Last modified by Mengting Qiu on 2025/08/06 17:02

From version 174.4
edited by Xiaoling
on 2022/06/15 10:30
Change comment: There is no comment for this version
To version 150.31
edited by Xiaoling
on 2022/06/11 09:08
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,11 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
6 +{{toc/}}
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
... ... @@ -11,485 +11,801 @@
11 11  
12 12  
13 13  
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
17 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
23 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
25 +
26 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
27 +
28 +
29 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +
31 +
32 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
33 +
34 +
35 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 +
37 +
38 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
31 31  )))
40 +)))
32 32  
42 +
43 +[[image:1654847051249-359.png]]
44 +
45 +
46 +
47 +== ​1.2  Features ==
48 +
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
51 +* Distance Detection by Ultrasonic technology
52 +* Flat object range 280mm - 7500mm
53 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
54 +* Cable Length : 25cm
55 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 +* AT Commands to change parameters
57 +* Uplink on periodically
58 +* Downlink to change configure
59 +* IP66 Waterproof Enclosure
60 +* 4000mAh or 8500mAh Battery for long term use
61 +
62 +== 1.3  Specification ==
63 +
64 +=== 1.3.1  Rated environmental conditions ===
65 +
66 +[[image:image-20220610154839-1.png]]
67 +
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69 +
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 +
72 +
73 +
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
75 +
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
77 +
78 +
79 +
80 +[[image:1654852253176-749.png]]
81 +
82 +
83 +
84 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
85 +
86 +
87 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
88 +
89 +
90 +
91 +== 1.5 ​ Applications ==
92 +
93 +* Horizontal distance measurement
94 +* Liquid level measurement
95 +* Parking management system
96 +* Object proximity and presence detection
97 +* Intelligent trash can management system
98 +* Robot obstacle avoidance
99 +* Automatic control
100 +* Sewer
101 +* Bottom water level monitoring
102 +
103 +
104 +== 1.6  Pin mapping and power on ==
105 +
106 +
107 +[[image:1654847583902-256.png]]
108 +
109 +
110 +
111 += 2.  Configure LDDS75 to connect to LoRaWAN network =
112 +
113 +== 2.1  How it works ==
114 +
33 33  (((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
116 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
35 35  )))
36 36  
37 37  (((
38 -
120 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
39 39  )))
40 40  
123 +
124 +
125 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126 +
41 41  (((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
128 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
43 43  )))
44 44  
45 45  (((
46 -
132 +[[image:1654848616367-242.png]]
47 47  )))
48 48  
49 49  (((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
136 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
51 51  )))
52 52  
53 53  (((
54 -
140 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
55 55  )))
56 56  
57 57  (((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
144 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
59 59  )))
60 60  
147 +[[image:image-20220607170145-1.jpeg]]
148 +
149 +
150 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
151 +
152 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
153 +
154 +**Add APP EUI in the application**
155 +
156 +[[image:image-20220610161353-4.png]]
157 +
158 +[[image:image-20220610161353-5.png]]
159 +
160 +[[image:image-20220610161353-6.png]]
161 +
162 +
163 +[[image:image-20220610161353-7.png]]
164 +
165 +
166 +You can also choose to create the device manually.
167 +
168 + [[image:image-20220610161538-8.png]]
169 +
170 +
171 +
172 +**Add APP KEY and DEV EUI**
173 +
174 +[[image:image-20220610161538-9.png]]
175 +
176 +
177 +
178 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
179 +
180 +
181 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182 +
183 +[[image:image-20220610161724-10.png]]
184 +
185 +
61 61  (((
62 -
187 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
63 63  )))
64 64  
190 +[[image:1654849068701-275.png]]
191 +
192 +
193 +
194 +== 2.3  ​Uplink Payload ==
195 +
65 65  (((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
197 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
198 +
199 +Uplink payload includes in total 4 bytes.
200 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
67 67  )))
68 68  
69 69  (((
70 70  
71 71  )))
72 -)))
73 73  
74 -(((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 -)))
78 -)))
79 -)))
80 -)))
207 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
208 +|=(% style="width: 62.5px;" %)(((
209 +**Size (bytes)**
210 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
211 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
212 +[[Distance>>||anchor="H2.3.2A0Distance"]]
81 81  
214 +(unit: mm)
215 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
216 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
217 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
82 82  
83 -[[image:1655255122126-327.png]]
219 +[[image:1654850511545-399.png]]
84 84  
85 85  
86 86  
87 -== ​1.Features ==
223 +=== 2.3.1  Battery Info ===
88 88  
89 -* LoRaWAN 1.0.3 Class A
90 -* Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 -* Cable Length : 25cm
96 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 -* AT Commands to change parameters
98 -* Uplink on periodically
99 -* Downlink to change configure
100 -* IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
102 102  
103 -== 1.3  Suitable Container & Liquid ==
226 +Check the battery voltage for LDDS75.
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
228 +Ex1: 0x0B45 = 2885mV
111 111  
112 -== 1.4  Mechanical ==
230 +Ex2: 0x0B49 = 2889mV
113 113  
114 -[[image:image-20220615090910-1.png]]
115 115  
116 116  
117 -[[image:image-20220615090910-2.png]]
234 +=== 2.3.2  Distance ===
118 118  
236 +Get the distance. Flat object range 280mm - 7500mm.
119 119  
238 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
120 120  
121 -== 1.5  Install LDDS20 ==
122 122  
241 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
242 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
127 127  
128 -[[image:image-20220615091045-3.png]]
246 +=== 2.3.3  Interrupt Pin ===
129 129  
248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
130 130  
250 +**Example:**
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
252 +0x00: Normal uplink packet.
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
254 +0x01: Interrupt Uplink Packet.
135 135  
136 -[[image:image-20220615092010-11.png]]
137 137  
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
258 +=== 2.3.4  DS18B20 Temperature sensor ===
140 140  
141 -[[image:image-20220615092044-12.png]]
260 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
142 142  
262 +**Example**:
143 143  
264 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
144 144  
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
266 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
268 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
148 148  
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
272 +=== 2.3.5  Sensor Flag ===
153 153  
274 +0x01: Detect Ultrasonic Sensor
154 154  
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
276 +0x00: No Ultrasonic Sensor
156 156  
157 157  
158 -(% style="color:red" %)**LED Status:**
159 159  
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
280 +=== 2.3.6  Decode payload in The Things Network ===
161 161  
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
282 +While using TTN network, you can add the payload format to decode the payload.
164 164  
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 166  
285 +[[image:1654850829385-439.png]]
167 167  
168 -(% style="color:red" %)**Note 2:**
287 +The payload decoder function for TTN V3 is here:
169 169  
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
289 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
171 171  
172 172  
173 173  
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
293 +== 2.Uplink Interval ==
175 175  
176 -Prepare Eproxy AB glue.
295 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
177 177  
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 179  
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 181  
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
299 +== 2.5  ​Show Data in DataCake IoT Server ==
183 183  
301 +(((
302 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
303 +)))
184 184  
185 -(% style="color:red" %)**Note 1:**
305 +(((
306 +
307 +)))
186 186  
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
309 +(((
310 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
311 +)))
188 188  
313 +(((
314 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
315 +)))
189 189  
190 -(% style="color:red" %)**Note 2:**
191 191  
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
318 +[[image:1654592790040-760.png]]
193 193  
194 194  
321 +[[image:1654592800389-571.png]]
195 195  
196 -== 1.6 ​ Applications ==
197 197  
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
324 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
200 200  
201 -== 1.7  Precautions ==
326 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
202 202  
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
328 +[[image:1654851029373-510.png]]
206 206  
207 -== 1.8  Pin mapping and power on ==
208 208  
331 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
209 209  
210 -[[image:1655257026882-201.png]]
333 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
211 211  
212 212  
213 213  
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
337 +== 2.6  Frequency Plans ==
215 215  
339 +(((
340 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
341 +)))
216 216  
217 -== 2.1  How it works ==
218 218  
344 +
345 +=== 2.6.1  EU863-870 (EU868) ===
346 +
219 219  (((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
348 +(% style="color:blue" %)**Uplink:**
221 221  )))
222 222  
223 223  (((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
352 +868.1 - SF7BW125 to SF12BW125
225 225  )))
226 226  
355 +(((
356 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
357 +)))
227 227  
359 +(((
360 +868.5 - SF7BW125 to SF12BW125
361 +)))
228 228  
229 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
363 +(((
364 +867.1 - SF7BW125 to SF12BW125
365 +)))
230 230  
231 231  (((
232 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
368 +867.3 - SF7BW125 to SF12BW125
233 233  )))
234 234  
235 235  (((
236 -[[image:1655257698953-697.png]]
372 +867.5 - SF7BW125 to SF12BW125
237 237  )))
238 238  
239 239  (((
240 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
376 +867.7 - SF7BW125 to SF12BW125
241 241  )))
242 242  
243 243  (((
244 -
380 +867.9 - SF7BW125 to SF12BW125
381 +)))
245 245  
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
383 +(((
384 +868.8 - FSK
247 247  )))
248 248  
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
388 +
251 251  )))
252 252  
253 -[[image:image-20220607170145-1.jpeg]]
391 +(((
392 +(% style="color:blue" %)**Downlink:**
393 +)))
254 254  
255 -
256 256  (((
257 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
396 +Uplink channels 1-9 (RX1)
258 258  )))
259 259  
260 260  (((
261 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
400 +869.525 - SF9BW125 (RX2 downlink only)
262 262  )))
263 263  
403 +
404 +
405 +=== 2.6.2  US902-928(US915) ===
406 +
264 264  (((
265 -
408 +Used in USA, Canada and South America. Default use CHE=2
266 266  
267 -**Add APP EUI in the application**
268 -)))
410 +(% style="color:blue" %)**Uplink:**
269 269  
270 -[[image:image-20220610161353-4.png]]
412 +903.9 - SF7BW125 to SF10BW125
271 271  
272 -[[image:image-20220610161353-5.png]]
414 +904.1 - SF7BW125 to SF10BW125
273 273  
274 -[[image:image-20220610161353-6.png]]
416 +904.3 - SF7BW125 to SF10BW125
275 275  
418 +904.5 - SF7BW125 to SF10BW125
276 276  
277 -[[image:image-20220610161353-7.png]]
420 +904.7 - SF7BW125 to SF10BW125
278 278  
422 +904.9 - SF7BW125 to SF10BW125
279 279  
424 +905.1 - SF7BW125 to SF10BW125
280 280  
281 -You can also choose to create the device manually.
426 +905.3 - SF7BW125 to SF10BW125
282 282  
283 - [[image:image-20220610161538-8.png]]
284 284  
429 +(% style="color:blue" %)**Downlink:**
285 285  
431 +923.3 - SF7BW500 to SF12BW500
286 286  
287 -**Add APP KEY and DEV EUI**
433 +923.9 - SF7BW500 to SF12BW500
288 288  
289 -[[image:image-20220610161538-9.png]]
435 +924.5 - SF7BW500 to SF12BW500
290 290  
437 +925.1 - SF7BW500 to SF12BW500
291 291  
439 +925.7 - SF7BW500 to SF12BW500
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
441 +926.3 - SF7BW500 to SF12BW500
294 294  
443 +926.9 - SF7BW500 to SF12BW500
295 295  
296 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
445 +927.5 - SF7BW500 to SF12BW500
297 297  
298 -[[image:image-20220615095102-14.png]]
447 +923.3 - SF12BW500(RX2 downlink only)
299 299  
300 300  
450 +
451 +)))
301 301  
453 +=== 2.6.3  CN470-510 (CN470) ===
454 +
302 302  (((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
456 +Used in China, Default use CHE=1
304 304  )))
305 305  
306 -[[image:1654849068701-275.png]]
459 +(((
460 +(% style="color:blue" %)**Uplink:**
461 +)))
307 307  
463 +(((
464 +486.3 - SF7BW125 to SF12BW125
465 +)))
308 308  
467 +(((
468 +486.5 - SF7BW125 to SF12BW125
469 +)))
309 309  
310 -== 2.3  ​Uplink Payload ==
471 +(((
472 +486.7 - SF7BW125 to SF12BW125
473 +)))
311 311  
312 312  (((
476 +486.9 - SF7BW125 to SF12BW125
477 +)))
478 +
313 313  (((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
480 +487.1 - SF7BW125 to SF12BW125
481 +)))
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
483 +(((
484 +487.3 - SF7BW125 to SF12BW125
318 318  )))
486 +
487 +(((
488 +487.5 - SF7BW125 to SF12BW125
319 319  )))
320 320  
321 321  (((
492 +487.7 - SF7BW125 to SF12BW125
493 +)))
494 +
495 +(((
322 322  
323 323  )))
324 324  
325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 -|=(% style="width: 62.5px;" %)(((
327 -**Size (bytes)**
328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 -[[Distance>>||anchor="H2.3.2A0Distance"]]
499 +(((
500 +(% style="color:blue" %)**Downlink:**
501 +)))
331 331  
332 -(unit: mm)
333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
503 +(((
504 +506.7 - SF7BW125 to SF12BW125
505 +)))
336 336  
337 -[[image:1654850511545-399.png]]
507 +(((
508 +506.9 - SF7BW125 to SF12BW125
509 +)))
338 338  
511 +(((
512 +507.1 - SF7BW125 to SF12BW125
513 +)))
339 339  
515 +(((
516 +507.3 - SF7BW125 to SF12BW125
517 +)))
340 340  
341 -=== 2.3.1  Battery Info ===
519 +(((
520 +507.5 - SF7BW125 to SF12BW125
521 +)))
342 342  
523 +(((
524 +507.7 - SF7BW125 to SF12BW125
525 +)))
343 343  
344 -Check the battery voltage for LDDS20.
527 +(((
528 +507.9 - SF7BW125 to SF12BW125
529 +)))
345 345  
346 -Ex1: 0x0B45 = 2885mV
531 +(((
532 +508.1 - SF7BW125 to SF12BW125
533 +)))
347 347  
348 -Ex2: 0x0B49 = 2889mV
535 +(((
536 +505.3 - SF12BW125 (RX2 downlink only)
537 +)))
349 349  
350 350  
351 351  
352 -=== 2.3.2  Distance ===
541 +=== 2.6.4  AU915-928(AU915) ===
353 353  
354 354  (((
355 -Get the distance. Flat object range 20mm - 2000mm.
356 -)))
544 +Default use CHE=2
357 357  
358 -(((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 -)))
546 +(% style="color:blue" %)**Uplink:**
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
548 +916.8 - SF7BW125 to SF12BW125
364 364  
550 +917.0 - SF7BW125 to SF12BW125
365 365  
552 +917.2 - SF7BW125 to SF12BW125
366 366  
367 -=== 2.3.3  Interrupt Pin ===
554 +917.4 - SF7BW125 to SF12BW125
368 368  
369 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
556 +917.6 - SF7BW125 to SF12BW125
370 370  
371 -**Example:**
558 +917.8 - SF7BW125 to SF12BW125
372 372  
373 -0x00: Normal uplink packet.
560 +918.0 - SF7BW125 to SF12BW125
374 374  
375 -0x01: Interrupt Uplink Packet.
562 +918.2 - SF7BW125 to SF12BW125
376 376  
377 377  
565 +(% style="color:blue" %)**Downlink:**
378 378  
379 -=== 2.3. DS18B20 Temperature sensor ===
567 +923.3 - SF7BW500 to SF12BW500
380 380  
381 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
569 +923.9 - SF7BW500 to SF12BW500
382 382  
383 -**Example**:
571 +924.5 - SF7BW500 to SF12BW500
384 384  
385 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
573 +925.1 - SF7BW500 to SF12BW500
386 386  
387 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
575 +925.7 - SF7BW500 to SF12BW500
388 388  
389 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
577 +926.3 - SF7BW500 to SF12BW500
390 390  
579 +926.9 - SF7BW500 to SF12BW500
391 391  
581 +927.5 - SF7BW500 to SF12BW500
392 392  
393 -=== 2.3. Sensor Flag ===
583 +923.3 - SF12BW500(RX2 downlink only)
394 394  
585 +
586 +
587 +)))
588 +
589 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
590 +
395 395  (((
396 -0x01: Detect Ultrasonic Sensor
592 +(% style="color:blue" %)**Default Uplink channel:**
397 397  )))
398 398  
399 399  (((
400 -0x00: No Ultrasonic Sensor
596 +923.2 - SF7BW125 to SF10BW125
401 401  )))
402 402  
599 +(((
600 +923.4 - SF7BW125 to SF10BW125
601 +)))
403 403  
603 +(((
604 +
605 +)))
404 404  
405 -=== 2.3.6  Decode payload in The Things Network ===
607 +(((
608 +(% style="color:blue" %)**Additional Uplink Channel**:
609 +)))
406 406  
407 -While using TTN network, you can add the payload format to decode the payload.
611 +(((
612 +(OTAA mode, channel added by JoinAccept message)
613 +)))
408 408  
615 +(((
616 +
617 +)))
409 409  
410 -[[image:1654850829385-439.png]]
619 +(((
620 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
621 +)))
411 411  
412 -The payload decoder function for TTN V3 is here:
623 +(((
624 +922.2 - SF7BW125 to SF10BW125
625 +)))
413 413  
414 414  (((
415 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
628 +922.4 - SF7BW125 to SF10BW125
416 416  )))
417 417  
631 +(((
632 +922.6 - SF7BW125 to SF10BW125
633 +)))
418 418  
635 +(((
636 +922.8 - SF7BW125 to SF10BW125
637 +)))
419 419  
420 -== 2.4  Downlink Payload ==
639 +(((
640 +923.0 - SF7BW125 to SF10BW125
641 +)))
421 421  
422 -By default, LDDS20 prints the downlink payload to console port.
643 +(((
644 +922.0 - SF7BW125 to SF10BW125
645 +)))
423 423  
424 -[[image:image-20220615100930-15.png]]
647 +(((
648 +
649 +)))
425 425  
651 +(((
652 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
653 +)))
426 426  
427 -**Examples:**
655 +(((
656 +923.6 - SF7BW125 to SF10BW125
657 +)))
428 428  
659 +(((
660 +923.8 - SF7BW125 to SF10BW125
661 +)))
429 429  
430 -* (% style="color:blue" %)**Set TDC**
663 +(((
664 +924.0 - SF7BW125 to SF10BW125
665 +)))
431 431  
432 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
667 +(((
668 +924.2 - SF7BW125 to SF10BW125
669 +)))
433 433  
434 -Payload:    01 00 00 1E    TDC=30S
671 +(((
672 +924.4 - SF7BW125 to SF10BW125
673 +)))
435 435  
436 -Payload:    01 00 00 3C    TDC=60S
675 +(((
676 +924.6 - SF7BW125 to SF10BW125
677 +)))
437 437  
679 +(((
680 +
681 +)))
438 438  
439 -* (% style="color:blue" %)**Reset**
683 +(((
684 +(% style="color:blue" %)**Downlink:**
685 +)))
440 440  
441 -If payload = 0x04FF, it will reset the LDDS20
687 +(((
688 +Uplink channels 1-8 (RX1)
689 +)))
442 442  
691 +(((
692 +923.2 - SF10BW125 (RX2)
693 +)))
443 443  
444 -* (% style="color:blue" %)**CFM**
445 445  
446 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
447 447  
697 +=== 2.6.6  KR920-923 (KR920) ===
448 448  
699 +(((
700 +(% style="color:blue" %)**Default channel:**
701 +)))
449 449  
450 -== 2.5  ​Show Data in DataCake IoT Server ==
703 +(((
704 +922.1 - SF7BW125 to SF12BW125
705 +)))
451 451  
452 452  (((
453 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
708 +922.3 - SF7BW125 to SF12BW125
454 454  )))
455 455  
456 456  (((
712 +922.5 - SF7BW125 to SF12BW125
713 +)))
714 +
715 +(((
457 457  
458 458  )))
459 459  
460 460  (((
461 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
720 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
462 462  )))
463 463  
464 464  (((
465 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
724 +922.1 - SF7BW125 to SF12BW125
466 466  )))
467 467  
727 +(((
728 +922.3 - SF7BW125 to SF12BW125
729 +)))
468 468  
469 -[[image:1654592790040-760.png]]
731 +(((
732 +922.5 - SF7BW125 to SF12BW125
733 +)))
470 470  
735 +(((
736 +922.7 - SF7BW125 to SF12BW125
737 +)))
471 471  
472 -[[image:1654592800389-571.png]]
739 +(((
740 +922.9 - SF7BW125 to SF12BW125
741 +)))
473 473  
743 +(((
744 +923.1 - SF7BW125 to SF12BW125
745 +)))
474 474  
475 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
747 +(((
748 +923.3 - SF7BW125 to SF12BW125
749 +)))
476 476  
477 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
751 +(((
752 +
753 +)))
478 478  
479 -[[image:1654851029373-510.png]]
755 +(((
756 +(% style="color:blue" %)**Downlink:**
757 +)))
480 480  
759 +(((
760 +Uplink channels 1-7(RX1)
761 +)))
481 481  
482 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
763 +(((
764 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
765 +)))
483 483  
484 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
485 485  
486 486  
769 +=== 2.6.7  IN865-867 (IN865) ===
487 487  
488 -== 2.6  LED Indicator ==
771 +(((
772 +(% style="color:blue" %)**Uplink:**
773 +)))
489 489  
490 -The LDDS20 has an internal LED which is to show the status of different state.
775 +(((
776 +865.0625 - SF7BW125 to SF12BW125
777 +)))
491 491  
779 +(((
780 +865.4025 - SF7BW125 to SF12BW125
781 +)))
492 492  
783 +(((
784 +865.9850 - SF7BW125 to SF12BW125
785 +)))
786 +
787 +(((
788 +
789 +)))
790 +
791 +(((
792 +(% style="color:blue" %)**Downlink:**
793 +)))
794 +
795 +(((
796 +Uplink channels 1-3 (RX1)
797 +)))
798 +
799 +(((
800 +866.550 - SF10BW125 (RX2)
801 +)))
802 +
803 +
804 +
805 +== 2.7  LED Indicator ==
806 +
807 +The LDDS75 has an internal LED which is to show the status of different state.
808 +
809 +
493 493  * Blink once when device power on.
494 494  * The device detects the sensor and flashes 5 times.
495 495  * Solid ON for 5 seconds once device successful Join the network.
... ... @@ -497,50 +497,49 @@
497 497  
498 498  
499 499  
500 -== 2.7  ​Firmware Change Log ==
817 +== 2.8  ​Firmware Change Log ==
501 501  
502 502  
503 -(((
504 -**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
505 -)))
820 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
506 506  
507 -(((
508 -
509 -)))
510 510  
511 -(((
512 -**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
513 -)))
823 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
514 514  
515 515  
516 516  
517 -== 2.8  Battery Analysis ==
827 +== 2.9  Mechanical ==
518 518  
519 519  
830 +[[image:image-20220610172003-1.png]]
520 520  
521 521  
522 -=== 2.8.1  Battery Type ===
833 +[[image:image-20220610172003-2.png]]
523 523  
524 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
525 525  
526 526  
837 +== 2.10  Battery Analysis ==
838 +
839 +=== 2.10.1  Battery Type ===
840 +
841 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
842 +
843 +
527 527  The battery related documents as below:
528 528  
529 529  * (((
530 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/le=LSN50-Battery-Dimension.pdf]],
847 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
531 531  )))
532 532  * (((
533 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
850 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
534 534  )))
535 535  * (((
536 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
853 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
537 537  )))
538 538  
539 - [[image:image-20220615102527-16.png]]
856 + [[image:image-20220610172400-3.png]]
540 540  
541 541  
542 542  
543 -
544 544  === 2.10.2  Replace the battery ===
545 545  
546 546  (((
... ... @@ -648,9 +648,7 @@
648 648  [[image:image-20220610172924-5.png]]
649 649  
650 650  
651 -(((
652 652  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
653 -)))
654 654  
655 655  
656 656   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -674,19 +674,16 @@
674 674  (((
675 675  Format: Command Code (0x01) followed by 3 bytes time value.
676 676  
677 -(((
678 678  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
679 -)))
680 680  
681 681  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
682 682  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
683 683  )))
684 -)))
685 685  
686 686  
998 +
999 +)))
687 687  
688 -
689 -
690 690  == 3.3  Set Interrupt Mode ==
691 691  
692 692  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -700,13 +700,14 @@
700 700  
701 701  Format: Command Code (0x06) followed by 3 bytes.
702 702  
703 -(((
704 704  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
705 -)))
706 706  
707 707  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
708 708  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
709 709  
1019 +
1020 +
1021 +
710 710  = 4.  FAQ =
711 711  
712 712  == 4.1  What is the frequency plan for LDDS75? ==
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -182.9 KB
Content