Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 20 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 20- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,10 +1,11 @@ 1 1 (% style="text-align:center" %) 2 -[[image:165 5254599445-662.png]]2 +[[image:1654846127817-788.png]] 3 3 4 +**Contents:** 4 4 6 +{{toc/}} 5 5 6 6 7 -**Table of Contents:** 8 8 9 9 10 10 ... ... @@ -11,11 +11,9 @@ 11 11 12 12 13 13 14 - 15 - 16 16 = 1. Introduction = 17 17 18 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==17 +== 1.1 What is LoRaWAN Distance Detection Sensor == 19 19 20 20 ((( 21 21 ... ... @@ -22,8 +22,7 @@ 22 22 23 23 ((( 24 24 ((( 25 -((( 26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 24 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 27 27 ))) 28 28 29 29 ((( ... ... @@ -31,7 +31,7 @@ 31 31 ))) 32 32 33 33 ((( 34 - The LDDS20 sensor is installeddirectly below thecontainerto detect theheight of the liquidlevel. User doesn’tneed to openahole onthecontainerto be tested. The(% style="color:#4472c4" %)**none-contact measurementmakesthe measurementsafety,easier and possiblefor somestrictsituation**.32 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 35 35 ))) 36 36 37 37 ((( ... ... @@ -39,7 +39,7 @@ 39 39 ))) 40 40 41 41 ((( 42 - LDDS20 usesultrasonicsensingtechnologyfor distancemeasurement.LDDS20isof high accuracytomeasurevariousliquidsuchas: (% style="color:#4472c4"%)**toxicsubstances**(%%),(% style="color:#4472c4"%)**strong acids**(%%),(% style="color:#4472c4" %)**strong alkalis**(%%)and(%style="color:#4472c4"%)**various pure liquids**(%%)in high-temperatureandhigh-pressureairtight containers.40 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 43 43 ))) 44 44 45 45 ((( ... ... @@ -47,7 +47,7 @@ 47 47 ))) 48 48 49 49 ((( 50 - TheLoRawirelesstechnology usedinLDDS20allowsdevice tosend data andreachextremelylongrangesatlowdata-rates.Itprovidesultra-longrangespreadspectrumcommunication and highinterference immunitywhilst minimizing currentconsumption.48 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 51 51 ))) 52 52 53 53 ((( ... ... @@ -55,7 +55,7 @@ 55 55 ))) 56 56 57 57 ((( 58 -LDDS 20ispoweredby(%style="color:#4472c4"%)**8500mALi-SOCI2 battery**(%%);Itisdesignedfor longtermuseupto10 years*.56 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 59 59 ))) 60 60 61 61 ((( ... ... @@ -63,24 +63,13 @@ 63 63 ))) 64 64 65 65 ((( 66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 67 -))) 68 - 69 -((( 70 - 71 -))) 72 -))) 73 - 74 -((( 75 -((( 76 76 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 77 77 ))) 78 78 ))) 79 79 ))) 80 -))) 81 81 82 82 83 -[[image:1655 255122126-327.png]]70 +[[image:1654847051249-359.png]] 84 84 85 85 86 86 ... ... @@ -88,10 +88,9 @@ 88 88 89 89 * LoRaWAN 1.0.3 Class A 90 90 * Ultra low power consumption 91 -* Liquid Level Measurement by Ultrasonic technology 92 -* Measure through container, No need to contact Liquid. 93 -* Valid level range 20mm - 2000mm 94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 78 +* Distance Detection by Ultrasonic technology 79 +* Flat object range 280mm - 7500mm 80 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 95 95 * Cable Length : 25cm 96 96 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 97 97 * AT Commands to change parameters ... ... @@ -98,417 +98,767 @@ 98 98 * Uplink on periodically 99 99 * Downlink to change configure 100 100 * IP66 Waterproof Enclosure 101 -* 8500mAh Battery for long term use 87 +* 4000mAh or 8500mAh Battery for long term use 102 102 103 -== 1.3 Suitable Container & Liquid == 104 104 105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 -* Container shape is regular, and surface is smooth. 107 -* Container Thickness: 108 -** Pure metal material. 2~~8mm, best is 3~~5mm 109 -** Pure non metal material: <10 mm 110 -* Pure liquid without irregular deposition. 111 111 112 -== 1. 4Mechanical==91 +== 1.3 Specification == 113 113 114 - [[image:image-20220615090910-1.png]]93 +=== 1.3.1 Rated environmental conditions === 115 115 95 +[[image:image-20220610154839-1.png]] 116 116 117 -[[image:image-20220615090910-2.png]] 97 +((( 98 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing); b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 99 +))) 118 118 119 119 120 120 121 -== 1. 5InstallLDDS20==103 +=== 1.3.2 Effective measurement range Reference beam pattern === 122 122 105 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 123 123 124 -(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 125 125 126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 127 127 128 -[[image: image-20220615091045-3.png]]109 +[[image:1654852253176-749.png]] 129 129 130 130 131 131 132 -( %style="color:blue"%)**Step2**(%%): Polishtheinstallationpoint.113 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 133 133 134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 135 135 136 -[[image: image-20220615092010-11.png]]116 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 137 137 138 138 139 -No polish needed if the container is shine metal surface without paint or non-metal container. 140 140 141 - [[image:image-20220615092044-12.png]]120 +== 1.5 Applications == 142 142 122 +* Horizontal distance measurement 123 +* Liquid level measurement 124 +* Parking management system 125 +* Object proximity and presence detection 126 +* Intelligent trash can management system 127 +* Robot obstacle avoidance 128 +* Automatic control 129 +* Sewer 130 +* Bottom water level monitoring 143 143 132 +== 1.6 Pin mapping and power on == 144 144 145 -(% style="color:blue" %)**Step3: **(%%)Test the installation point. 146 146 147 - Power on LDDS75, checkif the blue LED is on, If the blue LED is on,means thesensor works.Thenput ultrasonic couplingpaste on the sensor and put it tightly on the installation point.135 +[[image:1654847583902-256.png]] 148 148 149 149 150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 151 151 152 - [[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]139 += 2. Configure LDDS75 to connect to LoRaWAN network = 153 153 141 +== 2.1 How it works == 154 154 155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 143 +((( 144 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 145 +))) 156 156 147 +((( 148 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 149 +))) 157 157 158 -(% style="color:red" %)**LED Status:** 159 159 160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 161 161 162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 153 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 164 164 165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 155 +((( 156 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 157 +))) 166 166 159 +((( 160 +[[image:1654848616367-242.png]] 161 +))) 167 167 168 -(% style="color:red" %)**Note 2:** 163 +((( 164 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 165 +))) 169 169 170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 167 +((( 168 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 169 +))) 171 171 171 +((( 172 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 173 +))) 172 172 175 +[[image:image-20220607170145-1.jpeg]] 173 173 174 -(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 175 175 176 - PrepareEproxyABglue.178 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 177 177 178 - PutEproxyAB glue inthensorand pressit hard on thecontainerinstallationpoint.180 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 179 179 180 - Reset LDDS20 andseeiftheBLUE LED is slowly blinking.182 +**Add APP EUI in the application** 181 181 182 -[[image:image-2022061 5091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]184 +[[image:image-20220610161353-4.png]] 183 183 186 +[[image:image-20220610161353-5.png]] 184 184 185 - (% style="color:red" %)**Note1:**188 +[[image:image-20220610161353-6.png]] 186 186 187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 188 188 191 +[[image:image-20220610161353-7.png]] 189 189 190 -(% style="color:red" %)**Note 2:** 191 191 192 - (% style="color:red" %)Eproxy AB glue(%%)is subjected inmostshipping way. So thedefaultpackage doesn’tincludeitanduser needs to purchaselocally.194 +You can also choose to create the device manually. 193 193 196 + [[image:image-20220610161538-8.png]] 194 194 195 195 196 -== 1.6 Applications == 197 197 198 -* Smart liquid control solution. 199 -* Smart liquefied gas solution. 200 +**Add APP KEY and DEV EUI** 200 200 201 - == 1.7 Precautions ==202 +[[image:image-20220610161538-9.png]] 202 202 203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 206 206 207 -== 1.8 Pin mapping and power on == 208 208 206 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 209 209 210 -[[image:1655257026882-201.png]] 211 211 209 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 212 212 211 +[[image:image-20220610161724-10.png]] 213 213 214 -= 2. Configure LDDS20 to connect to LoRaWAN network = 215 215 214 +((( 215 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 216 +))) 216 216 217 - ==2.1 How it works ==218 +[[image:1654849068701-275.png]] 218 218 220 + 221 + 222 +== 2.3 Uplink Payload == 223 + 219 219 ((( 220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 225 +LDDS75 will uplink payload via LoRaWAN with below payload format: 226 + 227 +Uplink payload includes in total 4 bytes. 228 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 221 221 ))) 222 222 223 223 ((( 224 - Incase you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.232 + 225 225 ))) 226 226 235 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 236 +|=(% style="width: 62.5px;" %)((( 237 +**Size (bytes)** 238 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 239 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 240 +[[Distance>>||anchor="H2.3.2A0Distance"]] 227 227 242 +(unit: mm) 243 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 244 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 245 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 228 228 229 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==247 +[[image:1654850511545-399.png]] 230 230 249 + 250 + 251 +=== 2.3.1 Battery Info === 252 + 253 + 254 +Check the battery voltage for LDDS75. 255 + 256 +Ex1: 0x0B45 = 2885mV 257 + 258 +Ex2: 0x0B49 = 2889mV 259 + 260 + 261 + 262 +=== 2.3.2 Distance === 263 + 264 +Get the distance. Flat object range 280mm - 7500mm. 265 + 266 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 267 + 268 + 269 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 270 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 271 + 272 +=== 2.3.3 Interrupt Pin === 273 + 274 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up. 275 + 276 +**Example:** 277 + 278 +0x00: Normal uplink packet. 279 + 280 +0x01: Interrupt Uplink Packet. 281 + 282 + 283 + 284 +=== 2.3.4 DS18B20 Temperature sensor === 285 + 286 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 287 + 288 +**Example**: 289 + 290 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 291 + 292 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 293 + 294 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 295 + 296 + 297 + 298 +=== 2.3.5 Sensor Flag === 299 + 300 +0x01: Detect Ultrasonic Sensor 301 + 302 +0x00: No Ultrasonic Sensor 303 + 304 + 305 + 306 +=== 2.3.6 Decode payload in The Things Network === 307 + 308 +While using TTN network, you can add the payload format to decode the payload. 309 + 310 + 311 +[[image:1654850829385-439.png]] 312 + 313 +The payload decoder function for TTN V3 is here: 314 + 315 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 316 + 317 + 318 + 319 +== 2.4 Uplink Interval == 320 + 321 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 322 + 323 + 324 + 325 +== 2.5 Show Data in DataCake IoT Server == 326 + 231 231 ((( 232 - Following is an example for how to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Belowisthenetworkstructure;weuse the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]asaLoRaWANgatewayinthisexample.328 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 233 233 ))) 234 234 235 235 ((( 236 - [[image:1655257698953-697.png]]332 + 237 237 ))) 238 238 239 239 ((( 240 - TheLG308 isalreadysettoconnectedto[[TTN network>>url:https://console.cloud.thethings.network/]],so whatwe needto nowisconfigurethe TTN server.336 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 241 241 ))) 242 242 243 243 ((( 244 - 340 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 341 +))) 245 245 246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 343 + 344 +[[image:1654592790040-760.png]] 345 + 346 + 347 +[[image:1654592800389-571.png]] 348 + 349 + 350 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 351 + 352 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 353 + 354 +[[image:1654851029373-510.png]] 355 + 356 + 357 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 358 + 359 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 360 + 361 + 362 + 363 +== 2.6 Frequency Plans == 364 + 365 +((( 366 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 247 247 ))) 248 248 369 + 370 + 371 +=== 2.6.1 EU863-870 (EU868) === 372 + 249 249 ((( 250 - EachLDDS20 isshipped with a sticker with the default device keys, user can find this sticker in the box. itlookslikebelow.374 +(% style="color:blue" %)**Uplink:** 251 251 ))) 252 252 253 -[[image:image-20220607170145-1.jpeg]] 377 +((( 378 +868.1 - SF7BW125 to SF12BW125 379 +))) 254 254 381 +((( 382 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 383 +))) 255 255 256 256 ((( 257 - For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Someserver mightnoneed to set APP EUI.386 +868.5 - SF7BW125 to SF12BW125 258 258 ))) 259 259 260 260 ((( 261 - Enterthesekeysinthe LoRaWANServer portal.Below is TTN V3 screen shot:390 +867.1 - SF7BW125 to SF12BW125 262 262 ))) 263 263 264 264 ((( 394 +867.3 - SF7BW125 to SF12BW125 395 +))) 396 + 397 +((( 398 +867.5 - SF7BW125 to SF12BW125 399 +))) 400 + 401 +((( 402 +867.7 - SF7BW125 to SF12BW125 403 +))) 404 + 405 +((( 406 +867.9 - SF7BW125 to SF12BW125 407 +))) 408 + 409 +((( 410 +868.8 - FSK 411 +))) 412 + 413 +((( 265 265 415 +))) 266 266 267 -**Add APP EUI in the application** 417 +((( 418 +(% style="color:blue" %)**Downlink:** 268 268 ))) 269 269 270 -[[image:image-20220610161353-4.png]] 421 +((( 422 +Uplink channels 1-9 (RX1) 423 +))) 271 271 272 -[[image:image-20220610161353-5.png]] 425 +((( 426 +869.525 - SF9BW125 (RX2 downlink only) 427 +))) 273 273 274 -[[image:image-20220610161353-6.png]] 275 275 276 276 277 - [[image:image-20220610161353-7.png]]431 +=== 2.6.2 US902-928(US915) === 278 278 433 +((( 434 +Used in USA, Canada and South America. Default use CHE=2 279 279 436 +(% style="color:blue" %)**Uplink:** 280 280 281 - Youcanalsochoosetocreate the device manually.438 +903.9 - SF7BW125 to SF10BW125 282 282 283 - [[image:image-20220610161538-8.png]]440 +904.1 - SF7BW125 to SF10BW125 284 284 442 +904.3 - SF7BW125 to SF10BW125 285 285 444 +904.5 - SF7BW125 to SF10BW125 286 286 287 - **AddAPPKEYandDEV EUI**446 +904.7 - SF7BW125 to SF10BW125 288 288 289 - [[image:image-20220610161538-9.png]]448 +904.9 - SF7BW125 to SF10BW125 290 290 450 +905.1 - SF7BW125 to SF10BW125 291 291 452 +905.3 - SF7BW125 to SF10BW125 292 292 293 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 294 294 455 +(% style="color:blue" %)**Downlink:** 295 295 296 - Put a Jumper on JP2to power on the device.(TheSwitch must be inFLASHposition).457 +923.3 - SF7BW500 to SF12BW500 297 297 298 - [[image:image-20220615095102-14.png]]459 +923.9 - SF7BW500 to SF12BW500 299 299 461 +924.5 - SF7BW500 to SF12BW500 300 300 463 +925.1 - SF7BW500 to SF12BW500 301 301 302 -((( 303 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 304 -))) 465 +925.7 - SF7BW500 to SF12BW500 305 305 306 - [[image:1654849068701-275.png]]467 +926.3 - SF7BW500 to SF12BW500 307 307 469 +926.9 - SF7BW500 to SF12BW500 308 308 471 +927.5 - SF7BW500 to SF12BW500 309 309 310 - ==2.3UplinkPayload ==473 +923.3 - SF12BW500(RX2 downlink only) 311 311 475 + 476 + 477 +))) 478 + 479 +=== 2.6.3 CN470-510 (CN470) === 480 + 312 312 ((( 482 +Used in China, Default use CHE=1 483 +))) 484 + 313 313 ((( 314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 486 +(% style="color:blue" %)**Uplink:** 487 +))) 315 315 316 - Uplink payload includes in total 8 bytes.317 - Payload for firmware version v1.1.4..Before v1.1.3,there isonly5 bytes:BAT and Distance(Please check manual v1.2.0 if you have5bytes payload).489 +((( 490 +486.3 - SF7BW125 to SF12BW125 318 318 ))) 492 + 493 +((( 494 +486.5 - SF7BW125 to SF12BW125 319 319 ))) 320 320 321 321 ((( 322 - 498 +486.7 - SF7BW125 to SF12BW125 323 323 ))) 324 324 325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 326 -|=(% style="width: 62.5px;" %)((( 327 -**Size (bytes)** 328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 330 -[[Distance>>||anchor="H2.3.2A0Distance"]] 501 +((( 502 +486.9 - SF7BW125 to SF12BW125 503 +))) 331 331 332 -(unit: mm) 333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 505 +((( 506 +487.1 - SF7BW125 to SF12BW125 507 +))) 336 336 337 -[[image:1654850511545-399.png]] 509 +((( 510 +487.3 - SF7BW125 to SF12BW125 511 +))) 338 338 513 +((( 514 +487.5 - SF7BW125 to SF12BW125 515 +))) 339 339 517 +((( 518 +487.7 - SF7BW125 to SF12BW125 519 +))) 340 340 341 -=== 2.3.1 Battery Info === 521 +((( 522 + 523 +))) 342 342 525 +((( 526 +(% style="color:blue" %)**Downlink:** 527 +))) 343 343 344 -Check the battery voltage for LDDS20. 529 +((( 530 +506.7 - SF7BW125 to SF12BW125 531 +))) 345 345 346 -Ex1: 0x0B45 = 2885mV 533 +((( 534 +506.9 - SF7BW125 to SF12BW125 535 +))) 347 347 348 -Ex2: 0x0B49 = 2889mV 537 +((( 538 +507.1 - SF7BW125 to SF12BW125 539 +))) 349 349 541 +((( 542 +507.3 - SF7BW125 to SF12BW125 543 +))) 350 350 545 +((( 546 +507.5 - SF7BW125 to SF12BW125 547 +))) 351 351 352 -=== 2.3.2 Distance === 549 +((( 550 +507.7 - SF7BW125 to SF12BW125 551 +))) 353 353 354 354 ((( 355 - Get the distance. Flatobjectrange20mm -2000mm.554 +507.9 - SF7BW125 to SF12BW125 356 356 ))) 357 357 358 358 ((( 359 - For example, if the data you get from the register is __0x060x05__,the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H)=1541(D) = 1541 mm.**558 +508.1 - SF7BW125 to SF12BW125 360 360 ))) 361 361 362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 561 +((( 562 +505.3 - SF12BW125 (RX2 downlink only) 563 +))) 364 364 365 -=== 2.3.3 Interrupt Pin === 366 366 367 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 368 368 369 - **Example:**567 +=== 2.6.4 AU915-928(AU915) === 370 370 371 -0x00: Normal uplink packet. 569 +((( 570 +Default use CHE=2 372 372 373 - 0x01:InterruptUplinkPacket.572 +(% style="color:blue" %)**Uplink:** 374 374 574 +916.8 - SF7BW125 to SF12BW125 375 375 576 +917.0 - SF7BW125 to SF12BW125 376 376 377 - === 2.3.4DS18B20Temperature sensor===578 +917.2 - SF7BW125 to SF12BW125 378 378 379 - Thisisoptional, user can connect external DS18B20sensortothe +3.3v,1-wire and GND pin . and this field will report temperature.580 +917.4 - SF7BW125 to SF12BW125 380 380 381 - **Example**:582 +917.6 - SF7BW125 to SF12BW125 382 382 383 - If payload is: 0105H:(0105&FC00 == 0), temp = 0105H/10=26.1degree584 +917.8 - SF7BW125 to SF12BW125 384 384 385 - If payload is: FF3FH : (FF3F & FC00==1),temp= (FF3FH - 65536)/10 = -19.3 degrees.586 +918.0 - SF7BW125 to SF12BW125 386 386 387 - (%style="color:red"%)Note: DS18B20feature is supportedin the hardware version > v1.3 which made since early of2021.588 +918.2 - SF7BW125 to SF12BW125 388 388 389 389 591 +(% style="color:blue" %)**Downlink:** 390 390 391 - ===2.3.5SensorFlag ===593 +923.3 - SF7BW500 to SF12BW500 392 392 595 +923.9 - SF7BW500 to SF12BW500 596 + 597 +924.5 - SF7BW500 to SF12BW500 598 + 599 +925.1 - SF7BW500 to SF12BW500 600 + 601 +925.7 - SF7BW500 to SF12BW500 602 + 603 +926.3 - SF7BW500 to SF12BW500 604 + 605 +926.9 - SF7BW500 to SF12BW500 606 + 607 +927.5 - SF7BW500 to SF12BW500 608 + 609 +923.3 - SF12BW500(RX2 downlink only) 610 + 611 + 612 + 613 +))) 614 + 615 +=== 2.6.5 AS920-923 & AS923-925 (AS923) === 616 + 393 393 ((( 394 - 0x01: DetectUltrasonicSensor618 +(% style="color:blue" %)**Default Uplink channel:** 395 395 ))) 396 396 397 397 ((( 398 - 0x00:NoUltrasonicSensor622 +923.2 - SF7BW125 to SF10BW125 399 399 ))) 400 400 625 +((( 626 +923.4 - SF7BW125 to SF10BW125 627 +))) 401 401 629 +((( 630 + 631 +))) 402 402 403 -=== 2.3.6 Decode payload in The Things Network === 633 +((( 634 +(% style="color:blue" %)**Additional Uplink Channel**: 635 +))) 404 404 405 -While using TTN network, you can add the payload format to decode the payload. 637 +((( 638 +(OTAA mode, channel added by JoinAccept message) 639 +))) 406 406 641 +((( 642 + 643 +))) 407 407 408 -[[image:1654850829385-439.png]] 645 +((( 646 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 647 +))) 409 409 410 -The payload decoder function for TTN V3 is here: 649 +((( 650 +922.2 - SF7BW125 to SF10BW125 651 +))) 411 411 412 412 ((( 413 - LDDS20TTNV3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]654 +922.4 - SF7BW125 to SF10BW125 414 414 ))) 415 415 657 +((( 658 +922.6 - SF7BW125 to SF10BW125 659 +))) 416 416 661 +((( 662 +922.8 - SF7BW125 to SF10BW125 663 +))) 417 417 418 -== 2.4 Downlink Payload == 665 +((( 666 +923.0 - SF7BW125 to SF10BW125 667 +))) 419 419 420 -By default, LDDS20 prints the downlink payload to console port. 669 +((( 670 +922.0 - SF7BW125 to SF10BW125 671 +))) 421 421 422 -[[image:image-20220615100930-15.png]] 673 +((( 674 + 675 +))) 423 423 677 +((( 678 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 679 +))) 424 424 425 -**Examples:** 681 +((( 682 +923.6 - SF7BW125 to SF10BW125 683 +))) 426 426 685 +((( 686 +923.8 - SF7BW125 to SF10BW125 687 +))) 427 427 428 -* (% style="color:blue" %)**Set TDC** 689 +((( 690 +924.0 - SF7BW125 to SF10BW125 691 +))) 429 429 430 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 693 +((( 694 +924.2 - SF7BW125 to SF10BW125 695 +))) 431 431 432 -Payload: 01 00 00 1E TDC=30S 697 +((( 698 +924.4 - SF7BW125 to SF10BW125 699 +))) 433 433 434 -Payload: 01 00 00 3C TDC=60S 701 +((( 702 +924.6 - SF7BW125 to SF10BW125 703 +))) 435 435 705 +((( 706 + 707 +))) 436 436 437 -* (% style="color:blue" %)**Reset** 709 +((( 710 +(% style="color:blue" %)**Downlink:** 711 +))) 438 438 439 -If payload = 0x04FF, it will reset the LDDS20 713 +((( 714 +Uplink channels 1-8 (RX1) 715 +))) 440 440 717 +((( 718 +923.2 - SF10BW125 (RX2) 719 +))) 441 441 442 -* (% style="color:blue" %)**CFM** 443 443 444 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 445 445 723 +=== 2.6.6 KR920-923 (KR920) === 446 446 725 +((( 726 +(% style="color:blue" %)**Default channel:** 727 +))) 447 447 448 -== 2.5 Show Data in DataCake IoT Server == 729 +((( 730 +922.1 - SF7BW125 to SF12BW125 731 +))) 449 449 450 450 ((( 451 - [[DATACAKE>>url:https://datacake.co/]]providesahuman friendly interface toshow the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE.Below are the steps:734 +922.3 - SF7BW125 to SF12BW125 452 452 ))) 453 453 454 454 ((( 738 +922.5 - SF7BW125 to SF12BW125 739 +))) 740 + 741 +((( 455 455 456 456 ))) 457 457 458 458 ((( 459 -(% style="color:blue" %)** Step1**(%%)**:Be sure that yourdeviceis programmedandproperlyconnectedtothenetwork at thistime.**746 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 460 460 ))) 461 461 462 462 ((( 463 - (%style="color:blue"%)**Step2**(%%)**:To configurethe Applicationto forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**750 +922.1 - SF7BW125 to SF12BW125 464 464 ))) 465 465 753 +((( 754 +922.3 - SF7BW125 to SF12BW125 755 +))) 466 466 467 -[[image:1654592790040-760.png]] 757 +((( 758 +922.5 - SF7BW125 to SF12BW125 759 +))) 468 468 761 +((( 762 +922.7 - SF7BW125 to SF12BW125 763 +))) 469 469 470 -[[image:1654592800389-571.png]] 765 +((( 766 +922.9 - SF7BW125 to SF12BW125 767 +))) 471 471 769 +((( 770 +923.1 - SF7BW125 to SF12BW125 771 +))) 472 472 473 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 773 +((( 774 +923.3 - SF7BW125 to SF12BW125 775 +))) 474 474 475 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 777 +((( 778 + 779 +))) 476 476 477 -[[image:1654851029373-510.png]] 781 +((( 782 +(% style="color:blue" %)**Downlink:** 783 +))) 478 478 785 +((( 786 +Uplink channels 1-7(RX1) 787 +))) 479 479 480 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 789 +((( 790 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 791 +))) 481 481 482 -[[image:image-20220610165129-11.png||height="595" width="1088"]] 483 483 484 484 795 +=== 2.6.7 IN865-867 (IN865) === 485 485 486 -== 2.6 LED Indicator == 797 +((( 798 +(% style="color:blue" %)**Uplink:** 799 +))) 487 487 488 -The LDDS20 has an internal LED which is to show the status of different state. 801 +((( 802 +865.0625 - SF7BW125 to SF12BW125 803 +))) 489 489 805 +((( 806 +865.4025 - SF7BW125 to SF12BW125 807 +))) 490 490 809 +((( 810 +865.9850 - SF7BW125 to SF12BW125 811 +))) 812 + 813 +((( 814 + 815 +))) 816 + 817 +((( 818 +(% style="color:blue" %)**Downlink:** 819 +))) 820 + 821 +((( 822 +Uplink channels 1-3 (RX1) 823 +))) 824 + 825 +((( 826 +866.550 - SF10BW125 (RX2) 827 +))) 828 + 829 + 830 + 831 +== 2.7 LED Indicator == 832 + 833 +The LDDS75 has an internal LED which is to show the status of different state. 834 + 835 + 491 491 * Blink once when device power on. 492 492 * The device detects the sensor and flashes 5 times. 493 493 * Solid ON for 5 seconds once device successful Join the network. 494 494 * Blink once when device transmit a packet. 495 495 496 - 497 - 498 498 == 2.8 Firmware Change Log == 499 499 500 500 501 -((( 502 502 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 503 -))) 504 504 505 -((( 506 - 507 -))) 508 508 509 -((( 510 510 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 511 -))) 512 512 513 513 514 514 ... ... @@ -652,9 +652,7 @@ 652 652 [[image:image-20220610172924-5.png]] 653 653 654 654 655 -((( 656 656 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 657 -))) 658 658 659 659 660 660 [[image:image-20220610172924-6.png||height="601" width="860"]] ... ... @@ -678,19 +678,16 @@ 678 678 ((( 679 679 Format: Command Code (0x01) followed by 3 bytes time value. 680 680 681 -((( 682 682 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 683 -))) 684 684 685 685 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 686 686 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 687 687 ))) 688 -))) 689 689 690 690 1022 + 1023 +))) 691 691 692 - 693 - 694 694 == 3.3 Set Interrupt Mode == 695 695 696 696 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -704,13 +704,12 @@ 704 704 705 705 Format: Command Code (0x06) followed by 3 bytes. 706 706 707 -((( 708 708 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 709 -))) 710 710 711 711 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 712 712 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 713 713 1043 + 714 714 = 4. FAQ = 715 715 716 716 == 4.1 What is the frequency plan for LDDS75? == ... ... @@ -770,6 +770,7 @@ 770 770 * (% style="color:red" %)**4 **(%%)**: **4000mAh battery 771 771 * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery 772 772 1103 + 773 773 = 7. Packing Info = 774 774 775 775 ... ... @@ -784,6 +784,7 @@ 784 784 * Package Size / pcs : cm 785 785 * Weight / pcs : g 786 786 1118 + 787 787 = 8. Support = 788 788 789 789 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.5 KB - Content