Last modified by Mengting Qiu on 2025/08/06 17:02

From version 173.6
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version
To version 137.1
edited by Xiaoling
on 2022/06/10 16:51
Change comment: Uploaded new attachment "image-20220610165129-11.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,577 +1,851 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
31 -)))
32 32  
33 -(((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
35 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
36 36  
37 -(((
38 -
39 -)))
40 40  
41 -(((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
43 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
44 44  
45 -(((
46 -
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
47 47  )))
38 +)))
48 48  
40 +
41 +[[image:1654847051249-359.png]]
42 +
43 +
44 +
45 +== ​1.2  Features ==
46 +
47 +* LoRaWAN 1.0.3 Class A
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
59 +
60 +== 1.3  Specification ==
61 +
62 +=== 1.3.1  Rated environmental conditions ===
63 +
64 +[[image:image-20220610154839-1.png]]
65 +
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67 +
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
69 +
70 +
71 +
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
73 +
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75 +
76 +
77 +
78 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79 +
80 +(% style="display:none" %) (%%)
81 +
82 +
83 +== 1.5 ​ Applications ==
84 +
85 +* Horizontal distance measurement
86 +* Liquid level measurement
87 +* Parking management system
88 +* Object proximity and presence detection
89 +* Intelligent trash can management system
90 +* Robot obstacle avoidance
91 +* Automatic control
92 +* Sewer
93 +* Bottom water level monitoring
94 +
95 +== 1.6  Pin mapping and power on ==
96 +
97 +
98 +[[image:1654847583902-256.png]]
99 +
100 +
101 += 2.  Configure LDDS75 to connect to LoRaWAN network =
102 +
103 +== 2.1  How it works ==
104 +
49 49  (((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
106 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
51 51  )))
52 52  
53 53  (((
54 -
110 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
55 55  )))
56 56  
113 +
114 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
115 +
57 57  (((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
117 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
59 59  )))
60 60  
61 61  (((
62 -
121 +[[image:1654848616367-242.png]]
63 63  )))
64 64  
65 65  (((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
125 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
67 67  )))
68 68  
69 69  (((
70 -
129 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
71 71  )))
72 -)))
73 73  
74 74  (((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
133 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
77 77  )))
78 -)))
79 -)))
80 -)))
81 81  
136 +[[image:image-20220607170145-1.jpeg]]
82 82  
83 -[[image:1655255122126-327.png]]
84 84  
139 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
85 85  
141 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
86 86  
87 -== ​1.2  Features ==
143 +**Add APP EUI in the application**
88 88  
89 -* LoRaWAN 1.0.3 Class A
90 -* Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 -* Cable Length : 25cm
96 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 -* AT Commands to change parameters
98 -* Uplink on periodically
99 -* Downlink to change configure
100 -* IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
145 +[[image:image-20220610161353-4.png]]
102 102  
103 -== 1.3  Suitable Container & Liquid ==
147 +[[image:image-20220610161353-5.png]]
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
149 +[[image:image-20220610161353-6.png]]
111 111  
112 -== 1.4  Mechanical ==
113 113  
114 -[[image:image-20220615090910-1.png]]
152 +[[image:image-20220610161353-7.png]]
115 115  
116 116  
117 -[[image:image-20220615090910-2.png]]
155 +You can also choose to create the device manually.
118 118  
157 + [[image:image-20220610161538-8.png]]
119 119  
120 120  
121 -== 1.5  Install LDDS20 ==
122 122  
161 +**Add APP KEY and DEV EUI**
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
163 +[[image:image-20220610161538-9.png]]
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
127 127  
128 -[[image:image-20220615091045-3.png]]
129 129  
167 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
130 130  
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
170 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
172 +[[image:image-20220610161724-10.png]]
135 135  
136 -[[image:image-20220615092010-11.png]]
137 137  
175 +(((
176 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 +)))
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
179 +[[image:1654849068701-275.png]]
140 140  
141 -[[image:image-20220615092044-12.png]]
142 142  
143 143  
183 +== 2.3  ​Uplink Payload ==
144 144  
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
185 +(((
186 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
188 +Uplink payload includes in total 4 bytes.
189 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
190 +)))
148 148  
192 +(((
193 +
194 +)))
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
197 +|=(% style="width: 62.5px;" %)(((
198 +**Size (bytes)**
199 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
200 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
201 +[[Distance>>||anchor="H2.3.3A0Distance"]]
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
203 +(unit: mm)
204 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
205 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
206 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
153 153  
208 +[[image:1654850511545-399.png]]
154 154  
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 156  
157 157  
158 -(% style="color:red" %)**LED Status:**
212 +=== 2.3.1  Battery Info ===
159 159  
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 161  
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
215 +Check the battery voltage for LDDS75.
164 164  
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
217 +Ex1: 0x0B45 = 2885mV
166 166  
219 +Ex2: 0x0B49 = 2889mV
167 167  
168 -(% style="color:red" %)**Note 2:**
169 169  
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 171  
223 +=== 2.3.2  Distance ===
172 172  
225 +Get the distance. Flat object range 280mm - 7500mm.
173 173  
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
227 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
175 175  
176 -Prepare Eproxy AB glue.
177 177  
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
230 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
231 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
179 179  
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 181  
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 183  
235 +=== 2.3.3  Interrupt Pin ===
184 184  
185 -(% style="color:red" %)**Note 1:**
237 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
186 186  
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
239 +**Example:**
188 188  
241 +0x00: Normal uplink packet.
189 189  
190 -(% style="color:red" %)**Note 2:**
243 +0x01: Interrupt Uplink Packet.
191 191  
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 193  
246 +=== 2.3.4  DS18B20 Temperature sensor ===
194 194  
248 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
195 195  
196 -== 1.6 ​ Applications ==
250 +**Example**:
197 197  
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
252 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
200 200  
201 -== 1.7  Precautions ==
254 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
202 202  
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
256 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
206 206  
207 -== 1.8  Pin mapping and power on ==
208 208  
209 209  
210 -[[image:1655257026882-201.png]]
260 +=== 2.3.5  Sensor Flag ===
211 211  
262 +0x01: Detect Ultrasonic Sensor
212 212  
264 +0x00: No Ultrasonic Sensor
213 213  
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
215 215  
267 +===
268 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
216 216  
217 -== 2.1  How it works ==
270 +While using TTN network, you can add the payload format to decode the payload.
218 218  
219 -(((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
221 -)))
222 222  
223 -(((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
225 -)))
273 +[[image:1654850829385-439.png]]
226 226  
275 +The payload decoder function for TTN V3 is here:
227 227  
277 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
228 228  
229 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
230 230  
231 -(((
232 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
233 -)))
234 234  
235 -(((
236 -[[image:1655257698953-697.png]]
237 -)))
281 +== 2.4  Uplink Interval ==
238 238  
283 +The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 +
285 +
286 +
287 +== 2.5  ​Show Data in DataCake IoT Server ==
288 +
239 239  (((
240 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
290 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
241 241  )))
242 242  
243 243  (((
244 244  
295 +)))
245 245  
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
297 +(((
298 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
247 247  )))
248 248  
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
302 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
251 251  )))
252 252  
253 -[[image:image-20220607170145-1.jpeg]]
254 254  
306 +[[image:1654592790040-760.png]]
255 255  
256 -(((
257 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
258 -)))
259 259  
309 +[[image:1654592800389-571.png]]
310 +
311 +
312 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
313 +
314 +(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
315 +
316 +[[image:1654832691989-514.png]]
317 +
318 +
319 +[[image:1654592833877-762.png]]
320 +
321 +
322 +[[image:1654832740634-933.png]]
323 +
324 +
325 +
260 260  (((
261 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
327 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
262 262  )))
263 263  
264 264  (((
265 265  
266 -
267 -**Add APP EUI in the application**
268 268  )))
269 269  
270 -[[image:image-20220610161353-4.png]]
334 +[[image:1654833065139-942.png]]
271 271  
272 -[[image:image-20220610161353-5.png]]
273 273  
274 -[[image:image-20220610161353-6.png]]
275 275  
338 +[[image:1654833092678-390.png]]
276 276  
277 -[[image:image-20220610161353-7.png]]
278 278  
279 279  
342 +After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
280 280  
281 -You can also choose to create the device manually.
344 +[[image:1654833163048-332.png]]
282 282  
283 - [[image:image-20220610161538-8.png]]
284 284  
285 285  
348 +== 2.6  Frequency Plans ==
286 286  
287 -**Add APP KEY and DEV EUI**
350 +(((
351 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
352 +)))
288 288  
289 -[[image:image-20220610161538-9.png]]
290 290  
355 +=== 2.6.1  EU863-870 (EU868) ===
291 291  
357 +(((
358 +(% style="color:blue" %)**Uplink:**
359 +)))
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
361 +(((
362 +868.1 - SF7BW125 to SF12BW125
363 +)))
294 294  
365 +(((
366 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
367 +)))
295 295  
296 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
369 +(((
370 +868.5 - SF7BW125 to SF12BW125
371 +)))
297 297  
298 -[[image:image-20220615095102-14.png]]
373 +(((
374 +867.1 - SF7BW125 to SF12BW125
375 +)))
299 299  
377 +(((
378 +867.3 - SF7BW125 to SF12BW125
379 +)))
300 300  
381 +(((
382 +867.5 - SF7BW125 to SF12BW125
383 +)))
301 301  
302 302  (((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
386 +867.7 - SF7BW125 to SF12BW125
304 304  )))
305 305  
306 -[[image:1654849068701-275.png]]
389 +(((
390 +867.9 - SF7BW125 to SF12BW125
391 +)))
307 307  
393 +(((
394 +868.8 - FSK
395 +)))
308 308  
397 +(((
398 +
399 +)))
309 309  
310 -== 2.3  ​Uplink Payload ==
401 +(((
402 +(% style="color:blue" %)**Downlink:**
403 +)))
311 311  
312 312  (((
406 +Uplink channels 1-9 (RX1)
407 +)))
408 +
313 313  (((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
410 +869.525 - SF9BW125 (RX2 downlink only)
411 +)))
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
413 +
414 +
415 +=== 2.6.2  US902-928(US915) ===
416 +
417 +(((
418 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
318 318  )))
420 +
421 +(((
422 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
319 319  )))
320 320  
321 321  (((
322 -
426 +After Join success, the end node will switch to the correct sub band by:
323 323  )))
324 324  
325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 -|=(% style="width: 62.5px;" %)(((
327 -**Size (bytes)**
328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 -[[Distance>>||anchor="H2.3.2A0Distance"]]
429 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
430 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
331 331  
332 -(unit: mm)
333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
432 +=== 2.6.3  CN470-510 (CN470) ===
336 336  
337 -[[image:1654850511545-399.png]]
434 +(((
435 +Used in China, Default use CHE=1
436 +)))
338 338  
438 +(((
439 +(% style="color:blue" %)**Uplink:**
440 +)))
339 339  
442 +(((
443 +486.3 - SF7BW125 to SF12BW125
444 +)))
340 340  
341 -=== 2.3.1  Battery Info ===
446 +(((
447 +486.5 - SF7BW125 to SF12BW125
448 +)))
342 342  
450 +(((
451 +486.7 - SF7BW125 to SF12BW125
452 +)))
343 343  
344 -Check the battery voltage for LDDS20.
454 +(((
455 +486.9 - SF7BW125 to SF12BW125
456 +)))
345 345  
346 -Ex1: 0x0B45 = 2885mV
458 +(((
459 +487.1 - SF7BW125 to SF12BW125
460 +)))
347 347  
348 -Ex2: 0x0B49 = 2889mV
462 +(((
463 +487.3 - SF7BW125 to SF12BW125
464 +)))
349 349  
466 +(((
467 +487.5 - SF7BW125 to SF12BW125
468 +)))
350 350  
470 +(((
471 +487.7 - SF7BW125 to SF12BW125
472 +)))
351 351  
352 -=== 2.3.2  Distance ===
474 +(((
475 +
476 +)))
353 353  
354 354  (((
355 -Get the distance. Flat object range 20mm - 2000mm.
479 +(% style="color:blue" %)**Downlink:**
356 356  )))
357 357  
358 358  (((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
483 +506.7 - SF7BW125 to SF12BW125
360 360  )))
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
486 +(((
487 +506.9 - SF7BW125 to SF12BW125
488 +)))
364 364  
365 -=== 2.3.3  Interrupt Pin ===
490 +(((
491 +507.1 - SF7BW125 to SF12BW125
492 +)))
366 366  
367 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
494 +(((
495 +507.3 - SF7BW125 to SF12BW125
496 +)))
368 368  
369 -**Example:**
498 +(((
499 +507.5 - SF7BW125 to SF12BW125
500 +)))
370 370  
371 -0x00: Normal uplink packet.
502 +(((
503 +507.7 - SF7BW125 to SF12BW125
504 +)))
372 372  
373 -0x01: Interrupt Uplink Packet.
506 +(((
507 +507.9 - SF7BW125 to SF12BW125
508 +)))
374 374  
510 +(((
511 +508.1 - SF7BW125 to SF12BW125
512 +)))
375 375  
514 +(((
515 +505.3 - SF12BW125 (RX2 downlink only)
516 +)))
376 376  
377 -=== 2.3.4  DS18B20 Temperature sensor ===
378 378  
379 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
380 380  
381 -**Example**:
382 382  
383 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
521 +=== 2.6.4  AU915-928(AU915) ===
384 384  
385 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
523 +(((
524 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
525 +)))
386 386  
387 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
527 +(((
528 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
529 +)))
388 388  
531 +(((
532 +
533 +)))
389 389  
535 +(((
536 +After Join success, the end node will switch to the correct sub band by:
537 +)))
390 390  
391 -=== 2.3.5  Sensor Flag ===
539 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
540 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
392 392  
542 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
543 +
393 393  (((
394 -0x01: Detect Ultrasonic Sensor
545 +(% style="color:blue" %)**Default Uplink channel:**
395 395  )))
396 396  
397 397  (((
398 -0x00: No Ultrasonic Sensor
549 +923.2 - SF7BW125 to SF10BW125
399 399  )))
400 400  
552 +(((
553 +923.4 - SF7BW125 to SF10BW125
554 +)))
401 401  
556 +(((
557 +
558 +)))
402 402  
403 -=== 2.3.6  Decode payload in The Things Network ===
560 +(((
561 +(% style="color:blue" %)**Additional Uplink Channel**:
562 +)))
404 404  
405 -While using TTN network, you can add the payload format to decode the payload.
564 +(((
565 +(OTAA mode, channel added by JoinAccept message)
566 +)))
406 406  
568 +(((
569 +
570 +)))
407 407  
408 -[[image:1654850829385-439.png]]
572 +(((
573 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
574 +)))
409 409  
410 -The payload decoder function for TTN V3 is here:
576 +(((
577 +922.2 - SF7BW125 to SF10BW125
578 +)))
411 411  
412 412  (((
413 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
581 +922.4 - SF7BW125 to SF10BW125
414 414  )))
415 415  
584 +(((
585 +922.6 - SF7BW125 to SF10BW125
586 +)))
416 416  
588 +(((
589 +922.8 - SF7BW125 to SF10BW125
590 +)))
417 417  
418 -== 2.4  Downlink Payload ==
592 +(((
593 +923.0 - SF7BW125 to SF10BW125
594 +)))
419 419  
420 -By default, LDDS20 prints the downlink payload to console port.
596 +(((
597 +922.0 - SF7BW125 to SF10BW125
598 +)))
421 421  
422 -[[image:image-20220615100930-15.png]]
600 +(((
601 +
602 +)))
423 423  
604 +(((
605 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
606 +)))
424 424  
425 -**Examples:**
608 +(((
609 +923.6 - SF7BW125 to SF10BW125
610 +)))
426 426  
612 +(((
613 +923.8 - SF7BW125 to SF10BW125
614 +)))
427 427  
428 -* (% style="color:blue" %)**Set TDC**
616 +(((
617 +924.0 - SF7BW125 to SF10BW125
618 +)))
429 429  
430 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
620 +(((
621 +924.2 - SF7BW125 to SF10BW125
622 +)))
431 431  
432 -Payload:    01 00 00 1E    TDC=30S
624 +(((
625 +924.4 - SF7BW125 to SF10BW125
626 +)))
433 433  
434 -Payload:    01 00 00 3C    TDC=60S
628 +(((
629 +924.6 - SF7BW125 to SF10BW125
630 +)))
435 435  
632 +(((
633 +
634 +)))
436 436  
437 -* (% style="color:blue" %)**Reset**
636 +(((
637 +(% style="color:blue" %)**Downlink:**
638 +)))
438 438  
439 -If payload = 0x04FF, it will reset the LDDS20
640 +(((
641 +Uplink channels 1-8 (RX1)
642 +)))
440 440  
644 +(((
645 +923.2 - SF10BW125 (RX2)
646 +)))
441 441  
442 -* (% style="color:blue" %)**CFM**
443 443  
444 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
445 445  
446 446  
651 +=== 2.6.6  KR920-923 (KR920) ===
447 447  
448 -== 2.5  ​Show Data in DataCake IoT Server ==
653 +(((
654 +(% style="color:blue" %)**Default channel:**
655 +)))
449 449  
450 450  (((
451 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
658 +922.1 - SF7BW125 to SF12BW125
452 452  )))
453 453  
454 454  (((
455 -
662 +922.3 - SF7BW125 to SF12BW125
456 456  )))
457 457  
458 458  (((
459 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
666 +922.5 - SF7BW125 to SF12BW125
460 460  )))
461 461  
462 462  (((
463 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
670 +
464 464  )))
465 465  
673 +(((
674 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
675 +)))
466 466  
467 -[[image:1654592790040-760.png]]
677 +(((
678 +922.1 - SF7BW125 to SF12BW125
679 +)))
468 468  
681 +(((
682 +922.3 - SF7BW125 to SF12BW125
683 +)))
469 469  
470 -[[image:1654592800389-571.png]]
685 +(((
686 +922.5 - SF7BW125 to SF12BW125
687 +)))
471 471  
689 +(((
690 +922.7 - SF7BW125 to SF12BW125
691 +)))
472 472  
473 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
693 +(((
694 +922.9 - SF7BW125 to SF12BW125
695 +)))
474 474  
475 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
697 +(((
698 +923.1 - SF7BW125 to SF12BW125
699 +)))
476 476  
477 -[[image:1654851029373-510.png]]
701 +(((
702 +923.3 - SF7BW125 to SF12BW125
703 +)))
478 478  
705 +(((
706 +
707 +)))
479 479  
480 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
709 +(((
710 +(% style="color:blue" %)**Downlink:**
711 +)))
481 481  
482 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
713 +(((
714 +Uplink channels 1-7(RX1)
715 +)))
483 483  
717 +(((
718 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
719 +)))
484 484  
485 485  
486 -== 2.6  LED Indicator ==
487 487  
488 -The LDDS20 has an internal LED which is to show the status of different state.
489 489  
724 +=== 2.6.7  IN865-867 (IN865) ===
490 490  
491 -* Blink once when device power on.
492 -* The device detects the sensor and flashes 5 times.
493 -* Solid ON for 5 seconds once device successful Join the network.
494 -* Blink once when device transmit a packet.
726 +(((
727 +(% style="color:blue" %)**Uplink:**
728 +)))
495 495  
730 +(((
731 +865.0625 - SF7BW125 to SF12BW125
732 +)))
496 496  
734 +(((
735 +865.4025 - SF7BW125 to SF12BW125
736 +)))
497 497  
498 -== 2.8  ​Firmware Change Log ==
738 +(((
739 +865.9850 - SF7BW125 to SF12BW125
740 +)))
499 499  
742 +(((
743 +
744 +)))
500 500  
501 501  (((
502 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
747 +(% style="color:blue" %)**Downlink:**
503 503  )))
504 504  
505 505  (((
506 -
751 +Uplink channels 1-3 (RX1)
507 507  )))
508 508  
509 509  (((
510 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
755 +866.550 - SF10BW125 (RX2)
511 511  )))
512 512  
513 513  
514 514  
515 -== 2.9  Mechanical ==
516 516  
761 +== 2.7  LED Indicator ==
517 517  
518 -[[image:image-20220610172003-1.png]]
763 +The LLDS12 has an internal LED which is to show the status of different state.
519 519  
765 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
766 +* Blink once when device transmit a packet.
520 520  
521 -[[image:image-20220610172003-2.png]]
768 +== 2.8  ​Firmware Change Log ==
522 522  
523 523  
771 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
524 524  
525 -== 2.10  Battery Analysis ==
526 526  
527 -=== 2.10.1  Battery Type ===
774 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
528 528  
529 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
530 530  
531 531  
532 -The battery related documents as below:
778 += 3.  LiDAR ToF Measurement =
533 533  
534 -* (((
535 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
780 +== 3.1 Principle of Distance Measurement ==
781 +
782 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
783 +
784 +[[image:1654831757579-263.png]]
785 +
786 +
787 +
788 +== 3.2 Distance Measurement Characteristics ==
789 +
790 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
791 +
792 +[[image:1654831774373-275.png]]
793 +
794 +
795 +(((
796 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
536 536  )))
537 -* (((
538 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
798 +
799 +(((
800 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
539 539  )))
540 -* (((
541 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
802 +
803 +(((
804 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
542 542  )))
543 543  
544 - [[image:image-20220610172400-3.png]]
545 545  
808 +(((
809 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
810 +)))
546 546  
547 547  
548 -=== 2.10.2  Replace the battery ===
813 +[[image:1654831797521-720.png]]
549 549  
550 -(((
551 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
552 -)))
553 553  
554 554  (((
555 -
817 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
556 556  )))
557 557  
820 +[[image:1654831810009-716.png]]
821 +
822 +
558 558  (((
559 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
824 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
560 560  )))
561 561  
562 562  
563 563  
564 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
829 +== 3.3 Notice of usage: ==
565 565  
831 +Possible invalid /wrong reading for LiDAR ToF tech:
832 +
833 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
834 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
835 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
836 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
837 +
838 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
839 +
566 566  (((
567 567  (((
568 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
842 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
569 569  )))
570 570  )))
571 571  
572 572  * (((
573 573  (((
574 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
848 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
575 575  )))
576 576  )))
577 577  * (((
... ... @@ -586,7 +586,7 @@
586 586  )))
587 587  
588 588  (((
589 -There are two kinds of commands to configure LDDS75, they are:
863 +There are two kinds of commands to configure LLDS12, they are:
590 590  )))
591 591  )))
592 592  
... ... @@ -627,155 +627,351 @@
627 627  
628 628  * (((
629 629  (((
630 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
904 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
631 631  )))
632 632  )))
633 633  
634 634  (((
635 635  (((
636 -These commands only valid for LDDS75, as below:
910 +These commands only valid for LLDS12, as below:
637 637  )))
638 638  )))
639 639  
640 640  
641 641  
642 -== 3.1  Access AT Commands ==
916 +== 4.1  Set Transmit Interval Time ==
643 643  
644 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
918 +Feature: Change LoRaWAN End Node Transmit Interval.
645 645  
646 -[[image:image-20220610172924-4.png||height="483" width="988"]]
920 +(% style="color:#037691" %)**AT Command: AT+TDC**
647 647  
922 +[[image:image-20220607171554-8.png]]
648 648  
649 -Or if you have below board, use below connection:
650 650  
925 +(((
926 +(% style="color:#037691" %)**Downlink Command: 0x01**
927 +)))
651 651  
652 -[[image:image-20220610172924-5.png]]
929 +(((
930 +Format: Command Code (0x01) followed by 3 bytes time value.
931 +)))
653 653  
933 +(((
934 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
935 +)))
654 654  
937 +* (((
938 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
939 +)))
940 +* (((
941 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
942 +)))
943 +
944 +== 4.2  Set Interrupt Mode ==
945 +
946 +Feature, Set Interrupt mode for GPIO_EXIT.
947 +
948 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
949 +
950 +[[image:image-20220610105806-2.png]]
951 +
952 +
655 655  (((
656 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
954 +(% style="color:#037691" %)**Downlink Command: 0x06**
657 657  )))
658 658  
957 +(((
958 +Format: Command Code (0x06) followed by 3 bytes.
959 +)))
659 659  
660 - [[image:image-20220610172924-6.png||height="601" width="860"]]
961 +(((
962 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
963 +)))
661 661  
965 +* (((
966 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
967 +)))
968 +* (((
969 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
970 +)))
662 662  
972 +== 4.3  Get Firmware Version Info ==
663 663  
664 -== 3.2  Set Transmit Interval Time ==
974 +Feature: use downlink to get firmware version.
665 665  
666 -Feature: Change LoRaWAN End Node Transmit Interval.
976 +(% style="color:#037691" %)**Downlink Command: 0x26**
667 667  
668 -(% style="color:#037691" %)**AT Command: AT+TDC**
978 +[[image:image-20220607171917-10.png]]
669 669  
670 -[[image:image-20220610173409-7.png]]
980 +* Reply to the confirmation package: 26 01
981 +* Reply to non-confirmed packet: 26 00
671 671  
983 +Device will send an uplink after got this downlink command. With below payload:
672 672  
985 +Configures info payload:
986 +
987 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
988 +|=(((
989 +**Size(bytes)**
990 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
991 +|**Value**|Software Type|(((
992 +Frequency
993 +
994 +Band
995 +)))|Sub-band|(((
996 +Firmware
997 +
998 +Version
999 +)))|Sensor Type|Reserve|(((
1000 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1001 +Always 0x02
1002 +)))
1003 +
1004 +**Software Type**: Always 0x03 for LLDS12
1005 +
1006 +
1007 +**Frequency Band**:
1008 +
1009 +*0x01: EU868
1010 +
1011 +*0x02: US915
1012 +
1013 +*0x03: IN865
1014 +
1015 +*0x04: AU915
1016 +
1017 +*0x05: KZ865
1018 +
1019 +*0x06: RU864
1020 +
1021 +*0x07: AS923
1022 +
1023 +*0x08: AS923-1
1024 +
1025 +*0x09: AS923-2
1026 +
1027 +*0xa0: AS923-3
1028 +
1029 +
1030 +**Sub-Band**: value 0x00 ~~ 0x08
1031 +
1032 +
1033 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1034 +
1035 +
1036 +**Sensor Type**:
1037 +
1038 +0x01: LSE01
1039 +
1040 +0x02: LDDS75
1041 +
1042 +0x03: LDDS20
1043 +
1044 +0x04: LLMS01
1045 +
1046 +0x05: LSPH01
1047 +
1048 +0x06: LSNPK01
1049 +
1050 +0x07: LLDS12
1051 +
1052 +
1053 +
1054 += 5.  Battery & How to replace =
1055 +
1056 +== 5.1  Battery Type ==
1057 +
673 673  (((
674 -(% style="color:#037691" %)**Downlink Command: 0x01**
1059 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
675 675  )))
676 676  
677 677  (((
1063 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1064 +)))
1065 +
1066 +[[image:1654593587246-335.png]]
1067 +
1068 +
1069 +Minimum Working Voltage for the LLDS12:
1070 +
1071 +LLDS12:  2.45v ~~ 3.6v
1072 +
1073 +
1074 +
1075 +== 5.2  Replace Battery ==
1076 +
678 678  (((
679 -Format: Command Code (0x01) followed by 3 bytes time value.
1078 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1079 +)))
680 680  
681 681  (((
682 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1082 +And make sure the positive and negative pins match.
683 683  )))
684 684  
685 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
686 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1085 +
1086 +
1087 +== 5.3  Power Consumption Analyze ==
1088 +
1089 +(((
1090 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
687 687  )))
1092 +
1093 +(((
1094 +Instruction to use as below:
688 688  )))
689 689  
690 690  
1098 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
691 691  
1100 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
692 692  
693 693  
694 -== 3.3  Set Interrupt Mode ==
1103 +**Step 2**: Open it and choose
695 695  
696 -Feature, Set Interrupt mode for GPIO_EXIT.
1105 +* Product Model
1106 +* Uplink Interval
1107 +* Working Mode
697 697  
698 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1109 +And the Life expectation in difference case will be shown on the right.
699 699  
700 -[[image:image-20220610174917-9.png]]
1111 +[[image:1654593605679-189.png]]
701 701  
702 702  
703 -(% style="color:#037691" %)**Downlink Command: 0x06**
1114 +The battery related documents as below:
704 704  
705 -Format: Command Code (0x06) followed by 3 bytes.
1116 +* (((
1117 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1118 +)))
1119 +* (((
1120 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1121 +)))
1122 +* (((
1123 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1124 +)))
706 706  
1126 +[[image:image-20220607172042-11.png]]
1127 +
1128 +
1129 +
1130 +=== 5.3.1  ​Battery Note ===
1131 +
707 707  (((
708 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1133 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
709 709  )))
710 710  
711 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
712 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
713 713  
714 -= 4.  FAQ =
715 715  
716 -== 4.1  What is the frequency plan for LDDS75? ==
1138 +=== ​5.3.2  Replace the battery ===
717 717  
718 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1140 +(((
1141 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1142 +)))
719 719  
1144 +(((
1145 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1146 +)))
720 720  
721 721  
722 -== 4.2  How to change the LoRa Frequency Bands/Region ==
723 723  
724 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
725 -When downloading the images, choose the required image file for download. ​
1150 += 6.  Use AT Command =
726 726  
1152 +== 6.1  Access AT Commands ==
727 727  
1154 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
728 728  
729 -== 4.3  Can I use LDDS75 in condensation environment? ==
1156 +[[image:1654593668970-604.png]]
730 730  
731 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1158 +**Connection:**
732 732  
1160 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
733 733  
1162 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
734 734  
735 -= 5.  Trouble Shooting =
1164 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
736 736  
737 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
738 738  
739 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1167 +(((
1168 +(((
1169 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1170 +)))
740 740  
1172 +(((
1173 +LLDS12 will output system info once power on as below:
1174 +)))
1175 +)))
741 741  
742 -== 5.2  AT Command input doesn't work ==
743 743  
1178 + [[image:1654593712276-618.png]]
1179 +
1180 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1181 +
1182 +
1183 += 7.  FAQ =
1184 +
1185 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1186 +
1187 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1188 +When downloading the images, choose the required image file for download. ​
1189 +
1190 +
1191 += 8.  Trouble Shooting =
1192 +
1193 +== 8.1  AT Commands input doesn’t work ==
1194 +
1195 +
1196 +(((
744 744  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1198 +)))
745 745  
1200 +
1201 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1202 +
1203 +
746 746  (((
1205 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1206 +)))
1207 +
1208 +(((
1209 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1210 +)))
1211 +
1212 +(((
747 747  
748 748  )))
749 749  
1216 +(((
1217 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1218 +)))
750 750  
751 -= 6.  Order Info =
1220 +(((
1221 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1222 +)))
752 752  
753 753  
754 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
755 755  
1226 += 9.  Order Info =
756 756  
757 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
758 758  
759 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
760 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
761 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
762 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
763 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
764 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
765 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
766 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1229 +Part Number: (% style="color:blue" %)**LLDS12-XX**
767 767  
768 -(% style="color:blue" %)**YY**(%%): Battery Option
769 769  
770 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
771 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1232 +(% style="color:blue" %)**XX**(%%): The default frequency band
772 772  
773 -= 7. ​ Packing Info =
1234 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1235 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1236 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1237 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1238 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1239 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1240 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1241 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
774 774  
1243 += 10. ​ Packing Info =
775 775  
1245 +
776 776  **Package Includes**:
777 777  
778 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1248 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
779 779  
780 780  **Dimension and weight**:
781 781  
... ... @@ -784,7 +784,7 @@
784 784  * Package Size / pcs : cm
785 785  * Weight / pcs : g
786 786  
787 -= 8.  ​Support =
1257 += 11.  ​Support =
788 788  
789 789  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
790 790  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654852175653-550.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.6 KB
Content
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content