Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 31 removed)
- 1654852175653-550.png
- 1654852253176-749.png
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220610172003-1.png
- image-20220610172003-2.png
- image-20220610172400-3.png
- image-20220610172924-4.png
- image-20220610172924-5.png
- image-20220610172924-6.png
- image-20220610173409-7.png
- image-20220610174836-8.png
- image-20220610174917-9.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 20- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,577 +1,851 @@ 1 1 (% style="text-align:center" %) 2 -[[image:165 5254599445-662.png]]2 +[[image:1654846127817-788.png]] 3 3 4 +**Contents:** 4 4 5 5 6 6 7 -**Table of Contents:** 8 8 9 9 10 10 11 11 12 12 13 - 14 - 15 - 16 16 = 1. Introduction = 17 17 18 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==15 +== 1.1 What is LoRaWAN Distance Detection Sensor == 19 19 20 20 ((( 21 21 22 22 23 23 ((( 24 -((( 25 -((( 26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 27 -))) 21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 28 28 29 -((( 30 - 31 -))) 32 32 33 -((( 34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 35 -))) 24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 36 36 37 -((( 38 - 39 -))) 40 40 41 -((( 42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 43 -))) 27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 44 44 45 -((( 46 - 29 + 30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 + 32 + 33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 + 35 + 36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 47 47 ))) 38 +))) 48 48 40 + 41 +[[image:1654847051249-359.png]] 42 + 43 + 44 + 45 +== 1.2 Features == 46 + 47 +* LoRaWAN 1.0.3 Class A 48 +* Ultra low power consumption 49 +* Distance Detection by Ultrasonic technology 50 +* Flat object range 280mm - 7500mm 51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 52 +* Cable Length : 25cm 53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 +* AT Commands to change parameters 55 +* Uplink on periodically 56 +* Downlink to change configure 57 +* IP66 Waterproof Enclosure 58 +* 4000mAh or 8500mAh Battery for long term use 59 + 60 +== 1.3 Specification == 61 + 62 +=== 1.3.1 Rated environmental conditions === 63 + 64 +[[image:image-20220610154839-1.png]] 65 + 66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 67 + 68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 69 + 70 + 71 + 72 +=== 1.3.2 Effective measurement range Reference beam pattern === 73 + 74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]] 75 + 76 + 77 + 78 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]] 79 + 80 +(% style="display:none" %) (%%) 81 + 82 + 83 +== 1.5 Applications == 84 + 85 +* Horizontal distance measurement 86 +* Liquid level measurement 87 +* Parking management system 88 +* Object proximity and presence detection 89 +* Intelligent trash can management system 90 +* Robot obstacle avoidance 91 +* Automatic control 92 +* Sewer 93 +* Bottom water level monitoring 94 + 95 +== 1.6 Pin mapping and power on == 96 + 97 + 98 +[[image:1654847583902-256.png]] 99 + 100 + 101 += 2. Configure LDDS75 to connect to LoRaWAN network = 102 + 103 +== 2.1 How it works == 104 + 49 49 ((( 50 -The L oRawirelesstechnologyusedinLDDS20allows device tosenddataandreachextremelylongrangesatlow data-rates.Itprovidesultra-longrange spreadspectrumcommunicationandhighinterference immunitywhilstminimizingcurrentconsumption.106 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 51 51 ))) 52 52 53 53 ((( 54 - 110 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 55 55 ))) 56 56 113 + 114 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 115 + 57 57 ((( 58 - LDDS20is poweredby(% style="color:#4472c4"%)**8500mALi-SOCI2battery**(%%); Itissigned for longtermuse upyears*.117 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 59 59 ))) 60 60 61 61 ((( 62 - 121 +[[image:1654848616367-242.png]] 63 63 ))) 64 64 65 65 ((( 66 - Each LDDS20pre-loadswith aset ofuniquekeysforLoRaWANregistrations, registerthesekeystolocalLoRaWANserverandit willautoconnectifthereisnetwork coverage, after power on.125 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 67 67 ))) 68 68 69 69 ((( 70 - 129 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 71 71 ))) 72 -))) 73 73 74 74 ((( 75 -((( 76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 133 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 77 77 ))) 78 -))) 79 -))) 80 -))) 81 81 136 +[[image:image-20220607170145-1.jpeg]] 82 82 83 -[[image:1655255122126-327.png]] 84 84 139 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 85 85 141 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 86 86 87 - ==1.2Features==143 +**Add APP EUI in the application** 88 88 89 -* LoRaWAN 1.0.3 Class A 90 -* Ultra low power consumption 91 -* Liquid Level Measurement by Ultrasonic technology 92 -* Measure through container, No need to contact Liquid. 93 -* Valid level range 20mm - 2000mm 94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 95 -* Cable Length : 25cm 96 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 97 -* AT Commands to change parameters 98 -* Uplink on periodically 99 -* Downlink to change configure 100 -* IP66 Waterproof Enclosure 101 -* 8500mAh Battery for long term use 145 +[[image:image-20220610161353-4.png]] 102 102 103 - == 1.3 SuitableContainer & Liquid ==147 +[[image:image-20220610161353-5.png]] 104 104 105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 -* Container shape is regular, and surface is smooth. 107 -* Container Thickness: 108 -** Pure metal material. 2~~8mm, best is 3~~5mm 109 -** Pure non metal material: <10 mm 110 -* Pure liquid without irregular deposition. 149 +[[image:image-20220610161353-6.png]] 111 111 112 -== 1.4 Mechanical == 113 113 114 -[[image:image-2022061 5090910-1.png]]152 +[[image:image-20220610161353-7.png]] 115 115 116 116 117 - [[image:image-20220615090910-2.png]]155 +You can also choose to create the device manually. 118 118 157 + [[image:image-20220610161538-8.png]] 119 119 120 120 121 -== 1.5 Install LDDS20 == 122 122 161 +**Add APP KEY and DEV EUI** 123 123 124 - (% style="color:blue" %)**Step 1**(%%): Choose theinstallationpoint.163 +[[image:image-20220610161538-9.png]] 125 125 126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 127 127 128 -[[image:image-20220615091045-3.png]] 129 129 167 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 130 130 131 131 132 - (% style="color:blue"%)**Step2**(%%):Polish the installationpoint.170 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 133 133 134 - For Metal Surface with paint, it is important to polish thesurface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish themetal level to make it shine & smooth.172 +[[image:image-20220610161724-10.png]] 135 135 136 -[[image:image-20220615092010-11.png]] 137 137 175 +((( 176 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 177 +))) 138 138 139 - No polish needed if the container is shinemetal surfacewithout paint or non-metal container.179 +[[image:1654849068701-275.png]] 140 140 141 -[[image:image-20220615092044-12.png]] 142 142 143 143 183 +== 2.3 Uplink Payload == 144 144 145 -(% style="color:blue" %)**Step3: **(%%)Test the installation point. 185 +((( 186 +LDDS75 will uplink payload via LoRaWAN with below payload format: 146 146 147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 188 +Uplink payload includes in total 4 bytes. 189 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 190 +))) 148 148 192 +((( 193 + 194 +))) 149 149 150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 197 +|=(% style="width: 62.5px;" %)((( 198 +**Size (bytes)** 199 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 200 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 201 +[[Distance>>||anchor="H2.3.3A0Distance"]] 151 151 152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]] 203 +(unit: mm) 204 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 205 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 206 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 153 153 208 +[[image:1654850511545-399.png]] 154 154 155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 156 156 157 157 158 - (%style="color:red"%)**LEDStatus:**212 +=== 2.3.1 Battery Info === 159 159 160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 161 161 162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 215 +Check the battery voltage for LDDS75. 164 164 165 - LDDS20will enter into low power mode at 30seconds after system reset or power on,BlueLEDwill be off after that.217 +Ex1: 0x0B45 = 2885mV 166 166 219 +Ex2: 0x0B49 = 2889mV 167 167 168 -(% style="color:red" %)**Note 2:** 169 169 170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 171 171 223 +=== 2.3.2 Distance === 172 172 225 +Get the distance. Flat object range 280mm - 7500mm. 173 173 174 -(% style="color: blue" %)**Step4:**(%%)InstalluseEpoxy ab glue.227 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 175 175 176 -Prepare Eproxy AB glue. 177 177 178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 230 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 231 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 179 179 180 -Reset LDDS20 and see if the BLUE LED is slowly blinking. 181 181 182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 183 183 235 +=== 2.3.3 Interrupt Pin === 184 184 185 - (%style="color:red"%)**Note1:**237 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 186 186 187 -E proxy AB glue needs 3~~ 5 minutes to stable attached. we can use other gluematerialto keep it in the position.239 +**Example:** 188 188 241 +0x00: Normal uplink packet. 189 189 190 - (%style="color:red" %)**Note2:**243 +0x01: Interrupt Uplink Packet. 191 191 192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 193 193 246 +=== 2.3.4 DS18B20 Temperature sensor === 194 194 248 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 195 195 196 - == 1.6 Applications ==250 +**Example**: 197 197 198 -* Smart liquid control solution. 199 -* Smart liquefied gas solution. 252 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 200 200 201 -== 1 .7Precautions==254 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 202 202 203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 256 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 206 206 207 -== 1.8 Pin mapping and power on == 208 208 209 209 210 - [[image:1655257026882-201.png]]260 +=== 2.3.5 Sensor Flag === 211 211 262 +0x01: Detect Ultrasonic Sensor 212 212 264 +0x00: No Ultrasonic Sensor 213 213 214 -= 2. Configure LDDS20 to connect to LoRaWAN network = 215 215 267 +=== 268 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 216 216 217 - ==2.1Howits==270 +While using TTN network, you can add the payload format to decode the payload. 218 218 219 -((( 220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 221 -))) 222 222 223 -((( 224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20. 225 -))) 273 +[[image:1654850829385-439.png]] 226 226 275 +The payload decoder function for TTN V3 is here: 227 227 277 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 228 228 229 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 230 230 231 -((( 232 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 233 -))) 234 234 235 -((( 236 -[[image:1655257698953-697.png]] 237 -))) 281 +== 2.4 Uplink Interval == 238 238 283 +The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 284 + 285 + 286 + 287 +== 2.5 Show Data in DataCake IoT Server == 288 + 239 239 ((( 240 -The LG308is alreadyset toconnectedto[[TTN network>>url:https://console.cloud.thethings.network/]],sowhatweneedtonowisconfigure theTTNserver.290 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 241 241 ))) 242 242 243 243 ((( 244 244 295 +))) 245 245 246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 297 +((( 298 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 247 247 ))) 248 248 249 249 ((( 250 - EachLDDS20isshippedwith astickerwiththedefaultdevicekeys,usercan find thisstickerbox.itlookslikebelow.302 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 251 251 ))) 252 252 253 -[[image:image-20220607170145-1.jpeg]] 254 254 306 +[[image:1654592790040-760.png]] 255 255 256 -((( 257 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 258 -))) 259 259 309 +[[image:1654592800389-571.png]] 310 + 311 + 312 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 313 + 314 +(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.** 315 + 316 +[[image:1654832691989-514.png]] 317 + 318 + 319 +[[image:1654592833877-762.png]] 320 + 321 + 322 +[[image:1654832740634-933.png]] 323 + 324 + 325 + 260 260 ((( 261 - Enterthesekeys intheLoRaWANServerportal. Belowis TTN V3 screen shot:327 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode** 262 262 ))) 263 263 264 264 ((( 265 265 266 - 267 -**Add APP EUI in the application** 268 268 ))) 269 269 270 -[[image: image-20220610161353-4.png]]334 +[[image:1654833065139-942.png]] 271 271 272 -[[image:image-20220610161353-5.png]] 273 273 274 -[[image:image-20220610161353-6.png]] 275 275 338 +[[image:1654833092678-390.png]] 276 276 277 -[[image:image-20220610161353-7.png]] 278 278 279 279 342 +After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 280 280 281 - You can also choose to create the devicemanually.344 +[[image:1654833163048-332.png]] 282 282 283 - [[image:image-20220610161538-8.png]] 284 284 285 285 348 +== 2.6 Frequency Plans == 286 286 287 -**Add APP KEY and DEV EUI** 350 +((( 351 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 352 +))) 288 288 289 -[[image:image-20220610161538-9.png]] 290 290 355 +=== 2.6.1 EU863-870 (EU868) === 291 291 357 +((( 358 +(% style="color:blue" %)**Uplink:** 359 +))) 292 292 293 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 361 +((( 362 +868.1 - SF7BW125 to SF12BW125 363 +))) 294 294 365 +((( 366 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 367 +))) 295 295 296 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 369 +((( 370 +868.5 - SF7BW125 to SF12BW125 371 +))) 297 297 298 -[[image:image-20220615095102-14.png]] 373 +((( 374 +867.1 - SF7BW125 to SF12BW125 375 +))) 299 299 377 +((( 378 +867.3 - SF7BW125 to SF12BW125 379 +))) 300 300 381 +((( 382 +867.5 - SF7BW125 to SF12BW125 383 +))) 301 301 302 302 ((( 303 - (%style="color:blue"%)**Step 3**(%%)**:** The LDDS20will autojoin to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.386 +867.7 - SF7BW125 to SF12BW125 304 304 ))) 305 305 306 -[[image:1654849068701-275.png]] 389 +((( 390 +867.9 - SF7BW125 to SF12BW125 391 +))) 307 307 393 +((( 394 +868.8 - FSK 395 +))) 308 308 397 +((( 398 + 399 +))) 309 309 310 -== 2.3 Uplink Payload == 401 +((( 402 +(% style="color:blue" %)**Downlink:** 403 +))) 311 311 312 312 ((( 406 +Uplink channels 1-9 (RX1) 407 +))) 408 + 313 313 ((( 314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 410 +869.525 - SF9BW125 (RX2 downlink only) 411 +))) 315 315 316 -Uplink payload includes in total 8 bytes. 317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload). 413 + 414 + 415 +=== 2.6.2 US902-928(US915) === 416 + 417 +((( 418 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 318 318 ))) 420 + 421 +((( 422 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 319 319 ))) 320 320 321 321 ((( 322 - 426 +After Join success, the end node will switch to the correct sub band by: 323 323 ))) 324 324 325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 326 -|=(% style="width: 62.5px;" %)((( 327 -**Size (bytes)** 328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 330 -[[Distance>>||anchor="H2.3.2A0Distance"]] 429 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 430 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 331 331 332 -(unit: mm) 333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 432 +=== 2.6.3 CN470-510 (CN470) === 336 336 337 -[[image:1654850511545-399.png]] 434 +((( 435 +Used in China, Default use CHE=1 436 +))) 338 338 438 +((( 439 +(% style="color:blue" %)**Uplink:** 440 +))) 339 339 442 +((( 443 +486.3 - SF7BW125 to SF12BW125 444 +))) 340 340 341 -=== 2.3.1 Battery Info === 446 +((( 447 +486.5 - SF7BW125 to SF12BW125 448 +))) 342 342 450 +((( 451 +486.7 - SF7BW125 to SF12BW125 452 +))) 343 343 344 -Check the battery voltage for LDDS20. 454 +((( 455 +486.9 - SF7BW125 to SF12BW125 456 +))) 345 345 346 -Ex1: 0x0B45 = 2885mV 458 +((( 459 +487.1 - SF7BW125 to SF12BW125 460 +))) 347 347 348 -Ex2: 0x0B49 = 2889mV 462 +((( 463 +487.3 - SF7BW125 to SF12BW125 464 +))) 349 349 466 +((( 467 +487.5 - SF7BW125 to SF12BW125 468 +))) 350 350 470 +((( 471 +487.7 - SF7BW125 to SF12BW125 472 +))) 351 351 352 -=== 2.3.2 Distance === 474 +((( 475 + 476 +))) 353 353 354 354 ((( 355 - Getthe distance. Flatobjectrange 20mm - 2000mm.479 +(% style="color:blue" %)**Downlink:** 356 356 ))) 357 357 358 358 ((( 359 - For example, if the data you get from the register is __0x060x05__,the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H)=1541(D) = 1541 mm.**483 +506.7 - SF7BW125 to SF12BW125 360 360 ))) 361 361 362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 486 +((( 487 +506.9 - SF7BW125 to SF12BW125 488 +))) 364 364 365 -=== 2.3.3 Interrupt Pin === 490 +((( 491 +507.1 - SF7BW125 to SF12BW125 492 +))) 366 366 367 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 494 +((( 495 +507.3 - SF7BW125 to SF12BW125 496 +))) 368 368 369 -**Example:** 498 +((( 499 +507.5 - SF7BW125 to SF12BW125 500 +))) 370 370 371 -0x00: Normal uplink packet. 502 +((( 503 +507.7 - SF7BW125 to SF12BW125 504 +))) 372 372 373 -0x01: Interrupt Uplink Packet. 506 +((( 507 +507.9 - SF7BW125 to SF12BW125 508 +))) 374 374 510 +((( 511 +508.1 - SF7BW125 to SF12BW125 512 +))) 375 375 514 +((( 515 +505.3 - SF12BW125 (RX2 downlink only) 516 +))) 376 376 377 -=== 2.3.4 DS18B20 Temperature sensor === 378 378 379 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 380 380 381 -**Example**: 382 382 383 - Ifpayloadis: 0105H:(0105& FC00 == 0),temp=0105H /10=26.1 degree521 +=== 2.6.4 AU915-928(AU915) === 384 384 385 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 523 +((( 524 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 525 +))) 386 386 387 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 527 +((( 528 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 529 +))) 388 388 531 +((( 532 + 533 +))) 389 389 535 +((( 536 +After Join success, the end node will switch to the correct sub band by: 537 +))) 390 390 391 -=== 2.3.5 Sensor Flag === 539 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 540 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 392 392 542 +=== 2.6.5 AS920-923 & AS923-925 (AS923) === 543 + 393 393 ((( 394 - 0x01: DetectUltrasonicSensor545 +(% style="color:blue" %)**Default Uplink channel:** 395 395 ))) 396 396 397 397 ((( 398 - 0x00:NoUltrasonicSensor549 +923.2 - SF7BW125 to SF10BW125 399 399 ))) 400 400 552 +((( 553 +923.4 - SF7BW125 to SF10BW125 554 +))) 401 401 556 +((( 557 + 558 +))) 402 402 403 -=== 2.3.6 Decode payload in The Things Network === 560 +((( 561 +(% style="color:blue" %)**Additional Uplink Channel**: 562 +))) 404 404 405 -While using TTN network, you can add the payload format to decode the payload. 564 +((( 565 +(OTAA mode, channel added by JoinAccept message) 566 +))) 406 406 568 +((( 569 + 570 +))) 407 407 408 -[[image:1654850829385-439.png]] 572 +((( 573 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 574 +))) 409 409 410 -The payload decoder function for TTN V3 is here: 576 +((( 577 +922.2 - SF7BW125 to SF10BW125 578 +))) 411 411 412 412 ((( 413 - LDDS20TTNV3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]581 +922.4 - SF7BW125 to SF10BW125 414 414 ))) 415 415 584 +((( 585 +922.6 - SF7BW125 to SF10BW125 586 +))) 416 416 588 +((( 589 +922.8 - SF7BW125 to SF10BW125 590 +))) 417 417 418 -== 2.4 Downlink Payload == 592 +((( 593 +923.0 - SF7BW125 to SF10BW125 594 +))) 419 419 420 -By default, LDDS20 prints the downlink payload to console port. 596 +((( 597 +922.0 - SF7BW125 to SF10BW125 598 +))) 421 421 422 -[[image:image-20220615100930-15.png]] 600 +((( 601 + 602 +))) 423 423 604 +((( 605 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 606 +))) 424 424 425 -**Examples:** 608 +((( 609 +923.6 - SF7BW125 to SF10BW125 610 +))) 426 426 612 +((( 613 +923.8 - SF7BW125 to SF10BW125 614 +))) 427 427 428 -* (% style="color:blue" %)**Set TDC** 616 +((( 617 +924.0 - SF7BW125 to SF10BW125 618 +))) 429 429 430 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 620 +((( 621 +924.2 - SF7BW125 to SF10BW125 622 +))) 431 431 432 -Payload: 01 00 00 1E TDC=30S 624 +((( 625 +924.4 - SF7BW125 to SF10BW125 626 +))) 433 433 434 -Payload: 01 00 00 3C TDC=60S 628 +((( 629 +924.6 - SF7BW125 to SF10BW125 630 +))) 435 435 632 +((( 633 + 634 +))) 436 436 437 -* (% style="color:blue" %)**Reset** 636 +((( 637 +(% style="color:blue" %)**Downlink:** 638 +))) 438 438 439 -If payload = 0x04FF, it will reset the LDDS20 640 +((( 641 +Uplink channels 1-8 (RX1) 642 +))) 440 440 644 +((( 645 +923.2 - SF10BW125 (RX2) 646 +))) 441 441 442 -* (% style="color:blue" %)**CFM** 443 443 444 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 445 445 446 446 651 +=== 2.6.6 KR920-923 (KR920) === 447 447 448 -== 2.5 Show Data in DataCake IoT Server == 653 +((( 654 +(% style="color:blue" %)**Default channel:** 655 +))) 449 449 450 450 ((( 451 - [[DATACAKE>>url:https://datacake.co/]]providesahuman friendly interface toshow the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE.Below are the steps:658 +922.1 - SF7BW125 to SF12BW125 452 452 ))) 453 453 454 454 ((( 455 - 662 +922.3 - SF7BW125 to SF12BW125 456 456 ))) 457 457 458 458 ((( 459 - (%style="color:blue"%)**Step1**(%%)**:Be surethat yourdevice is programmed and properly connected to the network at this time.**666 +922.5 - SF7BW125 to SF12BW125 460 460 ))) 461 461 462 462 ((( 463 - (%style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**670 + 464 464 ))) 465 465 673 +((( 674 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 675 +))) 466 466 467 -[[image:1654592790040-760.png]] 677 +((( 678 +922.1 - SF7BW125 to SF12BW125 679 +))) 468 468 681 +((( 682 +922.3 - SF7BW125 to SF12BW125 683 +))) 469 469 470 -[[image:1654592800389-571.png]] 685 +((( 686 +922.5 - SF7BW125 to SF12BW125 687 +))) 471 471 689 +((( 690 +922.7 - SF7BW125 to SF12BW125 691 +))) 472 472 473 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 693 +((( 694 +922.9 - SF7BW125 to SF12BW125 695 +))) 474 474 475 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 697 +((( 698 +923.1 - SF7BW125 to SF12BW125 699 +))) 476 476 477 -[[image:1654851029373-510.png]] 701 +((( 702 +923.3 - SF7BW125 to SF12BW125 703 +))) 478 478 705 +((( 706 + 707 +))) 479 479 480 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 709 +((( 710 +(% style="color:blue" %)**Downlink:** 711 +))) 481 481 482 -[[image:image-20220610165129-11.png||height="595" width="1088"]] 713 +((( 714 +Uplink channels 1-7(RX1) 715 +))) 483 483 717 +((( 718 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 719 +))) 484 484 485 485 486 -== 2.6 LED Indicator == 487 487 488 -The LDDS20 has an internal LED which is to show the status of different state. 489 489 724 +=== 2.6.7 IN865-867 (IN865) === 490 490 491 -* Blink once when device power on. 492 -* The device detects the sensor and flashes 5 times. 493 -* Solid ON for 5 seconds once device successful Join the network. 494 -* Blink once when device transmit a packet. 726 +((( 727 +(% style="color:blue" %)**Uplink:** 728 +))) 495 495 730 +((( 731 +865.0625 - SF7BW125 to SF12BW125 732 +))) 496 496 734 +((( 735 +865.4025 - SF7BW125 to SF12BW125 736 +))) 497 497 498 -== 2.8 Firmware Change Log == 738 +((( 739 +865.9850 - SF7BW125 to SF12BW125 740 +))) 499 499 742 +((( 743 + 744 +))) 500 500 501 501 ((( 502 - **Firmwaredownload link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]747 +(% style="color:blue" %)**Downlink:** 503 503 ))) 504 504 505 505 ((( 506 - 751 +Uplink channels 1-3 (RX1) 507 507 ))) 508 508 509 509 ((( 510 - **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.FirmwareUpgradeInstruction forSTM32base products.WebHome]]755 +866.550 - SF10BW125 (RX2) 511 511 ))) 512 512 513 513 514 514 515 -== 2.9 Mechanical == 516 516 761 +== 2.7 LED Indicator == 517 517 518 - [[image:image-20220610172003-1.png]]763 +The LLDS12 has an internal LED which is to show the status of different state. 519 519 765 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected. 766 +* Blink once when device transmit a packet. 520 520 521 - [[image:image-20220610172003-2.png]]768 +== 2.8 Firmware Change Log == 522 522 523 523 771 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]] 524 524 525 -== 2.10 Battery Analysis == 526 526 527 - ===2.10.1BatteryType===774 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 528 528 529 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 530 530 531 531 532 - Thebatteryrelateddocumentsas below:778 += 3. LiDAR ToF Measurement = 533 533 534 -* ((( 535 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 780 +== 3.1 Principle of Distance Measurement == 781 + 782 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 783 + 784 +[[image:1654831757579-263.png]] 785 + 786 + 787 + 788 +== 3.2 Distance Measurement Characteristics == 789 + 790 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 791 + 792 +[[image:1654831774373-275.png]] 793 + 794 + 795 +((( 796 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 536 536 ))) 537 -* ((( 538 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 798 + 799 +((( 800 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 539 539 ))) 540 -* ((( 541 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 802 + 803 +((( 804 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 542 542 ))) 543 543 544 - [[image:image-20220610172400-3.png]] 545 545 808 +((( 809 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 810 +))) 546 546 547 547 548 - ===2.10.2 Replace the battery ===813 +[[image:1654831797521-720.png]] 549 549 550 -((( 551 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 552 -))) 553 553 554 554 ((( 555 - 817 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 556 556 ))) 557 557 820 +[[image:1654831810009-716.png]] 821 + 822 + 558 558 ((( 559 - Thedefaultbatterypack of LDDS75 includesaER18505 plus supercapacitor.Ifusercan'tfindthispacklocally,they canfindER18505 or equivalence,whichwill alsowork inmostcase. TheSPCcanenlarge thebatterylifefor highfrequencyuse(updateperiod below5minutes)824 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 560 560 ))) 561 561 562 562 563 563 564 -= 3. ConfigureLDDS75 via AT Commandor LoRaWANDownlink=829 +== 3.3 Notice of usage: == 565 565 831 +Possible invalid /wrong reading for LiDAR ToF tech: 832 + 833 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 834 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong. 835 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 836 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window. 837 + 838 += 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 839 + 566 566 ((( 567 567 ((( 568 -Use can configure LD DS75via AT Command or LoRaWAN Downlink.842 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink. 569 569 ))) 570 570 ))) 571 571 572 572 * ((( 573 573 ((( 574 -AT Command Connection: See [[FAQ>>||anchor="H 4.A0FAQ"]].848 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]]. 575 575 ))) 576 576 ))) 577 577 * ((( ... ... @@ -586,7 +586,7 @@ 586 586 ))) 587 587 588 588 ((( 589 -There are two kinds of commands to configure LD DS75, they are:863 +There are two kinds of commands to configure LLDS12, they are: 590 590 ))) 591 591 ))) 592 592 ... ... @@ -627,155 +627,351 @@ 627 627 628 628 * ((( 629 629 ((( 630 -(% style="color:#4f81bd" %)** Commands special design for LD DS75**904 +(% style="color:#4f81bd" %)** Commands special design for LLDS12** 631 631 ))) 632 632 ))) 633 633 634 634 ((( 635 635 ((( 636 -These commands only valid for LD DS75, as below:910 +These commands only valid for LLDS12, as below: 637 637 ))) 638 638 ))) 639 639 640 640 641 641 642 -== 3.1AccessATCommands ==916 +== 4.1 Set Transmit Interval Time == 643 643 644 - LDDS75 supportsATCommand setin the stock firmware.You canuse a USB toTTL adapterto connect to LDDS75 for using ATcommand, asbelow.918 +Feature: Change LoRaWAN End Node Transmit Interval. 645 645 646 - [[image:image-20220610172924-4.png||height="483"width="988"]]920 +(% style="color:#037691" %)**AT Command: AT+TDC** 647 647 922 +[[image:image-20220607171554-8.png]] 648 648 649 -Or if you have below board, use below connection: 650 650 925 +((( 926 +(% style="color:#037691" %)**Downlink Command: 0x01** 927 +))) 651 651 652 -[[image:image-20220610172924-5.png]] 929 +((( 930 +Format: Command Code (0x01) followed by 3 bytes time value. 931 +))) 653 653 933 +((( 934 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 935 +))) 654 654 937 +* ((( 938 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 939 +))) 940 +* ((( 941 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 942 +))) 943 + 944 +== 4.2 Set Interrupt Mode == 945 + 946 +Feature, Set Interrupt mode for GPIO_EXIT. 947 + 948 +(% style="color:#037691" %)**AT Command: AT+INTMOD** 949 + 950 +[[image:image-20220610105806-2.png]] 951 + 952 + 655 655 ((( 656 - In the PC, you need to set the serial baud rate to(% style="color:green" %)**9600**(%%) toaccess the serial console for LDDS75. LDDS75 will output system infoonce power onas below:954 +(% style="color:#037691" %)**Downlink Command: 0x06** 657 657 ))) 658 658 957 +((( 958 +Format: Command Code (0x06) followed by 3 bytes. 959 +))) 659 659 660 - [[image:image-20220610172924-6.png||height="601" width="860"]] 961 +((( 962 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 963 +))) 661 661 965 +* ((( 966 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 967 +))) 968 +* ((( 969 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 970 +))) 662 662 972 +== 4.3 Get Firmware Version Info == 663 663 664 - == 3.2 SetTransmitIntervalTime==974 +Feature: use downlink to get firmware version. 665 665 666 - Feature:ChangeLoRaWAN EndNode Transmit Interval.976 +(% style="color:#037691" %)**Downlink Command: 0x26** 667 667 668 - (% style="color:#037691" %)**AT Command: AT+TDC**978 +[[image:image-20220607171917-10.png]] 669 669 670 -[[image:image-20220610173409-7.png]] 980 +* Reply to the confirmation package: 26 01 981 +* Reply to non-confirmed packet: 26 00 671 671 983 +Device will send an uplink after got this downlink command. With below payload: 672 672 985 +Configures info payload: 986 + 987 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 988 +|=((( 989 +**Size(bytes)** 990 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1** 991 +|**Value**|Software Type|((( 992 +Frequency 993 + 994 +Band 995 +)))|Sub-band|((( 996 +Firmware 997 + 998 +Version 999 +)))|Sensor Type|Reserve|((( 1000 +[[Message Type>>||anchor="H2.3.7A0MessageType"]] 1001 +Always 0x02 1002 +))) 1003 + 1004 +**Software Type**: Always 0x03 for LLDS12 1005 + 1006 + 1007 +**Frequency Band**: 1008 + 1009 +*0x01: EU868 1010 + 1011 +*0x02: US915 1012 + 1013 +*0x03: IN865 1014 + 1015 +*0x04: AU915 1016 + 1017 +*0x05: KZ865 1018 + 1019 +*0x06: RU864 1020 + 1021 +*0x07: AS923 1022 + 1023 +*0x08: AS923-1 1024 + 1025 +*0x09: AS923-2 1026 + 1027 +*0xa0: AS923-3 1028 + 1029 + 1030 +**Sub-Band**: value 0x00 ~~ 0x08 1031 + 1032 + 1033 +**Firmware Version**: 0x0100, Means: v1.0.0 version 1034 + 1035 + 1036 +**Sensor Type**: 1037 + 1038 +0x01: LSE01 1039 + 1040 +0x02: LDDS75 1041 + 1042 +0x03: LDDS20 1043 + 1044 +0x04: LLMS01 1045 + 1046 +0x05: LSPH01 1047 + 1048 +0x06: LSNPK01 1049 + 1050 +0x07: LLDS12 1051 + 1052 + 1053 + 1054 += 5. Battery & How to replace = 1055 + 1056 +== 5.1 Battery Type == 1057 + 673 673 ((( 674 - (%style="color:#037691"%)**DownlinkCommand:0x01**1059 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 675 675 ))) 676 676 677 677 ((( 1063 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 1064 +))) 1065 + 1066 +[[image:1654593587246-335.png]] 1067 + 1068 + 1069 +Minimum Working Voltage for the LLDS12: 1070 + 1071 +LLDS12: 2.45v ~~ 3.6v 1072 + 1073 + 1074 + 1075 +== 5.2 Replace Battery == 1076 + 678 678 ((( 679 -Format: Command Code (0x01) followed by 3 bytes time value. 1078 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery. 1079 +))) 680 680 681 681 ((( 682 - If the downlink payload=0100003C,itmeanssettheEND Node’sTransmitIntervalto 0x00003C=60(S), whiletype codeis01.1082 +And make sure the positive and negative pins match. 683 683 ))) 684 684 685 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 686 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1085 + 1086 + 1087 +== 5.3 Power Consumption Analyze == 1088 + 1089 +((( 1090 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 687 687 ))) 1092 + 1093 +((( 1094 +Instruction to use as below: 688 688 ))) 689 689 690 690 1098 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 691 691 1100 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 692 692 693 693 694 - ==3.3SetInterruptMode==1103 +**Step 2**: Open it and choose 695 695 696 -Feature, Set Interrupt mode for GPIO_EXIT. 1105 +* Product Model 1106 +* Uplink Interval 1107 +* Working Mode 697 697 698 - (%style="color:#037691"%)**DownlinkCommand:AT+INTMOD**1109 +And the Life expectation in difference case will be shown on the right. 699 699 700 -[[image: image-20220610174917-9.png]]1111 +[[image:1654593605679-189.png]] 701 701 702 702 703 - (%style="color:#037691"%)**DownlinkCommand:0x06**1114 +The battery related documents as below: 704 704 705 -Format: Command Code (0x06) followed by 3 bytes. 1116 +* ((( 1117 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 1118 +))) 1119 +* ((( 1120 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 1121 +))) 1122 +* ((( 1123 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 1124 +))) 706 706 1126 +[[image:image-20220607172042-11.png]] 1127 + 1128 + 1129 + 1130 +=== 5.3.1 Battery Note === 1131 + 707 707 ((( 708 -This means that theinterruptmodeofthe end nodeissetto0x000003=3(risingedgetrigger),andthe typecodeis06.1133 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 709 709 ))) 710 710 711 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 712 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 713 713 714 -= 4. FAQ = 715 715 716 -== 4.1Whatisthefrequencyplan for LDDS75?==1138 +=== 5.3.2 Replace the battery === 717 717 718 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 1140 +((( 1141 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 1142 +))) 719 719 1144 +((( 1145 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 1146 +))) 720 720 721 721 722 -== 4.2 How to change the LoRa Frequency Bands/Region == 723 723 724 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]]. 725 -When downloading the images, choose the required image file for download. 1150 += 6. Use AT Command = 726 726 1152 +== 6.1 Access AT Commands == 727 727 1154 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below. 728 728 729 - == 4.3 Can I useLDDS75incondensation environment? ==1156 +[[image:1654593668970-604.png]] 730 730 731 - LDDS75 is not suitable to be used in condensation environment.Condensation on theLDDS75 probe will affectthe reading and always got 0.1158 +**Connection:** 732 732 1160 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND** 733 733 1162 +(% style="background-color:yellow" %)** USB TTL TXD <~-~-~-~-> UART_RXD** 734 734 735 - =5. Trouble Shooting=1164 +(% style="background-color:yellow" %)** USB TTL RXD <~-~-~-~-> UART_TXD** 736 736 737 -== 5.1 Why I can’t join TTN V3 in US915 / AU915 bands? == 738 738 739 -It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 1167 +((( 1168 +((( 1169 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12. 1170 +))) 740 740 1172 +((( 1173 +LLDS12 will output system info once power on as below: 1174 +))) 1175 +))) 741 741 742 -== 5.2 AT Command input doesn't work == 743 743 1178 + [[image:1654593712276-618.png]] 1179 + 1180 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]]. 1181 + 1182 + 1183 += 7. FAQ = 1184 + 1185 +== 7.1 How to change the LoRa Frequency Bands/Region == 1186 + 1187 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]]. 1188 +When downloading the images, choose the required image file for download. 1189 + 1190 + 1191 += 8. Trouble Shooting = 1192 + 1193 +== 8.1 AT Commands input doesn’t work == 1194 + 1195 + 1196 +((( 744 744 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1198 +))) 745 745 1200 + 1201 +== 8.2 Significant error between the output distant value of LiDAR and actual distance == 1202 + 1203 + 746 746 ((( 1205 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 1206 +))) 1207 + 1208 +((( 1209 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 1210 +))) 1211 + 1212 +((( 747 747 748 748 ))) 749 749 1216 +((( 1217 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 1218 +))) 750 750 751 -= 6. Order Info = 1220 +((( 1221 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 1222 +))) 752 752 753 753 754 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY** 755 755 1226 += 9. Order Info = 756 756 757 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band 758 758 759 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band 760 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band 761 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band 762 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band 763 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band 764 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band 765 -* (% style="color:red" %)**IN865 **(%%)**:** LoRaWAN IN865 band 766 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band 1229 +Part Number: (% style="color:blue" %)**LLDS12-XX** 767 767 768 -(% style="color:blue" %)**YY**(%%): Battery Option 769 769 770 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery 771 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery 1232 +(% style="color:blue" %)**XX**(%%): The default frequency band 772 772 773 -= 7. Packing Info = 1234 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1235 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1236 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1237 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1238 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1239 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1240 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1241 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 774 774 1243 += 10. Packing Info = 775 775 1245 + 776 776 **Package Includes**: 777 777 778 -* LD DS75LoRaWAN DistanceDetectionSensor x 11248 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1 779 779 780 780 **Dimension and weight**: 781 781 ... ... @@ -784,7 +784,7 @@ 784 784 * Package Size / pcs : cm 785 785 * Weight / pcs : g 786 786 787 -= 8. Support =1257 += 11. Support = 788 788 789 789 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 790 790 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
- 1654852175653-550.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -106.2 KB - Content
- 1654852253176-749.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -106.6 KB - Content
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -101.7 KB - Content
- image-20220610172003-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -5.9 KB - Content
- image-20220610172003-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -18.6 KB - Content
- image-20220610172400-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220610172924-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20220610172924-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -901.4 KB - Content
- image-20220610172924-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.6 KB - Content
- image-20220610173409-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.8 KB - Content
- image-20220610174836-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -34.3 KB - Content
- image-20220610174917-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -34.3 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.5 KB - Content