Last modified by Mengting Qiu on 2025/08/06 17:02

From version 173.5
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version
To version 150.35
edited by Xiaoling
on 2022/06/11 09:11
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,11 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
6 +{{toc/}}
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
... ... @@ -11,11 +11,9 @@
11 11  
12 12  
13 13  
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
17 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
... ... @@ -22,8 +22,7 @@
22 22  
23 23  (((
24 24  (((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
24 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
27 27  )))
28 28  
29 29  (((
... ... @@ -31,7 +31,7 @@
31 31  )))
32 32  
33 33  (((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
32 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
35 35  )))
36 36  
37 37  (((
... ... @@ -39,7 +39,7 @@
39 39  )))
40 40  
41 41  (((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
40 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
43 43  )))
44 44  
45 45  (((
... ... @@ -47,7 +47,7 @@
47 47  )))
48 48  
49 49  (((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
48 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
51 51  )))
52 52  
53 53  (((
... ... @@ -55,7 +55,7 @@
55 55  )))
56 56  
57 57  (((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
56 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
59 59  )))
60 60  
61 61  (((
... ... @@ -63,24 +63,13 @@
63 63  )))
64 64  
65 65  (((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 -)))
68 -
69 -(((
70 -
71 -)))
72 -)))
73 -
74 -(((
75 -(((
76 76  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 77  )))
78 78  )))
79 79  )))
80 -)))
81 81  
82 82  
83 -[[image:1655255122126-327.png]]
70 +[[image:1654847051249-359.png]]
84 84  
85 85  
86 86  
... ... @@ -88,10 +88,9 @@
88 88  
89 89  * LoRaWAN 1.0.3 Class A
90 90  * Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
78 +* Distance Detection by Ultrasonic technology
79 +* Flat object range 280mm - 7500mm
80 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
95 95  * Cable Length : 25cm
96 96  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 97  * AT Commands to change parameters
... ... @@ -98,418 +98,767 @@
98 98  * Uplink on periodically
99 99  * Downlink to change configure
100 100  * IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
87 +* 4000mAh or 8500mAh Battery for long term use
102 102  
103 -== 1.3  Suitable Container & Liquid ==
89 +== 1.3  Specification ==
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
91 +=== 1.3.1  Rated environmental conditions ===
111 111  
112 -== 1.4  Mechanical ==
93 +[[image:image-20220610154839-1.png]]
113 113  
114 -[[image:image-20220615090910-1.png]]
95 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
115 115  
97 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
116 116  
117 -[[image:image-20220615090910-2.png]]
118 118  
119 119  
101 +=== 1.3.2  Effective measurement range Reference beam pattern ===
120 120  
121 -== 1.5  Install LDDS20 ==
103 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
122 122  
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
107 +[[image:1654852253176-749.png]]
127 127  
128 -[[image:image-20220615091045-3.png]]
129 129  
130 130  
111 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
114 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
135 135  
136 -[[image:image-20220615092010-11.png]]
137 137  
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
118 +== 1.5 ​ Applications ==
140 140  
141 -[[image:image-20220615092044-12.png]]
120 +* Horizontal distance measurement
121 +* Liquid level measurement
122 +* Parking management system
123 +* Object proximity and presence detection
124 +* Intelligent trash can management system
125 +* Robot obstacle avoidance
126 +* Automatic control
127 +* Sewer
128 +* Bottom water level monitoring
142 142  
130 +== 1.6  Pin mapping and power on ==
143 143  
144 144  
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
133 +[[image:1654847583902-256.png]]
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
148 148  
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
137 += 2.  Configure LDDS75 to connect to LoRaWAN network =
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
139 +== 2.1  How it works ==
153 153  
141 +(((
142 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
143 +)))
154 154  
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
145 +(((
146 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
147 +)))
156 156  
157 157  
158 -(% style="color:red" %)**LED Status:**
159 159  
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
161 161  
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
153 +(((
154 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
155 +)))
164 164  
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
157 +(((
158 +[[image:1654848616367-242.png]]
159 +)))
166 166  
161 +(((
162 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 +)))
167 167  
168 -(% style="color:red" %)**Note 2:**
165 +(((
166 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
167 +)))
169 169  
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
169 +(((
170 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
171 +)))
171 171  
173 +[[image:image-20220607170145-1.jpeg]]
172 172  
173 173  
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
176 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
175 175  
176 -Prepare Eproxy AB glue.
178 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
177 177  
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +**Add APP EUI in the application**
179 179  
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
182 +[[image:image-20220610161353-4.png]]
181 181  
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
184 +[[image:image-20220610161353-5.png]]
183 183  
186 +[[image:image-20220610161353-6.png]]
184 184  
185 -(% style="color:red" %)**Note 1:**
186 186  
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
189 +[[image:image-20220610161353-7.png]]
188 188  
189 189  
190 -(% style="color:red" %)**Note 2:**
192 +You can also choose to create the device manually.
191 191  
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
194 + [[image:image-20220610161538-8.png]]
193 193  
194 194  
195 195  
196 -== 1.6 Applications ==
198 +**Add APP KEY and DEV EUI**
197 197  
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
200 +[[image:image-20220610161538-9.png]]
200 200  
201 -== 1.7  Precautions ==
202 202  
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 206  
207 -== 1.8  Pin mapping and power on ==
204 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
208 208  
209 209  
210 -[[image:1655257026882-201.png]]
207 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
211 211  
209 +[[image:image-20220610161724-10.png]]
212 212  
213 213  
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
212 +(((
213 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
214 +)))
215 215  
216 +[[image:1654849068701-275.png]]
216 216  
217 -== 2.1  How it works ==
218 218  
219 +
220 +== 2.3  ​Uplink Payload ==
221 +
219 219  (((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
223 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
224 +
225 +Uplink payload includes in total 4 bytes.
226 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
221 221  )))
222 222  
223 223  (((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
230 +
225 225  )))
226 226  
233 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
234 +|=(% style="width: 62.5px;" %)(((
235 +**Size (bytes)**
236 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
237 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
238 +[[Distance>>||anchor="H2.3.2A0Distance"]]
227 227  
240 +(unit: mm)
241 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
242 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
243 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
228 228  
229 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
245 +[[image:1654850511545-399.png]]
230 230  
247 +
248 +
249 +=== 2.3.1  Battery Info ===
250 +
251 +
252 +Check the battery voltage for LDDS75.
253 +
254 +Ex1: 0x0B45 = 2885mV
255 +
256 +Ex2: 0x0B49 = 2889mV
257 +
258 +
259 +
260 +=== 2.3.2  Distance ===
261 +
262 +Get the distance. Flat object range 280mm - 7500mm.
263 +
264 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
265 +
266 +
267 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
268 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
269 +
270 +
271 +=== 2.3.3  Interrupt Pin ===
272 +
273 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
274 +
275 +**Example:**
276 +
277 +0x00: Normal uplink packet.
278 +
279 +0x01: Interrupt Uplink Packet.
280 +
281 +
282 +
283 +=== 2.3.4  DS18B20 Temperature sensor ===
284 +
285 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
286 +
287 +**Example**:
288 +
289 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
290 +
291 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
292 +
293 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
294 +
295 +
296 +
297 +=== 2.3.5  Sensor Flag ===
298 +
299 +0x01: Detect Ultrasonic Sensor
300 +
301 +0x00: No Ultrasonic Sensor
302 +
303 +
304 +
305 +=== 2.3.6  Decode payload in The Things Network ===
306 +
307 +While using TTN network, you can add the payload format to decode the payload.
308 +
309 +
310 +[[image:1654850829385-439.png]]
311 +
312 +The payload decoder function for TTN V3 is here:
313 +
314 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
315 +
316 +
317 +
318 +== 2.4  Uplink Interval ==
319 +
320 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321 +
322 +
323 +
324 +== 2.5  ​Show Data in DataCake IoT Server ==
325 +
231 231  (((
232 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
327 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
233 233  )))
234 234  
235 235  (((
236 -[[image:1655257698953-697.png]]
331 +
237 237  )))
238 238  
239 239  (((
240 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
335 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
241 241  )))
242 242  
243 243  (((
244 -
339 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
340 +)))
245 245  
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
342 +
343 +[[image:1654592790040-760.png]]
344 +
345 +
346 +[[image:1654592800389-571.png]]
347 +
348 +
349 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
350 +
351 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
352 +
353 +[[image:1654851029373-510.png]]
354 +
355 +
356 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
357 +
358 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
359 +
360 +
361 +
362 +== 2.6  Frequency Plans ==
363 +
364 +(((
365 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
247 247  )))
248 248  
368 +
369 +
370 +=== 2.6.1  EU863-870 (EU868) ===
371 +
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
373 +(% style="color:blue" %)**Uplink:**
251 251  )))
252 252  
253 -[[image:image-20220607170145-1.jpeg]]
376 +(((
377 +868.1 - SF7BW125 to SF12BW125
378 +)))
254 254  
380 +(((
381 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
382 +)))
255 255  
256 256  (((
257 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
385 +868.5 - SF7BW125 to SF12BW125
258 258  )))
259 259  
260 260  (((
261 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
389 +867.1 - SF7BW125 to SF12BW125
262 262  )))
263 263  
264 264  (((
393 +867.3 - SF7BW125 to SF12BW125
394 +)))
395 +
396 +(((
397 +867.5 - SF7BW125 to SF12BW125
398 +)))
399 +
400 +(((
401 +867.7 - SF7BW125 to SF12BW125
402 +)))
403 +
404 +(((
405 +867.9 - SF7BW125 to SF12BW125
406 +)))
407 +
408 +(((
409 +868.8 - FSK
410 +)))
411 +
412 +(((
265 265  
414 +)))
266 266  
267 -**Add APP EUI in the application**
416 +(((
417 +(% style="color:blue" %)**Downlink:**
268 268  )))
269 269  
270 -[[image:image-20220610161353-4.png]]
420 +(((
421 +Uplink channels 1-9 (RX1)
422 +)))
271 271  
272 -[[image:image-20220610161353-5.png]]
424 +(((
425 +869.525 - SF9BW125 (RX2 downlink only)
426 +)))
273 273  
274 -[[image:image-20220610161353-6.png]]
275 275  
276 276  
277 -[[image:image-20220610161353-7.png]]
430 +=== 2.6.2  US902-928(US915) ===
278 278  
432 +(((
433 +Used in USA, Canada and South America. Default use CHE=2
279 279  
435 +(% style="color:blue" %)**Uplink:**
280 280  
281 -You can also choose to create the device manually.
437 +903.9 - SF7BW125 to SF10BW125
282 282  
283 - [[image:image-20220610161538-8.png]]
439 +904.1 - SF7BW125 to SF10BW125
284 284  
441 +904.3 - SF7BW125 to SF10BW125
285 285  
443 +904.5 - SF7BW125 to SF10BW125
286 286  
287 -**Add APP KEY and DEV EUI**
445 +904.7 - SF7BW125 to SF10BW125
288 288  
289 -[[image:image-20220610161538-9.png]]
447 +904.9 - SF7BW125 to SF10BW125
290 290  
449 +905.1 - SF7BW125 to SF10BW125
291 291  
451 +905.3 - SF7BW125 to SF10BW125
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
294 294  
454 +(% style="color:blue" %)**Downlink:**
295 295  
296 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
456 +923.3 - SF7BW500 to SF12BW500
297 297  
298 -[[image:image-20220615095102-14.png]]
458 +923.9 - SF7BW500 to SF12BW500
299 299  
460 +924.5 - SF7BW500 to SF12BW500
300 300  
462 +925.1 - SF7BW500 to SF12BW500
301 301  
302 -(((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304 -)))
464 +925.7 - SF7BW500 to SF12BW500
305 305  
306 -[[image:1654849068701-275.png]]
466 +926.3 - SF7BW500 to SF12BW500
307 307  
468 +926.9 - SF7BW500 to SF12BW500
308 308  
470 +927.5 - SF7BW500 to SF12BW500
309 309  
310 -== 2.3  ​Uplink Payload ==
472 +923.3 - SF12BW500(RX2 downlink only)
311 311  
474 +
475 +
476 +)))
477 +
478 +=== 2.6.3  CN470-510 (CN470) ===
479 +
312 312  (((
481 +Used in China, Default use CHE=1
482 +)))
483 +
313 313  (((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
485 +(% style="color:blue" %)**Uplink:**
486 +)))
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
488 +(((
489 +486.3 - SF7BW125 to SF12BW125
318 318  )))
491 +
492 +(((
493 +486.5 - SF7BW125 to SF12BW125
319 319  )))
320 320  
321 321  (((
322 -
497 +486.7 - SF7BW125 to SF12BW125
323 323  )))
324 324  
325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 -|=(% style="width: 62.5px;" %)(((
327 -**Size (bytes)**
328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 -[[Distance>>||anchor="H2.3.2A0Distance"]]
500 +(((
501 +486.9 - SF7BW125 to SF12BW125
502 +)))
331 331  
332 -(unit: mm)
333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
504 +(((
505 +487.1 - SF7BW125 to SF12BW125
506 +)))
336 336  
337 -[[image:1654850511545-399.png]]
508 +(((
509 +487.3 - SF7BW125 to SF12BW125
510 +)))
338 338  
512 +(((
513 +487.5 - SF7BW125 to SF12BW125
514 +)))
339 339  
516 +(((
517 +487.7 - SF7BW125 to SF12BW125
518 +)))
340 340  
341 -=== 2.3.1  Battery Info ===
520 +(((
521 +
522 +)))
342 342  
524 +(((
525 +(% style="color:blue" %)**Downlink:**
526 +)))
343 343  
344 -Check the battery voltage for LDDS20.
528 +(((
529 +506.7 - SF7BW125 to SF12BW125
530 +)))
345 345  
346 -Ex1: 0x0B45 = 2885mV
532 +(((
533 +506.9 - SF7BW125 to SF12BW125
534 +)))
347 347  
348 -Ex2: 0x0B49 = 2889mV
536 +(((
537 +507.1 - SF7BW125 to SF12BW125
538 +)))
349 349  
540 +(((
541 +507.3 - SF7BW125 to SF12BW125
542 +)))
350 350  
544 +(((
545 +507.5 - SF7BW125 to SF12BW125
546 +)))
351 351  
352 -=== 2.3.2  Distance ===
548 +(((
549 +507.7 - SF7BW125 to SF12BW125
550 +)))
353 353  
354 354  (((
355 -Get the distance. Flat object range 20mm - 2000mm.
553 +507.9 - SF7BW125 to SF12BW125
356 356  )))
357 357  
358 358  (((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
557 +508.1 - SF7BW125 to SF12BW125
360 360  )))
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
560 +(((
561 +505.3 - SF12BW125 (RX2 downlink only)
562 +)))
364 364  
365 -=== 2.3.3  Interrupt Pin ===
366 366  
367 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
368 368  
369 -**Example:**
566 +=== 2.6.4  AU915-928(AU915) ===
370 370  
371 -0x00: Normal uplink packet.
568 +(((
569 +Default use CHE=2
372 372  
373 -0x01: Interrupt Uplink Packet.
571 +(% style="color:blue" %)**Uplink:**
374 374  
573 +916.8 - SF7BW125 to SF12BW125
375 375  
575 +917.0 - SF7BW125 to SF12BW125
376 376  
377 -=== 2.3.4  DS18B20 Temperature sensor ===
577 +917.2 - SF7BW125 to SF12BW125
378 378  
379 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
579 +917.4 - SF7BW125 to SF12BW125
380 380  
381 -**Example**:
581 +917.6 - SF7BW125 to SF12BW125
382 382  
383 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
583 +917.8 - SF7BW125 to SF12BW125
384 384  
385 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
585 +918.0 - SF7BW125 to SF12BW125
386 386  
387 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
587 +918.2 - SF7BW125 to SF12BW125
388 388  
389 389  
590 +(% style="color:blue" %)**Downlink:**
390 390  
391 -=== 2.3. Sensor Flag ===
592 +923.3 - SF7BW500 to SF12BW500
392 392  
594 +923.9 - SF7BW500 to SF12BW500
595 +
596 +924.5 - SF7BW500 to SF12BW500
597 +
598 +925.1 - SF7BW500 to SF12BW500
599 +
600 +925.7 - SF7BW500 to SF12BW500
601 +
602 +926.3 - SF7BW500 to SF12BW500
603 +
604 +926.9 - SF7BW500 to SF12BW500
605 +
606 +927.5 - SF7BW500 to SF12BW500
607 +
608 +923.3 - SF12BW500(RX2 downlink only)
609 +
610 +
611 +
612 +)))
613 +
614 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
615 +
393 393  (((
394 -0x01: Detect Ultrasonic Sensor
617 +(% style="color:blue" %)**Default Uplink channel:**
395 395  )))
396 396  
397 397  (((
398 -0x00: No Ultrasonic Sensor
621 +923.2 - SF7BW125 to SF10BW125
399 399  )))
400 400  
624 +(((
625 +923.4 - SF7BW125 to SF10BW125
626 +)))
401 401  
628 +(((
629 +
630 +)))
402 402  
403 -=== 2.3.6  Decode payload in The Things Network ===
632 +(((
633 +(% style="color:blue" %)**Additional Uplink Channel**:
634 +)))
404 404  
405 -While using TTN network, you can add the payload format to decode the payload.
636 +(((
637 +(OTAA mode, channel added by JoinAccept message)
638 +)))
406 406  
640 +(((
641 +
642 +)))
407 407  
408 -[[image:1654850829385-439.png]]
644 +(((
645 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
646 +)))
409 409  
410 -The payload decoder function for TTN V3 is here:
648 +(((
649 +922.2 - SF7BW125 to SF10BW125
650 +)))
411 411  
412 412  (((
413 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
653 +922.4 - SF7BW125 to SF10BW125
414 414  )))
415 415  
656 +(((
657 +922.6 - SF7BW125 to SF10BW125
658 +)))
416 416  
660 +(((
661 +922.8 - SF7BW125 to SF10BW125
662 +)))
417 417  
418 -== 2.4  Downlink Payload ==
664 +(((
665 +923.0 - SF7BW125 to SF10BW125
666 +)))
419 419  
420 -By default, LDDS20 prints the downlink payload to console port.
668 +(((
669 +922.0 - SF7BW125 to SF10BW125
670 +)))
421 421  
422 -[[image:image-20220615100930-15.png]]
672 +(((
673 +
674 +)))
423 423  
676 +(((
677 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
678 +)))
424 424  
425 -**Examples:**
680 +(((
681 +923.6 - SF7BW125 to SF10BW125
682 +)))
426 426  
684 +(((
685 +923.8 - SF7BW125 to SF10BW125
686 +)))
427 427  
428 -* (% style="color:blue" %)**Set TDC**
688 +(((
689 +924.0 - SF7BW125 to SF10BW125
690 +)))
429 429  
430 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
692 +(((
693 +924.2 - SF7BW125 to SF10BW125
694 +)))
431 431  
432 -Payload:    01 00 00 1E    TDC=30S
696 +(((
697 +924.4 - SF7BW125 to SF10BW125
698 +)))
433 433  
434 -Payload:    01 00 00 3C    TDC=60S
700 +(((
701 +924.6 - SF7BW125 to SF10BW125
702 +)))
435 435  
704 +(((
705 +
706 +)))
436 436  
437 -* (% style="color:blue" %)**Reset**
708 +(((
709 +(% style="color:blue" %)**Downlink:**
710 +)))
438 438  
439 -If payload = 0x04FF, it will reset the LDDS20
712 +(((
713 +Uplink channels 1-8 (RX1)
714 +)))
440 440  
716 +(((
717 +923.2 - SF10BW125 (RX2)
718 +)))
441 441  
442 -* (% style="color:blue" %)**CFM**
443 443  
444 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
445 445  
722 +=== 2.6.6  KR920-923 (KR920) ===
446 446  
724 +(((
725 +(% style="color:blue" %)**Default channel:**
726 +)))
447 447  
448 -== 2.5  ​Show Data in DataCake IoT Server ==
728 +(((
729 +922.1 - SF7BW125 to SF12BW125
730 +)))
449 449  
450 450  (((
451 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
733 +922.3 - SF7BW125 to SF12BW125
452 452  )))
453 453  
454 454  (((
737 +922.5 - SF7BW125 to SF12BW125
738 +)))
739 +
740 +(((
455 455  
456 456  )))
457 457  
458 458  (((
459 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
745 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
460 460  )))
461 461  
462 462  (((
463 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
749 +922.1 - SF7BW125 to SF12BW125
464 464  )))
465 465  
752 +(((
753 +922.3 - SF7BW125 to SF12BW125
754 +)))
466 466  
467 -[[image:1654592790040-760.png]]
756 +(((
757 +922.5 - SF7BW125 to SF12BW125
758 +)))
468 468  
760 +(((
761 +922.7 - SF7BW125 to SF12BW125
762 +)))
469 469  
470 -[[image:1654592800389-571.png]]
764 +(((
765 +922.9 - SF7BW125 to SF12BW125
766 +)))
471 471  
768 +(((
769 +923.1 - SF7BW125 to SF12BW125
770 +)))
472 472  
473 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
772 +(((
773 +923.3 - SF7BW125 to SF12BW125
774 +)))
474 474  
475 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
776 +(((
777 +
778 +)))
476 476  
477 -[[image:1654851029373-510.png]]
780 +(((
781 +(% style="color:blue" %)**Downlink:**
782 +)))
478 478  
784 +(((
785 +Uplink channels 1-7(RX1)
786 +)))
479 479  
480 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
788 +(((
789 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
790 +)))
481 481  
482 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
483 483  
484 484  
794 +=== 2.6.7  IN865-867 (IN865) ===
485 485  
486 -== 2.6  LED Indicator ==
796 +(((
797 +(% style="color:blue" %)**Uplink:**
798 +)))
487 487  
488 -The LDDS20 has an internal LED which is to show the status of different state.
800 +(((
801 +865.0625 - SF7BW125 to SF12BW125
802 +)))
489 489  
804 +(((
805 +865.4025 - SF7BW125 to SF12BW125
806 +)))
490 490  
808 +(((
809 +865.9850 - SF7BW125 to SF12BW125
810 +)))
811 +
812 +(((
813 +
814 +)))
815 +
816 +(((
817 +(% style="color:blue" %)**Downlink:**
818 +)))
819 +
820 +(((
821 +Uplink channels 1-3 (RX1)
822 +)))
823 +
824 +(((
825 +866.550 - SF10BW125 (RX2)
826 +)))
827 +
828 +
829 +
830 +== 2.7  LED Indicator ==
831 +
832 +The LDDS75 has an internal LED which is to show the status of different state.
833 +
834 +
491 491  * Blink once when device power on.
492 492  * The device detects the sensor and flashes 5 times.
493 493  * Solid ON for 5 seconds once device successful Join the network.
838 +* Blink once when device transmit a packet.
494 494  
495 -Blink once when device transmit a packet.
496 496  
497 -
498 -
499 499  == 2.8  ​Firmware Change Log ==
500 500  
501 501  
502 -(((
503 503  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
504 -)))
505 505  
506 -(((
507 -
508 -)))
509 509  
510 -(((
511 511  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
512 -)))
513 513  
514 514  
515 515  
... ... @@ -653,9 +653,7 @@
653 653  [[image:image-20220610172924-5.png]]
654 654  
655 655  
656 -(((
657 657  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
658 -)))
659 659  
660 660  
661 661   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -679,19 +679,16 @@
679 679  (((
680 680  Format: Command Code (0x01) followed by 3 bytes time value.
681 681  
682 -(((
683 683  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
684 -)))
685 685  
686 686  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
687 687  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
688 688  )))
689 -)))
690 690  
691 691  
1022 +
1023 +)))
692 692  
693 -
694 -
695 695  == 3.3  Set Interrupt Mode ==
696 696  
697 697  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -705,13 +705,13 @@
705 705  
706 706  Format: Command Code (0x06) followed by 3 bytes.
707 707  
708 -(((
709 709  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
710 -)))
711 711  
712 712  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
713 713  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
714 714  
1043 +
1044 +
715 715  = 4.  FAQ =
716 716  
717 717  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -771,6 +771,8 @@
771 771  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
772 772  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
773 773  
1104 +
1105 +
774 774  = 7. ​ Packing Info =
775 775  
776 776  
... ... @@ -785,6 +785,8 @@
785 785  * Package Size / pcs : cm
786 786  * Weight / pcs : g
787 787  
1120 +
1121 +
788 788  = 8.  ​Support =
789 789  
790 790  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content