Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 21 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
- image-20220615102527-16.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 20- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,10 +1,11 @@ 1 1 (% style="text-align:center" %) 2 -[[image:165 5254599445-662.png]]2 +[[image:1654846127817-788.png]] 3 3 4 +**Contents:** 4 4 6 +{{toc/}} 5 5 6 6 7 -**Table of Contents:** 8 8 9 9 10 10 ... ... @@ -11,11 +11,9 @@ 11 11 12 12 13 13 14 - 15 - 16 16 = 1. Introduction = 17 17 18 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==17 +== 1.1 What is LoRaWAN Distance Detection Sensor == 19 19 20 20 ((( 21 21 ... ... @@ -22,8 +22,7 @@ 22 22 23 23 ((( 24 24 ((( 25 -((( 26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 24 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 27 27 ))) 28 28 29 29 ((( ... ... @@ -31,7 +31,7 @@ 31 31 ))) 32 32 33 33 ((( 34 - The LDDS20 sensor is installeddirectly below thecontainerto detect theheight of the liquidlevel. User doesn’tneed to openahole onthecontainerto be tested. The(% style="color:#4472c4" %)**none-contact measurementmakesthe measurementsafety,easier and possiblefor somestrictsituation**.32 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 35 35 ))) 36 36 37 37 ((( ... ... @@ -39,7 +39,7 @@ 39 39 ))) 40 40 41 41 ((( 42 - LDDS20 usesultrasonicsensingtechnologyfor distancemeasurement.LDDS20isof high accuracytomeasurevariousliquidsuchas: (% style="color:#4472c4"%)**toxicsubstances**(%%),(% style="color:#4472c4"%)**strong acids**(%%),(% style="color:#4472c4" %)**strong alkalis**(%%)and(%style="color:#4472c4"%)**various pure liquids**(%%)in high-temperatureandhigh-pressureairtight containers.40 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 43 43 ))) 44 44 45 45 ((( ... ... @@ -47,7 +47,7 @@ 47 47 ))) 48 48 49 49 ((( 50 - TheLoRawirelesstechnology usedinLDDS20allowsdevice tosend data andreachextremelylongrangesatlowdata-rates.Itprovidesultra-longrangespreadspectrumcommunication and highinterference immunitywhilst minimizing currentconsumption.48 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 51 51 ))) 52 52 53 53 ((( ... ... @@ -55,7 +55,7 @@ 55 55 ))) 56 56 57 57 ((( 58 -LDDS 20ispoweredby(%style="color:#4472c4"%)**8500mALi-SOCI2 battery**(%%);Itisdesignedfor longtermuseupto10 years*.56 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 59 59 ))) 60 60 61 61 ((( ... ... @@ -63,24 +63,13 @@ 63 63 ))) 64 64 65 65 ((( 66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 67 -))) 68 - 69 -((( 70 - 71 -))) 72 -))) 73 - 74 -((( 75 -((( 76 76 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 77 77 ))) 78 78 ))) 79 79 ))) 80 -))) 81 81 82 82 83 -[[image:1655 255122126-327.png]]70 +[[image:1654847051249-359.png]] 84 84 85 85 86 86 ... ... @@ -88,10 +88,9 @@ 88 88 89 89 * LoRaWAN 1.0.3 Class A 90 90 * Ultra low power consumption 91 -* Liquid Level Measurement by Ultrasonic technology 92 -* Measure through container, No need to contact Liquid. 93 -* Valid level range 20mm - 2000mm 94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 78 +* Distance Detection by Ultrasonic technology 79 +* Flat object range 280mm - 7500mm 80 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 95 95 * Cable Length : 25cm 96 96 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 97 97 * AT Commands to change parameters ... ... @@ -98,398 +98,754 @@ 98 98 * Uplink on periodically 99 99 * Downlink to change configure 100 100 * IP66 Waterproof Enclosure 101 -* 8500mAh Battery for long term use 87 +* 4000mAh or 8500mAh Battery for long term use 102 102 103 -== 1.3 S uitable Container& Liquid==89 +== 1.3 Specification == 104 104 105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 -* Container shape is regular, and surface is smooth. 107 -* Container Thickness: 108 -** Pure metal material. 2~~8mm, best is 3~~5mm 109 -** Pure non metal material: <10 mm 110 -* Pure liquid without irregular deposition. 91 +=== 1.3.1 Rated environmental conditions === 111 111 112 - == 1.4 Mechanical ==93 +[[image:image-20220610154839-1.png]] 113 113 114 - [[image:image-20220615090910-1.png]]95 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 115 115 97 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 116 116 117 -[[image:image-20220615090910-2.png]] 118 118 119 119 101 +=== 1.3.2 Effective measurement range Reference beam pattern === 120 120 121 - ==1.5InstallLDDS20==103 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 122 122 123 123 124 -(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 125 125 126 - LDDS20 (% style="color:red" %)**MUST**(%%) beinstalled on the container bottom middleposition.107 +[[image:1654852253176-749.png]] 127 127 128 -[[image:image-20220615091045-3.png]] 129 129 130 130 111 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 131 131 132 -(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 133 133 134 - For Metal Surfacewithpaint,it isimportant to polish thesurface, first use crude sand paper to polish thepaintlevel , then use exquisite sand paper topolish the metal level to make it shine&smooth.114 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 135 135 136 -[[image:image-20220615092010-11.png]] 137 137 138 138 139 - Nopolish needed if thecontainer is shine metal surface without paintor non-metal container.118 +== 1.5 Applications == 140 140 141 -[[image:image-20220615092044-12.png]] 120 +* Horizontal distance measurement 121 +* Liquid level measurement 122 +* Parking management system 123 +* Object proximity and presence detection 124 +* Intelligent trash can management system 125 +* Robot obstacle avoidance 126 +* Automatic control 127 +* Sewer 128 +* Bottom water level monitoring 142 142 130 +== 1.6 Pin mapping and power on == 143 143 144 144 145 - (% style="color:blue" %)**Step3: **(%%)Test the installationpoint.133 +[[image:1654847583902-256.png]] 146 146 147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 148 148 149 149 150 - Itisnecessarytoput thecoupling pastebetweenthe sensorandthe container, otherwise LDDS20 won’tdetect the liquid level.137 += 2. Configure LDDS75 to connect to LoRaWAN network = 151 151 152 - [[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]139 +== 2.1 How it works == 153 153 141 +((( 142 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 143 +))) 154 154 155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 145 +((( 146 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 147 +))) 156 156 157 157 158 -(% style="color:red" %)**LED Status:** 159 159 160 - *OnboardLED:Whenpowerondevice,theonboardLED will fastblink 4 timeswhich means detect the sensorwell.151 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 161 161 162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 153 +((( 154 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 155 +))) 164 164 165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 157 +((( 158 +[[image:1654848616367-242.png]] 159 +))) 166 166 161 +((( 162 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 +))) 167 167 168 -(% style="color:red" %)**Note 2:** 165 +((( 166 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 167 +))) 169 169 170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 169 +((( 170 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 171 +))) 171 171 173 +[[image:image-20220607170145-1.jpeg]] 172 172 173 173 174 - (%style="color:blue"%)**Step4:**(%%)InstalluseEpoxy ab glue.176 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 175 175 176 - PrepareEproxyABglue.178 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 177 177 178 -P utEproxyAB gluein thesensorandpressit hard on thecontainer installationpoint.180 +**Add APP EUI in the application** 179 179 180 - Reset LDDS20and see if the BLUE LED is slowly blinking.182 +[[image:image-20220610161353-4.png]] 181 181 182 -[[image:image-2022061 5091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]184 +[[image:image-20220610161353-5.png]] 183 183 186 +[[image:image-20220610161353-6.png]] 184 184 185 -(% style="color:red" %)**Note 1:** 186 186 187 - Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use otherglueterial to keepit inthe position.189 +[[image:image-20220610161353-7.png]] 188 188 189 189 190 - (%style="color:red"%)**Note2:**192 +You can also choose to create the device manually. 191 191 192 - (%style="color:red"%)EproxyABglue(%%)issubjectedinmostshippingway.Sothedefaultpackagedoesn’tincludeitanduserneedstopurchaselocally.194 + [[image:image-20220610161538-8.png]] 193 193 194 194 195 195 196 - ==1.6Applications==198 +**Add APP KEY and DEV EUI** 197 197 198 -* Smart liquid control solution. 199 -* Smart liquefied gas solution. 200 +[[image:image-20220610161538-9.png]] 200 200 201 -== 1.7 Precautions == 202 202 203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 206 206 207 -= =1.8 Pin mappingandpower on==204 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 208 208 209 209 210 - [[image:1655257026882-201.png]]207 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 211 211 209 +[[image:image-20220610161724-10.png]] 212 212 213 213 214 -= 2. Configure LDDS20 to connect to LoRaWAN network = 212 +((( 213 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 214 +))) 215 215 216 +[[image:1654849068701-275.png]] 216 216 217 -== 2.1 How it works == 218 218 219 + 220 +== 2.3 Uplink Payload == 221 + 219 219 ((( 220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 223 +LDDS75 will uplink payload via LoRaWAN with below payload format: 224 + 225 +Uplink payload includes in total 4 bytes. 226 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 221 221 ))) 222 222 223 223 ((( 224 - Incase you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.230 + 225 225 ))) 226 226 233 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 234 +|=(% style="width: 62.5px;" %)((( 235 +**Size (bytes)** 236 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 237 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 238 +[[Distance>>||anchor="H2.3.2A0Distance"]] 227 227 240 +(unit: mm) 241 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 242 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 243 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 228 228 229 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==245 +[[image:1654850511545-399.png]] 230 230 247 + 248 + 249 +=== 2.3.1 Battery Info === 250 + 251 + 252 +Check the battery voltage for LDDS75. 253 + 254 +Ex1: 0x0B45 = 2885mV 255 + 256 +Ex2: 0x0B49 = 2889mV 257 + 258 + 259 + 260 +=== 2.3.2 Distance === 261 + 262 +Get the distance. Flat object range 280mm - 7500mm. 263 + 264 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 265 + 266 + 267 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 268 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 269 + 270 + 271 +=== 2.3.3 Interrupt Pin === 272 + 273 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up. 274 + 275 +**Example:** 276 + 277 +0x00: Normal uplink packet. 278 + 279 +0x01: Interrupt Uplink Packet. 280 + 281 + 282 + 283 +=== 2.3.4 DS18B20 Temperature sensor === 284 + 285 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 286 + 287 +**Example**: 288 + 289 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 290 + 291 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 292 + 293 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 294 + 295 + 296 + 297 +=== 2.3.5 Sensor Flag === 298 + 299 +0x01: Detect Ultrasonic Sensor 300 + 301 +0x00: No Ultrasonic Sensor 302 + 303 + 304 + 305 +=== 2.3.6 Decode payload in The Things Network === 306 + 307 +While using TTN network, you can add the payload format to decode the payload. 308 + 309 + 310 +[[image:1654850829385-439.png]] 311 + 312 +The payload decoder function for TTN V3 is here: 313 + 314 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 315 + 316 + 317 + 318 +== 2.4 Uplink Interval == 319 + 320 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 321 + 322 + 323 + 324 +== 2.5 Show Data in DataCake IoT Server == 325 + 231 231 ((( 232 - Following is an example for how to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Belowisthenetworkstructure;weuse the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]asaLoRaWANgatewayinthisexample.327 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 233 233 ))) 234 234 235 235 ((( 236 - [[image:1655257698953-697.png]]331 + 237 237 ))) 238 238 239 239 ((( 240 - TheLG308 isalreadysettoconnectedto[[TTN network>>url:https://console.cloud.thethings.network/]],so whatwe needto nowisconfigurethe TTN server.335 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 241 241 ))) 242 242 243 243 ((( 244 - 339 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 340 +))) 245 245 246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 342 + 343 +[[image:1654592790040-760.png]] 344 + 345 + 346 +[[image:1654592800389-571.png]] 347 + 348 + 349 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 350 + 351 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 352 + 353 +[[image:1654851029373-510.png]] 354 + 355 + 356 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 357 + 358 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 359 + 360 + 361 + 362 +== 2.6 Frequency Plans == 363 + 364 +((( 365 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 247 247 ))) 248 248 368 + 369 + 370 +=== 2.6.1 EU863-870 (EU868) === 371 + 249 249 ((( 250 - EachLDDS20 isshipped with a sticker with the default device keys, user can find this sticker in the box. itlookslikebelow.373 +(% style="color:blue" %)**Uplink:** 251 251 ))) 252 252 253 -[[image:image-20220607170145-1.jpeg]] 376 +((( 377 +868.1 - SF7BW125 to SF12BW125 378 +))) 254 254 380 +((( 381 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 382 +))) 255 255 256 256 ((( 257 - For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Someserver mightnoneed to set APP EUI.385 +868.5 - SF7BW125 to SF12BW125 258 258 ))) 259 259 260 260 ((( 261 - Enterthesekeysinthe LoRaWANServer portal.Below is TTN V3 screen shot:389 +867.1 - SF7BW125 to SF12BW125 262 262 ))) 263 263 264 264 ((( 393 +867.3 - SF7BW125 to SF12BW125 394 +))) 395 + 396 +((( 397 +867.5 - SF7BW125 to SF12BW125 398 +))) 399 + 400 +((( 401 +867.7 - SF7BW125 to SF12BW125 402 +))) 403 + 404 +((( 405 +867.9 - SF7BW125 to SF12BW125 406 +))) 407 + 408 +((( 409 +868.8 - FSK 410 +))) 411 + 412 +((( 265 265 414 +))) 266 266 267 -**Add APP EUI in the application** 416 +((( 417 +(% style="color:blue" %)**Downlink:** 268 268 ))) 269 269 270 -[[image:image-20220610161353-4.png]] 420 +((( 421 +Uplink channels 1-9 (RX1) 422 +))) 271 271 272 -[[image:image-20220610161353-5.png]] 424 +((( 425 +869.525 - SF9BW125 (RX2 downlink only) 426 +))) 273 273 274 -[[image:image-20220610161353-6.png]] 275 275 276 276 277 - [[image:image-20220610161353-7.png]]430 +=== 2.6.2 US902-928(US915) === 278 278 432 +((( 433 +Used in USA, Canada and South America. Default use CHE=2 279 279 435 +(% style="color:blue" %)**Uplink:** 280 280 281 - Youcanalsochoosetocreate the device manually.437 +903.9 - SF7BW125 to SF10BW125 282 282 283 - [[image:image-20220610161538-8.png]]439 +904.1 - SF7BW125 to SF10BW125 284 284 441 +904.3 - SF7BW125 to SF10BW125 285 285 443 +904.5 - SF7BW125 to SF10BW125 286 286 287 - **AddAPPKEYandDEV EUI**445 +904.7 - SF7BW125 to SF10BW125 288 288 289 - [[image:image-20220610161538-9.png]]447 +904.9 - SF7BW125 to SF10BW125 290 290 449 +905.1 - SF7BW125 to SF10BW125 291 291 451 +905.3 - SF7BW125 to SF10BW125 292 292 293 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 294 294 454 +(% style="color:blue" %)**Downlink:** 295 295 296 - Put a Jumper on JP2to power on the device.(TheSwitch must be inFLASHposition).456 +923.3 - SF7BW500 to SF12BW500 297 297 298 - [[image:image-20220615095102-14.png]]458 +923.9 - SF7BW500 to SF12BW500 299 299 460 +924.5 - SF7BW500 to SF12BW500 300 300 462 +925.1 - SF7BW500 to SF12BW500 301 301 302 -((( 303 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 304 -))) 464 +925.7 - SF7BW500 to SF12BW500 305 305 306 - [[image:1654849068701-275.png]]466 +926.3 - SF7BW500 to SF12BW500 307 307 468 +926.9 - SF7BW500 to SF12BW500 308 308 470 +927.5 - SF7BW500 to SF12BW500 309 309 310 - ==2.3UplinkPayload ==472 +923.3 - SF12BW500(RX2 downlink only) 311 311 474 + 475 + 476 +))) 477 + 478 +=== 2.6.3 CN470-510 (CN470) === 479 + 312 312 ((( 481 +Used in China, Default use CHE=1 482 +))) 483 + 313 313 ((( 314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 485 +(% style="color:blue" %)**Uplink:** 486 +))) 315 315 316 - Uplink payload includes in total 8 bytes.317 - Payload for firmware version v1.1.4..Before v1.1.3,there isonly5 bytes:BAT and Distance(Please check manual v1.2.0 if you have5bytes payload).488 +((( 489 +486.3 - SF7BW125 to SF12BW125 318 318 ))) 491 + 492 +((( 493 +486.5 - SF7BW125 to SF12BW125 319 319 ))) 320 320 321 321 ((( 322 - 497 +486.7 - SF7BW125 to SF12BW125 323 323 ))) 324 324 325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 326 -|=(% style="width: 62.5px;" %)((( 327 -**Size (bytes)** 328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 330 -[[Distance>>||anchor="H2.3.2A0Distance"]] 500 +((( 501 +486.9 - SF7BW125 to SF12BW125 502 +))) 331 331 332 -(unit: mm) 333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 504 +((( 505 +487.1 - SF7BW125 to SF12BW125 506 +))) 336 336 337 -[[image:1654850511545-399.png]] 508 +((( 509 +487.3 - SF7BW125 to SF12BW125 510 +))) 338 338 512 +((( 513 +487.5 - SF7BW125 to SF12BW125 514 +))) 339 339 516 +((( 517 +487.7 - SF7BW125 to SF12BW125 518 +))) 340 340 341 -=== 2.3.1 Battery Info === 520 +((( 521 + 522 +))) 342 342 524 +((( 525 +(% style="color:blue" %)**Downlink:** 526 +))) 343 343 344 -Check the battery voltage for LDDS20. 528 +((( 529 +506.7 - SF7BW125 to SF12BW125 530 +))) 345 345 346 -Ex1: 0x0B45 = 2885mV 532 +((( 533 +506.9 - SF7BW125 to SF12BW125 534 +))) 347 347 348 -Ex2: 0x0B49 = 2889mV 536 +((( 537 +507.1 - SF7BW125 to SF12BW125 538 +))) 349 349 540 +((( 541 +507.3 - SF7BW125 to SF12BW125 542 +))) 350 350 544 +((( 545 +507.5 - SF7BW125 to SF12BW125 546 +))) 351 351 352 -=== 2.3.2 Distance === 548 +((( 549 +507.7 - SF7BW125 to SF12BW125 550 +))) 353 353 354 354 ((( 355 - Get the distance. Flatobjectrange20mm -2000mm.553 +507.9 - SF7BW125 to SF12BW125 356 356 ))) 357 357 358 358 ((( 359 - For example, if the data you get from the register is __0x060x05__,the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H)=1541(D) = 1541 mm.**557 +508.1 - SF7BW125 to SF12BW125 360 360 ))) 361 361 362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 560 +((( 561 +505.3 - SF12BW125 (RX2 downlink only) 562 +))) 364 364 365 365 366 366 367 -=== 2. 3.3InterruptPin===566 +=== 2.6.4 AU915-928(AU915) === 368 368 369 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 568 +((( 569 +Default use CHE=2 370 370 371 -** Example:**571 +(% style="color:blue" %)**Uplink:** 372 372 373 - 0x00:Normaluplinkpacket.573 +916.8 - SF7BW125 to SF12BW125 374 374 375 - 0x01:InterruptUplinkPacket.575 +917.0 - SF7BW125 to SF12BW125 376 376 577 +917.2 - SF7BW125 to SF12BW125 377 377 579 +917.4 - SF7BW125 to SF12BW125 378 378 379 - === 2.3.4DS18B20Temperature sensor===581 +917.6 - SF7BW125 to SF12BW125 380 380 381 - Thisisoptional, user can connect external DS18B20sensortothe +3.3v,1-wire and GND pin . and this field will report temperature.583 +917.8 - SF7BW125 to SF12BW125 382 382 383 - **Example**:585 +918.0 - SF7BW125 to SF12BW125 384 384 385 - If payload is: 0105H:(0105&FC00 == 0), temp = 0105H/10=26.1degree587 +918.2 - SF7BW125 to SF12BW125 386 386 387 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 388 388 389 -(% style="color: red" %)Note:DS18B20 feature is supported in the hardware version> v1.3 which made since early of 2021.590 +(% style="color:blue" %)**Downlink:** 390 390 592 +923.3 - SF7BW500 to SF12BW500 391 391 594 +923.9 - SF7BW500 to SF12BW500 392 392 393 - ===2.3.5ensorFlag ===596 +924.5 - SF7BW500 to SF12BW500 394 394 598 +925.1 - SF7BW500 to SF12BW500 599 + 600 +925.7 - SF7BW500 to SF12BW500 601 + 602 +926.3 - SF7BW500 to SF12BW500 603 + 604 +926.9 - SF7BW500 to SF12BW500 605 + 606 +927.5 - SF7BW500 to SF12BW500 607 + 608 +923.3 - SF12BW500(RX2 downlink only) 609 + 610 + 611 + 612 +))) 613 + 614 +=== 2.6.5 AS920-923 & AS923-925 (AS923) === 615 + 395 395 ((( 396 - 0x01: DetectUltrasonicSensor617 +(% style="color:blue" %)**Default Uplink channel:** 397 397 ))) 398 398 399 399 ((( 400 - 0x00:NoUltrasonicSensor621 +923.2 - SF7BW125 to SF10BW125 401 401 ))) 402 402 624 +((( 625 +923.4 - SF7BW125 to SF10BW125 626 +))) 403 403 628 +((( 629 + 630 +))) 404 404 405 -=== 2.3.6 Decode payload in The Things Network === 632 +((( 633 +(% style="color:blue" %)**Additional Uplink Channel**: 634 +))) 406 406 407 -While using TTN network, you can add the payload format to decode the payload. 636 +((( 637 +(OTAA mode, channel added by JoinAccept message) 638 +))) 408 408 640 +((( 641 + 642 +))) 409 409 410 -[[image:1654850829385-439.png]] 644 +((( 645 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 646 +))) 411 411 412 -The payload decoder function for TTN V3 is here: 648 +((( 649 +922.2 - SF7BW125 to SF10BW125 650 +))) 413 413 414 414 ((( 415 - LDDS20TTNV3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]653 +922.4 - SF7BW125 to SF10BW125 416 416 ))) 417 417 656 +((( 657 +922.6 - SF7BW125 to SF10BW125 658 +))) 418 418 660 +((( 661 +922.8 - SF7BW125 to SF10BW125 662 +))) 419 419 420 -== 2.4 Downlink Payload == 664 +((( 665 +923.0 - SF7BW125 to SF10BW125 666 +))) 421 421 422 -By default, LDDS20 prints the downlink payload to console port. 668 +((( 669 +922.0 - SF7BW125 to SF10BW125 670 +))) 423 423 424 -[[image:image-20220615100930-15.png]] 672 +((( 673 + 674 +))) 425 425 676 +((( 677 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 678 +))) 426 426 427 -**Examples:** 680 +((( 681 +923.6 - SF7BW125 to SF10BW125 682 +))) 428 428 684 +((( 685 +923.8 - SF7BW125 to SF10BW125 686 +))) 429 429 430 -* (% style="color:blue" %)**Set TDC** 688 +((( 689 +924.0 - SF7BW125 to SF10BW125 690 +))) 431 431 432 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 692 +((( 693 +924.2 - SF7BW125 to SF10BW125 694 +))) 433 433 434 -Payload: 01 00 00 1E TDC=30S 696 +((( 697 +924.4 - SF7BW125 to SF10BW125 698 +))) 435 435 436 -Payload: 01 00 00 3C TDC=60S 700 +((( 701 +924.6 - SF7BW125 to SF10BW125 702 +))) 437 437 704 +((( 705 + 706 +))) 438 438 439 -* (% style="color:blue" %)**Reset** 708 +((( 709 +(% style="color:blue" %)**Downlink:** 710 +))) 440 440 441 -If payload = 0x04FF, it will reset the LDDS20 712 +((( 713 +Uplink channels 1-8 (RX1) 714 +))) 442 442 716 +((( 717 +923.2 - SF10BW125 (RX2) 718 +))) 443 443 444 -* (% style="color:blue" %)**CFM** 445 445 446 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 447 447 722 +=== 2.6.6 KR920-923 (KR920) === 448 448 724 +((( 725 +(% style="color:blue" %)**Default channel:** 726 +))) 449 449 450 -== 2.5 Show Data in DataCake IoT Server == 728 +((( 729 +922.1 - SF7BW125 to SF12BW125 730 +))) 451 451 452 452 ((( 453 - [[DATACAKE>>url:https://datacake.co/]]providesahuman friendly interface toshow the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE.Below are the steps:733 +922.3 - SF7BW125 to SF12BW125 454 454 ))) 455 455 456 456 ((( 737 +922.5 - SF7BW125 to SF12BW125 738 +))) 739 + 740 +((( 457 457 458 458 ))) 459 459 460 460 ((( 461 -(% style="color:blue" %)** Step1**(%%)**:Be sure that yourdeviceis programmedandproperlyconnectedtothenetwork at thistime.**745 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 462 462 ))) 463 463 464 464 ((( 465 - (%style="color:blue"%)**Step2**(%%)**:To configurethe Applicationto forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**749 +922.1 - SF7BW125 to SF12BW125 466 466 ))) 467 467 752 +((( 753 +922.3 - SF7BW125 to SF12BW125 754 +))) 468 468 469 -[[image:1654592790040-760.png]] 756 +((( 757 +922.5 - SF7BW125 to SF12BW125 758 +))) 470 470 760 +((( 761 +922.7 - SF7BW125 to SF12BW125 762 +))) 471 471 472 -[[image:1654592800389-571.png]] 764 +((( 765 +922.9 - SF7BW125 to SF12BW125 766 +))) 473 473 768 +((( 769 +923.1 - SF7BW125 to SF12BW125 770 +))) 474 474 475 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 772 +((( 773 +923.3 - SF7BW125 to SF12BW125 774 +))) 476 476 477 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 776 +((( 777 + 778 +))) 478 478 479 -[[image:1654851029373-510.png]] 780 +((( 781 +(% style="color:blue" %)**Downlink:** 782 +))) 480 480 784 +((( 785 +Uplink channels 1-7(RX1) 786 +))) 481 481 482 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 788 +((( 789 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 790 +))) 483 483 484 -[[image:image-20220610165129-11.png||height="595" width="1088"]] 485 485 486 486 794 +=== 2.6.7 IN865-867 (IN865) === 487 487 488 -== 2.6 LED Indicator == 796 +((( 797 +(% style="color:blue" %)**Uplink:** 798 +))) 489 489 490 -The LDDS20 has an internal LED which is to show the status of different state. 800 +((( 801 +865.0625 - SF7BW125 to SF12BW125 802 +))) 491 491 804 +((( 805 +865.4025 - SF7BW125 to SF12BW125 806 +))) 492 492 808 +((( 809 +865.9850 - SF7BW125 to SF12BW125 810 +))) 811 + 812 +((( 813 + 814 +))) 815 + 816 +((( 817 +(% style="color:blue" %)**Downlink:** 818 +))) 819 + 820 +((( 821 +Uplink channels 1-3 (RX1) 822 +))) 823 + 824 +((( 825 +866.550 - SF10BW125 (RX2) 826 +))) 827 + 828 + 829 + 830 +== 2.7 LED Indicator == 831 + 832 +The LDDS75 has an internal LED which is to show the status of different state. 833 + 834 + 493 493 * Blink once when device power on. 494 494 * The device detects the sensor and flashes 5 times. 495 495 * Solid ON for 5 seconds once device successful Join the network. ... ... @@ -496,51 +496,49 @@ 496 496 * Blink once when device transmit a packet. 497 497 498 498 841 +== 2.8 Firmware Change Log == 499 499 500 -== 2.7 Firmware Change Log == 501 501 844 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 502 502 503 -((( 504 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 505 -))) 506 506 507 -((( 508 - 509 -))) 847 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 510 510 511 -((( 512 -**Firmware Upgrade Method: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]** 513 -))) 514 514 515 515 851 +== 2.9 Mechanical == 516 516 517 -== 2.8 Battery Analysis == 518 518 854 +[[image:image-20220610172003-1.png]] 519 519 520 520 857 +[[image:image-20220610172003-2.png]] 521 521 522 -=== 2.8.1 Battery Type === 523 523 524 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 525 525 861 +== 2.10 Battery Analysis == 526 526 863 +=== 2.10.1 Battery Type === 864 + 865 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 866 + 867 + 527 527 The battery related documents as below: 528 528 529 529 * ((( 530 -[[Battery Dimension>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/le=LSN50-Battery-Dimension.pdf]],871 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 531 531 ))) 532 532 * ((( 533 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/ index.php?dir=datasheet/Battery/ER26500/]],874 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 534 534 ))) 535 535 * ((( 536 -[[Lithium-ion Battery-Capacitor datasheet>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]877 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 537 537 ))) 538 538 539 - [[image:image-2022061 5102527-16.png]]880 + [[image:image-20220610172400-3.png]] 540 540 541 541 542 542 543 - 544 544 === 2.10.2 Replace the battery === 545 545 546 546 ((( ... ... @@ -648,9 +648,7 @@ 648 648 [[image:image-20220610172924-5.png]] 649 649 650 650 651 -((( 652 652 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 653 -))) 654 654 655 655 656 656 [[image:image-20220610172924-6.png||height="601" width="860"]] ... ... @@ -674,19 +674,16 @@ 674 674 ((( 675 675 Format: Command Code (0x01) followed by 3 bytes time value. 676 676 677 -((( 678 678 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 679 -))) 680 680 681 681 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 682 682 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 683 683 ))) 684 -))) 685 685 686 686 1022 + 1023 +))) 687 687 688 - 689 - 690 690 == 3.3 Set Interrupt Mode == 691 691 692 692 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -700,13 +700,13 @@ 700 700 701 701 Format: Command Code (0x06) followed by 3 bytes. 702 702 703 -((( 704 704 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 705 -))) 706 706 707 707 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 708 708 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 709 709 1043 + 1044 + 710 710 = 4. FAQ = 711 711 712 712 == 4.1 What is the frequency plan for LDDS75? == ... ... @@ -766,6 +766,8 @@ 766 766 * (% style="color:red" %)**4 **(%%)**: **4000mAh battery 767 767 * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery 768 768 1104 + 1105 + 769 769 = 7. Packing Info = 770 770 771 771 ... ... @@ -780,6 +780,8 @@ 780 780 * Package Size / pcs : cm 781 781 * Weight / pcs : g 782 782 1120 + 1121 + 783 783 = 8. Support = 784 784 785 785 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.5 KB - Content
- image-20220615102527-16.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -182.9 KB - Content