified by Mengting Qiu on 2025/08/06 17:02

From version 174.5
edited by Xiaoling
on 2022/06/15 10:31
Change comment: There is no comment for this version
To version 147.3
edited by Xiaoling
on 2022/06/10 17:36
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,495 +1,809 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
23 +
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25 +
26 +
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 +
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
31 31  )))
38 +)))
32 32  
40 +
41 +[[image:1654847051249-359.png]]
42 +
43 +
44 +
45 +== ​1.2  Features ==
46 +
47 +* LoRaWAN 1.0.3 Class A
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
59 +
60 +
61 +== 1.3  Specification ==
62 +
63 +=== 1.3.1  Rated environmental conditions ===
64 +
65 +[[image:image-20220610154839-1.png]]
66 +
67 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
68 +
69 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
70 +
71 +
72 +
73 +=== 1.3.2  Effective measurement range Reference beam pattern ===
74 +
75 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
76 +
77 +
78 +
79 +[[image:1654852253176-749.png]]
80 +
81 +
82 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
83 +
84 +
85 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
86 +
87 +
88 +
89 +== 1.5 ​ Applications ==
90 +
91 +* Horizontal distance measurement
92 +* Liquid level measurement
93 +* Parking management system
94 +* Object proximity and presence detection
95 +* Intelligent trash can management system
96 +* Robot obstacle avoidance
97 +* Automatic control
98 +* Sewer
99 +* Bottom water level monitoring
100 +
101 +
102 +== 1.6  Pin mapping and power on ==
103 +
104 +
105 +[[image:1654847583902-256.png]]
106 +
107 +
108 +
109 += 2.  Configure LDDS75 to connect to LoRaWAN network =
110 +
111 +== 2.1  How it works ==
112 +
33 33  (((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
114 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
35 35  )))
36 36  
37 37  (((
38 -
118 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
39 39  )))
40 40  
121 +
122 +
123 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
124 +
41 41  (((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
126 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
43 43  )))
44 44  
45 45  (((
46 -
130 +[[image:1654848616367-242.png]]
47 47  )))
48 48  
49 49  (((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
134 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
51 51  )))
52 52  
53 53  (((
54 -
138 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
55 55  )))
56 56  
57 57  (((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
142 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
59 59  )))
60 60  
145 +[[image:image-20220607170145-1.jpeg]]
146 +
147 +
148 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
149 +
150 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
151 +
152 +**Add APP EUI in the application**
153 +
154 +[[image:image-20220610161353-4.png]]
155 +
156 +[[image:image-20220610161353-5.png]]
157 +
158 +[[image:image-20220610161353-6.png]]
159 +
160 +
161 +[[image:image-20220610161353-7.png]]
162 +
163 +
164 +You can also choose to create the device manually.
165 +
166 + [[image:image-20220610161538-8.png]]
167 +
168 +
169 +
170 +**Add APP KEY and DEV EUI**
171 +
172 +[[image:image-20220610161538-9.png]]
173 +
174 +
175 +
176 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
177 +
178 +
179 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
180 +
181 +[[image:image-20220610161724-10.png]]
182 +
183 +
61 61  (((
62 -
185 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
63 63  )))
64 64  
188 +[[image:1654849068701-275.png]]
189 +
190 +
191 +
192 +== 2.3  ​Uplink Payload ==
193 +
65 65  (((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
195 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
196 +
197 +Uplink payload includes in total 4 bytes.
198 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
67 67  )))
68 68  
69 69  (((
70 70  
71 71  )))
72 -)))
73 73  
74 -(((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 -)))
78 -)))
79 -)))
80 -)))
205 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 +|=(% style="width: 62.5px;" %)(((
207 +**Size (bytes)**
208 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
209 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
210 +[[Distance>>||anchor="H2.3.3A0Distance"]]
81 81  
212 +(unit: mm)
213 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
214 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
215 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
82 82  
83 -[[image:1655255122126-327.png]]
217 +[[image:1654850511545-399.png]]
84 84  
85 85  
86 86  
87 -== ​1.Features ==
221 +=== 2.3.1  Battery Info ===
88 88  
89 -* LoRaWAN 1.0.3 Class A
90 -* Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 -* Cable Length : 25cm
96 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 -* AT Commands to change parameters
98 -* Uplink on periodically
99 -* Downlink to change configure
100 -* IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
102 102  
103 -== 1.3  Suitable Container & Liquid ==
224 +Check the battery voltage for LDDS75.
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
226 +Ex1: 0x0B45 = 2885mV
111 111  
112 -== 1.4  Mechanical ==
228 +Ex2: 0x0B49 = 2889mV
113 113  
114 -[[image:image-20220615090910-1.png]]
115 115  
116 116  
117 -[[image:image-20220615090910-2.png]]
232 +=== 2.3.2  Distance ===
118 118  
234 +Get the distance. Flat object range 280mm - 7500mm.
119 119  
236 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
120 120  
121 -== 1.5  Install LDDS20 ==
122 122  
239 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
240 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
243 +=== 2.3.3  Interrupt Pin ===
127 127  
128 -[[image:image-20220615091045-3.png]]
245 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
129 129  
247 +**Example:**
130 130  
249 +0x00: Normal uplink packet.
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
251 +0x01: Interrupt Uplink Packet.
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
135 135  
136 -[[image:image-20220615092010-11.png]]
137 137  
255 +=== 2.3.4  DS18B20 Temperature sensor ===
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
257 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
140 140  
141 -[[image:image-20220615092044-12.png]]
259 +**Example**:
142 142  
261 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
143 143  
263 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
144 144  
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
265 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
148 148  
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
269 +=== 2.3.5  Sensor Flag ===
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
271 +0x01: Detect Ultrasonic Sensor
153 153  
273 +0x00: No Ultrasonic Sensor
154 154  
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 156  
276 +===
277 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
157 157  
158 -(% style="color:red" %)**LED Status:**
279 +While using TTN network, you can add the payload format to decode the payload.
159 159  
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 161  
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
282 +[[image:1654850829385-439.png]]
164 164  
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
284 +The payload decoder function for TTN V3 is here:
166 166  
286 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
167 167  
168 -(% style="color:red" %)**Note 2:**
169 169  
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 171  
290 +== 2.4  Uplink Interval ==
172 172  
292 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
173 173  
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 175  
176 -Prepare Eproxy AB glue.
177 177  
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
296 +== 2.5  ​Show Data in DataCake IoT Server ==
179 179  
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
298 +(((
299 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
300 +)))
181 181  
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
302 +(((
303 +
304 +)))
183 183  
306 +(((
307 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
308 +)))
184 184  
185 -(% style="color:red" %)**Note 1:**
310 +(((
311 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
312 +)))
186 186  
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 188  
315 +[[image:1654592790040-760.png]]
189 189  
190 -(% style="color:red" %)**Note 2:**
191 191  
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
318 +[[image:1654592800389-571.png]]
193 193  
194 194  
321 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
195 195  
196 -== 1.6 ​ Applications ==
323 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
197 197  
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
325 +[[image:1654851029373-510.png]]
200 200  
201 -== 1.7  Precautions ==
202 202  
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
328 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
206 206  
207 -== 1.8  Pin mapping and power on ==
330 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
208 208  
209 209  
210 -[[image:1655257026882-201.png]]
211 211  
334 +== 2.6  Frequency Plans ==
212 212  
336 +(((
337 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
338 +)))
213 213  
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
215 215  
216 216  
217 -== 2.1  How it works ==
342 +=== 2.6.EU863-870 (EU868) ===
218 218  
219 219  (((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
345 +(% style="color:blue" %)**Uplink:**
221 221  )))
222 222  
223 223  (((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
349 +868.1 - SF7BW125 to SF12BW125
225 225  )))
226 226  
352 +(((
353 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
354 +)))
227 227  
356 +(((
357 +868.5 - SF7BW125 to SF12BW125
358 +)))
228 228  
229 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
360 +(((
361 +867.1 - SF7BW125 to SF12BW125
362 +)))
230 230  
231 231  (((
232 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
365 +867.3 - SF7BW125 to SF12BW125
233 233  )))
234 234  
235 235  (((
236 -[[image:1655257698953-697.png]]
369 +867.5 - SF7BW125 to SF12BW125
237 237  )))
238 238  
239 239  (((
240 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
373 +867.7 - SF7BW125 to SF12BW125
241 241  )))
242 242  
243 243  (((
244 -
377 +867.9 - SF7BW125 to SF12BW125
378 +)))
245 245  
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
380 +(((
381 +868.8 - FSK
247 247  )))
248 248  
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
385 +
251 251  )))
252 252  
253 -[[image:image-20220607170145-1.jpeg]]
388 +(((
389 +(% style="color:blue" %)**Downlink:**
390 +)))
254 254  
255 -
256 256  (((
257 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
393 +Uplink channels 1-9 (RX1)
258 258  )))
259 259  
260 260  (((
261 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
397 +869.525 - SF9BW125 (RX2 downlink only)
262 262  )))
263 263  
400 +
401 +
402 +=== 2.6.2  US902-928(US915) ===
403 +
264 264  (((
265 -
405 +Used in USA, Canada and South America. Default use CHE=2
266 266  
267 -**Add APP EUI in the application**
268 -)))
407 +(% style="color:blue" %)**Uplink:**
269 269  
270 -[[image:image-20220610161353-4.png]]
409 +903.9 - SF7BW125 to SF10BW125
271 271  
272 -[[image:image-20220610161353-5.png]]
411 +904.1 - SF7BW125 to SF10BW125
273 273  
274 -[[image:image-20220610161353-6.png]]
413 +904.3 - SF7BW125 to SF10BW125
275 275  
415 +904.5 - SF7BW125 to SF10BW125
276 276  
277 -[[image:image-20220610161353-7.png]]
417 +904.7 - SF7BW125 to SF10BW125
278 278  
419 +904.9 - SF7BW125 to SF10BW125
279 279  
421 +905.1 - SF7BW125 to SF10BW125
280 280  
281 -You can also choose to create the device manually.
423 +905.3 - SF7BW125 to SF10BW125
282 282  
283 - [[image:image-20220610161538-8.png]]
284 284  
426 +(% style="color:blue" %)**Downlink:**
285 285  
428 +923.3 - SF7BW500 to SF12BW500
286 286  
287 -**Add APP KEY and DEV EUI**
430 +923.9 - SF7BW500 to SF12BW500
288 288  
289 -[[image:image-20220610161538-9.png]]
432 +924.5 - SF7BW500 to SF12BW500
290 290  
434 +925.1 - SF7BW500 to SF12BW500
291 291  
436 +925.7 - SF7BW500 to SF12BW500
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
438 +926.3 - SF7BW500 to SF12BW500
294 294  
440 +926.9 - SF7BW500 to SF12BW500
295 295  
296 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
442 +927.5 - SF7BW500 to SF12BW500
297 297  
298 -[[image:image-20220615095102-14.png]]
444 +923.3 - SF12BW500(RX2 downlink only)
299 299  
300 300  
447 +
448 +)))
301 301  
450 +=== 2.6.3  CN470-510 (CN470) ===
451 +
302 302  (((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
453 +Used in China, Default use CHE=1
304 304  )))
305 305  
306 -[[image:1654849068701-275.png]]
456 +(((
457 +(% style="color:blue" %)**Uplink:**
458 +)))
307 307  
460 +(((
461 +486.3 - SF7BW125 to SF12BW125
462 +)))
308 308  
464 +(((
465 +486.5 - SF7BW125 to SF12BW125
466 +)))
309 309  
310 -== 2.3  ​Uplink Payload ==
468 +(((
469 +486.7 - SF7BW125 to SF12BW125
470 +)))
311 311  
312 312  (((
473 +486.9 - SF7BW125 to SF12BW125
474 +)))
475 +
313 313  (((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
477 +487.1 - SF7BW125 to SF12BW125
478 +)))
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
480 +(((
481 +487.3 - SF7BW125 to SF12BW125
318 318  )))
483 +
484 +(((
485 +487.5 - SF7BW125 to SF12BW125
319 319  )))
320 320  
321 321  (((
489 +487.7 - SF7BW125 to SF12BW125
490 +)))
491 +
492 +(((
322 322  
323 323  )))
324 324  
325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 -|=(% style="width: 62.5px;" %)(((
327 -**Size (bytes)**
328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 -[[Distance>>||anchor="H2.3.2A0Distance"]]
496 +(((
497 +(% style="color:blue" %)**Downlink:**
498 +)))
331 331  
332 -(unit: mm)
333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
500 +(((
501 +506.7 - SF7BW125 to SF12BW125
502 +)))
336 336  
337 -[[image:1654850511545-399.png]]
504 +(((
505 +506.9 - SF7BW125 to SF12BW125
506 +)))
338 338  
508 +(((
509 +507.1 - SF7BW125 to SF12BW125
510 +)))
339 339  
512 +(((
513 +507.3 - SF7BW125 to SF12BW125
514 +)))
340 340  
341 -=== 2.3.1  Battery Info ===
516 +(((
517 +507.5 - SF7BW125 to SF12BW125
518 +)))
342 342  
520 +(((
521 +507.7 - SF7BW125 to SF12BW125
522 +)))
343 343  
344 -Check the battery voltage for LDDS20.
524 +(((
525 +507.9 - SF7BW125 to SF12BW125
526 +)))
345 345  
346 -Ex1: 0x0B45 = 2885mV
528 +(((
529 +508.1 - SF7BW125 to SF12BW125
530 +)))
347 347  
348 -Ex2: 0x0B49 = 2889mV
532 +(((
533 +505.3 - SF12BW125 (RX2 downlink only)
534 +)))
349 349  
350 350  
351 351  
352 -=== 2.3.2  Distance ===
538 +=== 2.6.4  AU915-928(AU915) ===
353 353  
354 354  (((
355 -Get the distance. Flat object range 20mm - 2000mm.
356 -)))
541 +Default use CHE=2
357 357  
358 -(((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 -)))
543 +(% style="color:blue" %)**Uplink:**
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
545 +916.8 - SF7BW125 to SF12BW125
364 364  
547 +917.0 - SF7BW125 to SF12BW125
365 365  
549 +917.2 - SF7BW125 to SF12BW125
366 366  
367 -=== 2.3.3  Interrupt Pin ===
551 +917.4 - SF7BW125 to SF12BW125
368 368  
369 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
553 +917.6 - SF7BW125 to SF12BW125
370 370  
371 -**Example:**
555 +917.8 - SF7BW125 to SF12BW125
372 372  
373 -0x00: Normal uplink packet.
557 +918.0 - SF7BW125 to SF12BW125
374 374  
375 -0x01: Interrupt Uplink Packet.
559 +918.2 - SF7BW125 to SF12BW125
376 376  
377 377  
562 +(% style="color:blue" %)**Downlink:**
378 378  
379 -=== 2.3. DS18B20 Temperature sensor ===
564 +923.3 - SF7BW500 to SF12BW500
380 380  
381 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
566 +923.9 - SF7BW500 to SF12BW500
382 382  
383 -**Example**:
568 +924.5 - SF7BW500 to SF12BW500
384 384  
385 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
570 +925.1 - SF7BW500 to SF12BW500
386 386  
387 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
572 +925.7 - SF7BW500 to SF12BW500
388 388  
389 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
574 +926.3 - SF7BW500 to SF12BW500
390 390  
576 +926.9 - SF7BW500 to SF12BW500
391 391  
578 +927.5 - SF7BW500 to SF12BW500
392 392  
393 -=== 2.3. Sensor Flag ===
580 +923.3 - SF12BW500(RX2 downlink only)
394 394  
582 +
583 +
584 +)))
585 +
586 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
587 +
395 395  (((
396 -0x01: Detect Ultrasonic Sensor
589 +(% style="color:blue" %)**Default Uplink channel:**
397 397  )))
398 398  
399 399  (((
400 -0x00: No Ultrasonic Sensor
593 +923.2 - SF7BW125 to SF10BW125
401 401  )))
402 402  
596 +(((
597 +923.4 - SF7BW125 to SF10BW125
598 +)))
403 403  
600 +(((
601 +
602 +)))
404 404  
405 -=== 2.3.6  Decode payload in The Things Network ===
604 +(((
605 +(% style="color:blue" %)**Additional Uplink Channel**:
606 +)))
406 406  
407 -While using TTN network, you can add the payload format to decode the payload.
608 +(((
609 +(OTAA mode, channel added by JoinAccept message)
610 +)))
408 408  
612 +(((
613 +
614 +)))
409 409  
410 -[[image:1654850829385-439.png]]
616 +(((
617 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
618 +)))
411 411  
412 -The payload decoder function for TTN V3 is here:
620 +(((
621 +922.2 - SF7BW125 to SF10BW125
622 +)))
413 413  
414 414  (((
415 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
625 +922.4 - SF7BW125 to SF10BW125
416 416  )))
417 417  
628 +(((
629 +922.6 - SF7BW125 to SF10BW125
630 +)))
418 418  
632 +(((
633 +922.8 - SF7BW125 to SF10BW125
634 +)))
419 419  
420 -== 2.4  Downlink Payload ==
636 +(((
637 +923.0 - SF7BW125 to SF10BW125
638 +)))
421 421  
422 -By default, LDDS20 prints the downlink payload to console port.
640 +(((
641 +922.0 - SF7BW125 to SF10BW125
642 +)))
423 423  
424 -[[image:image-20220615100930-15.png]]
644 +(((
645 +
646 +)))
425 425  
648 +(((
649 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
650 +)))
426 426  
427 -**Examples:**
652 +(((
653 +923.6 - SF7BW125 to SF10BW125
654 +)))
428 428  
656 +(((
657 +923.8 - SF7BW125 to SF10BW125
658 +)))
429 429  
430 -* (% style="color:blue" %)**Set TDC**
660 +(((
661 +924.0 - SF7BW125 to SF10BW125
662 +)))
431 431  
432 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
664 +(((
665 +924.2 - SF7BW125 to SF10BW125
666 +)))
433 433  
434 -Payload:    01 00 00 1E    TDC=30S
668 +(((
669 +924.4 - SF7BW125 to SF10BW125
670 +)))
435 435  
436 -Payload:    01 00 00 3C    TDC=60S
672 +(((
673 +924.6 - SF7BW125 to SF10BW125
674 +)))
437 437  
676 +(((
677 +
678 +)))
438 438  
439 -* (% style="color:blue" %)**Reset**
680 +(((
681 +(% style="color:blue" %)**Downlink:**
682 +)))
440 440  
441 -If payload = 0x04FF, it will reset the LDDS20
684 +(((
685 +Uplink channels 1-8 (RX1)
686 +)))
442 442  
688 +(((
689 +923.2 - SF10BW125 (RX2)
690 +)))
443 443  
444 -* (% style="color:blue" %)**CFM**
445 445  
446 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
447 447  
694 +=== 2.6.6  KR920-923 (KR920) ===
448 448  
696 +(((
697 +(% style="color:blue" %)**Default channel:**
698 +)))
449 449  
450 -== 2.5  ​Show Data in DataCake IoT Server ==
700 +(((
701 +922.1 - SF7BW125 to SF12BW125
702 +)))
451 451  
452 452  (((
453 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
705 +922.3 - SF7BW125 to SF12BW125
454 454  )))
455 455  
456 456  (((
709 +922.5 - SF7BW125 to SF12BW125
710 +)))
711 +
712 +(((
457 457  
458 458  )))
459 459  
460 460  (((
461 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
717 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
462 462  )))
463 463  
464 464  (((
465 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
721 +922.1 - SF7BW125 to SF12BW125
466 466  )))
467 467  
724 +(((
725 +922.3 - SF7BW125 to SF12BW125
726 +)))
468 468  
469 -[[image:1654592790040-760.png]]
728 +(((
729 +922.5 - SF7BW125 to SF12BW125
730 +)))
470 470  
732 +(((
733 +922.7 - SF7BW125 to SF12BW125
734 +)))
471 471  
472 -[[image:1654592800389-571.png]]
736 +(((
737 +922.9 - SF7BW125 to SF12BW125
738 +)))
473 473  
740 +(((
741 +923.1 - SF7BW125 to SF12BW125
742 +)))
474 474  
475 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
744 +(((
745 +923.3 - SF7BW125 to SF12BW125
746 +)))
476 476  
477 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
748 +(((
749 +
750 +)))
478 478  
479 -[[image:1654851029373-510.png]]
752 +(((
753 +(% style="color:blue" %)**Downlink:**
754 +)))
480 480  
756 +(((
757 +Uplink channels 1-7(RX1)
758 +)))
481 481  
482 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
760 +(((
761 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
762 +)))
483 483  
484 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
485 485  
486 486  
766 +=== 2.6.7  IN865-867 (IN865) ===
487 487  
488 -== 2.6  LED Indicator ==
768 +(((
769 +(% style="color:blue" %)**Uplink:**
770 +)))
489 489  
490 -The LDDS20 has an internal LED which is to show the status of different state.
772 +(((
773 +865.0625 - SF7BW125 to SF12BW125
774 +)))
491 491  
776 +(((
777 +865.4025 - SF7BW125 to SF12BW125
778 +)))
492 492  
780 +(((
781 +865.9850 - SF7BW125 to SF12BW125
782 +)))
783 +
784 +(((
785 +
786 +)))
787 +
788 +(((
789 +(% style="color:blue" %)**Downlink:**
790 +)))
791 +
792 +(((
793 +Uplink channels 1-3 (RX1)
794 +)))
795 +
796 +(((
797 +866.550 - SF10BW125 (RX2)
798 +)))
799 +
800 +
801 +
802 +== 2.7  LED Indicator ==
803 +
804 +The LDDS75 has an internal LED which is to show the status of different state.
805 +
806 +
493 493  * Blink once when device power on.
494 494  * The device detects the sensor and flashes 5 times.
495 495  * Solid ON for 5 seconds once device successful Join the network.
... ... @@ -496,55 +496,51 @@
496 496  * Blink once when device transmit a packet.
497 497  
498 498  
813 +== 2.8  ​Firmware Change Log ==
499 499  
500 -== 2.7  ​Firmware Change Log ==
501 501  
816 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
502 502  
503 -(((
504 -**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
505 -)))
506 506  
507 -(((
508 -
509 -)))
819 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
510 510  
511 -(((
512 -**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
513 -)))
514 514  
515 515  
823 +== 2.9  Mechanical ==
516 516  
517 -== 2.8  Battery Analysis ==
518 518  
826 +[[image:image-20220610172003-1.png]]
519 519  
828 +[[image:image-20220610172003-2.png]]
520 520  
521 521  
522 -=== 2.8.1  Battery Type ===
831 +== 2.10  Battery Analysis ==
523 523  
524 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
833 +=== 2.10.1  Battery Type ===
525 525  
835 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
526 526  
837 +
527 527  The battery related documents as below:
528 528  
529 529  * (((
530 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
841 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
531 531  )))
532 532  * (((
533 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
844 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
534 534  )))
535 535  * (((
536 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
847 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
537 537  )))
538 538  
539 - [[image:image-20220615102527-16.png]]
850 + [[image:image-20220610172400-3.png]]
540 540  
541 541  
542 542  
543 -
544 544  === 2.10.2  Replace the battery ===
545 545  
546 546  (((
547 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
857 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there wont be voltage drop between battery and main board.
548 548  )))
549 549  
550 550  (((
... ... @@ -552,12 +552,12 @@
552 552  )))
553 553  
554 554  (((
555 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
865 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
556 556  )))
557 557  
558 558  
559 559  
560 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
870 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
561 561  
562 562  (((
563 563  (((
... ... @@ -567,7 +567,7 @@
567 567  
568 568  * (((
569 569  (((
570 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
880 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
571 571  )))
572 572  )))
573 573  * (((
... ... @@ -648,9 +648,7 @@
648 648  [[image:image-20220610172924-5.png]]
649 649  
650 650  
651 -(((
652 652  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
653 -)))
654 654  
655 655  
656 656   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -666,6 +666,8 @@
666 666  [[image:image-20220610173409-7.png]]
667 667  
668 668  
977 +
978 +
669 669  (((
670 670  (% style="color:#037691" %)**Downlink Command: 0x01**
671 671  )))
... ... @@ -674,104 +674,293 @@
674 674  (((
675 675  Format: Command Code (0x01) followed by 3 bytes time value.
676 676  
677 -(((
678 678  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
679 -)))
680 680  
681 681  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
682 682  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
683 683  )))
992 +
993 +
994 +
684 684  )))
685 685  
997 +== 3.3  Get Firmware Version Info ==
686 686  
999 +Feature: use downlink to get firmware version.
687 687  
1001 +(% style="color:#037691" %)**Downlink Command: 0x26**
688 688  
1003 +[[image:image-20220607171917-10.png]]
689 689  
690 -== 3.3  Set Interrupt Mode ==
1005 +* Reply to the confirmation package: 26 01
1006 +* Reply to non-confirmed packet: 26 00
691 691  
692 -Feature, Set Interrupt mode for GPIO_EXIT.
1008 +Device will send an uplink after got this downlink command. With below payload:
693 693  
694 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1010 +Configures info payload:
695 695  
696 -[[image:image-20220610174917-9.png]]
1012 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1013 +|=(((
1014 +**Size(bytes)**
1015 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1016 +|**Value**|Software Type|(((
1017 +Frequency
697 697  
1019 +Band
1020 +)))|Sub-band|(((
1021 +Firmware
698 698  
699 -(% style="color:#037691" %)**Downlink Command: 0x06**
1023 +Version
1024 +)))|Sensor Type|Reserve|(((
1025 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1026 +Always 0x02
1027 +)))
700 700  
701 -Format: Command Code (0x06) followed by 3 bytes.
1029 +**Software Type**: Always 0x03 for LLDS12
702 702  
1031 +
1032 +**Frequency Band**:
1033 +
1034 +*0x01: EU868
1035 +
1036 +*0x02: US915
1037 +
1038 +*0x03: IN865
1039 +
1040 +*0x04: AU915
1041 +
1042 +*0x05: KZ865
1043 +
1044 +*0x06: RU864
1045 +
1046 +*0x07: AS923
1047 +
1048 +*0x08: AS923-1
1049 +
1050 +*0x09: AS923-2
1051 +
1052 +*0xa0: AS923-3
1053 +
1054 +
1055 +**Sub-Band**: value 0x00 ~~ 0x08
1056 +
1057 +
1058 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1059 +
1060 +
1061 +**Sensor Type**:
1062 +
1063 +0x01: LSE01
1064 +
1065 +0x02: LDDS75
1066 +
1067 +0x03: LDDS20
1068 +
1069 +0x04: LLMS01
1070 +
1071 +0x05: LSPH01
1072 +
1073 +0x06: LSNPK01
1074 +
1075 +0x07: LLDS12
1076 +
1077 +
1078 +
1079 += 5.  Battery & How to replace =
1080 +
1081 +== 5.1  Battery Type ==
1082 +
703 703  (((
704 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1084 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
705 705  )))
706 706  
707 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
708 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1087 +(((
1088 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1089 +)))
709 709  
710 -= 4.  FAQ =
1091 +[[image:1654593587246-335.png]]
711 711  
712 -== 4.1  What is the frequency plan for LDDS75? ==
713 713  
714 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1094 +Minimum Working Voltage for the LLDS12:
715 715  
1096 +LLDS12:  2.45v ~~ 3.6v
716 716  
717 717  
718 -== 4.2  How to change the LoRa Frequency Bands/Region ==
719 719  
720 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
721 -When downloading the images, choose the required image file for download. ​
1100 +== 5.2  Replace Battery ==
722 722  
1102 +(((
1103 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1104 +)))
723 723  
1106 +(((
1107 +And make sure the positive and negative pins match.
1108 +)))
724 724  
725 -== 4.3  Can I use LDDS75 in condensation environment? ==
726 726  
727 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
728 728  
1112 +== 5.3  Power Consumption Analyze ==
729 729  
1114 +(((
1115 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1116 +)))
730 730  
731 -= 5.  Trouble Shooting =
1118 +(((
1119 +Instruction to use as below:
1120 +)))
732 732  
733 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
734 734  
735 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1123 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
736 736  
1125 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
737 737  
738 -== 5.2  AT Command input doesn't work ==
739 739  
1128 +**Step 2**: Open it and choose
1129 +
1130 +* Product Model
1131 +* Uplink Interval
1132 +* Working Mode
1133 +
1134 +And the Life expectation in difference case will be shown on the right.
1135 +
1136 +[[image:1654593605679-189.png]]
1137 +
1138 +
1139 +The battery related documents as below:
1140 +
1141 +* (((
1142 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1143 +)))
1144 +* (((
1145 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1146 +)))
1147 +* (((
1148 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1149 +)))
1150 +
1151 +[[image:image-20220607172042-11.png]]
1152 +
1153 +
1154 +
1155 +=== 5.3.1  ​Battery Note ===
1156 +
1157 +(((
1158 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1159 +)))
1160 +
1161 +
1162 +
1163 +=== ​5.3.2  Replace the battery ===
1164 +
1165 +(((
1166 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1167 +)))
1168 +
1169 +(((
1170 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1171 +)))
1172 +
1173 +
1174 +
1175 += 6.  Use AT Command =
1176 +
1177 +== 6.1  Access AT Commands ==
1178 +
1179 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1180 +
1181 +[[image:1654593668970-604.png]]
1182 +
1183 +**Connection:**
1184 +
1185 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1186 +
1187 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1188 +
1189 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1190 +
1191 +
1192 +(((
1193 +(((
1194 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1195 +)))
1196 +
1197 +(((
1198 +LLDS12 will output system info once power on as below:
1199 +)))
1200 +)))
1201 +
1202 +
1203 + [[image:1654593712276-618.png]]
1204 +
1205 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1206 +
1207 +
1208 += 7.  FAQ =
1209 +
1210 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1211 +
1212 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1213 +When downloading the images, choose the required image file for download. ​
1214 +
1215 +
1216 += 8.  Trouble Shooting =
1217 +
1218 +== 8.1  AT Commands input doesn’t work ==
1219 +
1220 +
1221 +(((
740 740  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1223 +)))
741 741  
1225 +
1226 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1227 +
1228 +
742 742  (((
1230 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1231 +)))
1232 +
1233 +(((
1234 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1235 +)))
1236 +
1237 +(((
743 743  
744 744  )))
745 745  
1241 +(((
1242 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1243 +)))
746 746  
747 -= 6.  Order Info =
1245 +(((
1246 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1247 +)))
748 748  
749 749  
750 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
751 751  
1251 += 9.  Order Info =
752 752  
753 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
754 754  
755 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
756 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
757 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
758 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
759 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
760 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
761 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
762 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1254 +Part Number: (% style="color:blue" %)**LLDS12-XX**
763 763  
764 -(% style="color:blue" %)**YY**(%%): Battery Option
765 765  
766 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
767 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1257 +(% style="color:blue" %)**XX**(%%): The default frequency band
768 768  
769 -= 7. ​ Packing Info =
1259 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1260 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1261 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1262 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1263 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1264 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1265 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1266 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
770 770  
1268 += 10. ​ Packing Info =
771 771  
1270 +
772 772  **Package Includes**:
773 773  
774 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1273 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
775 775  
776 776  **Dimension and weight**:
777 777  
... ... @@ -780,7 +780,7 @@
780 780  * Package Size / pcs : cm
781 781  * Weight / pcs : g
782 782  
783 -= 8.  ​Support =
1282 += 11.  ​Support =
784 784  
785 785  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
786 786  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -182.9 KB
Content