Last modified by Mengting Qiu on 2025/08/06 17:02

From version 173.5
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version
To version 140.8
edited by Xiaoling
on 2022/06/10 17:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,578 +1,897 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
23 +
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25 +
26 +
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 +
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
31 31  )))
38 +)))
32 32  
40 +
41 +[[image:1654847051249-359.png]]
42 +
43 +
44 +
45 +== ​1.2  Features ==
46 +
47 +* LoRaWAN 1.0.3 Class A
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
59 +
60 +
61 +
62 +== 1.3  Specification ==
63 +
64 +=== 1.3.1  Rated environmental conditions ===
65 +
66 +[[image:image-20220610154839-1.png]]
67 +
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69 +
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 +
72 +
73 +
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
75 +
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
77 +
78 +
79 +
80 +[[image:1654852253176-749.png]]
81 +
82 +
83 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
84 +
85 +
86 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
87 +
88 +
89 +
90 +== 1.5 ​ Applications ==
91 +
92 +* Horizontal distance measurement
93 +* Liquid level measurement
94 +* Parking management system
95 +* Object proximity and presence detection
96 +* Intelligent trash can management system
97 +* Robot obstacle avoidance
98 +* Automatic control
99 +* Sewer
100 +* Bottom water level monitoring
101 +
102 +
103 +
104 +== 1.6  Pin mapping and power on ==
105 +
106 +
107 +[[image:1654847583902-256.png]]
108 +
109 +
110 +
111 += 2.  Configure LDDS75 to connect to LoRaWAN network =
112 +
113 +== 2.1  How it works ==
114 +
33 33  (((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
116 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
35 35  )))
36 36  
37 37  (((
38 -
120 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
39 39  )))
40 40  
123 +
124 +
125 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126 +
41 41  (((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
128 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
43 43  )))
44 44  
45 45  (((
46 -
132 +[[image:1654848616367-242.png]]
47 47  )))
48 48  
49 49  (((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
136 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
51 51  )))
52 52  
53 53  (((
54 -
140 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
55 55  )))
56 56  
57 57  (((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
144 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
59 59  )))
60 60  
147 +[[image:image-20220607170145-1.jpeg]]
148 +
149 +
150 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
151 +
152 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
153 +
154 +**Add APP EUI in the application**
155 +
156 +[[image:image-20220610161353-4.png]]
157 +
158 +[[image:image-20220610161353-5.png]]
159 +
160 +[[image:image-20220610161353-6.png]]
161 +
162 +
163 +[[image:image-20220610161353-7.png]]
164 +
165 +
166 +You can also choose to create the device manually.
167 +
168 + [[image:image-20220610161538-8.png]]
169 +
170 +
171 +
172 +**Add APP KEY and DEV EUI**
173 +
174 +[[image:image-20220610161538-9.png]]
175 +
176 +
177 +
178 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
179 +
180 +
181 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182 +
183 +[[image:image-20220610161724-10.png]]
184 +
185 +
61 61  (((
62 -
187 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
63 63  )))
64 64  
190 +[[image:1654849068701-275.png]]
191 +
192 +
193 +
194 +== 2.3  ​Uplink Payload ==
195 +
65 65  (((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
197 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
198 +
199 +Uplink payload includes in total 4 bytes.
200 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
67 67  )))
68 68  
69 69  (((
70 70  
71 71  )))
72 -)))
73 73  
74 -(((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 -)))
78 -)))
79 -)))
80 -)))
207 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
208 +|=(% style="width: 62.5px;" %)(((
209 +**Size (bytes)**
210 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
211 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
212 +[[Distance>>||anchor="H2.3.3A0Distance"]]
81 81  
214 +(unit: mm)
215 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
82 82  
83 -[[image:1655255122126-327.png]]
219 +[[image:1654850511545-399.png]]
84 84  
85 85  
86 86  
87 -== ​1.Features ==
223 +=== 2.3.1  Battery Info ===
88 88  
89 -* LoRaWAN 1.0.3 Class A
90 -* Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 -* Cable Length : 25cm
96 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 -* AT Commands to change parameters
98 -* Uplink on periodically
99 -* Downlink to change configure
100 -* IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
102 102  
103 -== 1.3  Suitable Container & Liquid ==
226 +Check the battery voltage for LDDS75.
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
228 +Ex1: 0x0B45 = 2885mV
111 111  
112 -== 1.4  Mechanical ==
230 +Ex2: 0x0B49 = 2889mV
113 113  
114 -[[image:image-20220615090910-1.png]]
115 115  
116 116  
117 -[[image:image-20220615090910-2.png]]
234 +=== 2.3.2  Distance ===
118 118  
236 +Get the distance. Flat object range 280mm - 7500mm.
119 119  
238 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
120 120  
121 -== 1.5  Install LDDS20 ==
122 122  
241 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
242 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
127 127  
128 -[[image:image-20220615091045-3.png]]
246 +=== 2.3.3  Interrupt Pin ===
129 129  
248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
130 130  
250 +**Example:**
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
252 +0x00: Normal uplink packet.
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
254 +0x01: Interrupt Uplink Packet.
135 135  
136 -[[image:image-20220615092010-11.png]]
137 137  
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
258 +=== 2.3.4  DS18B20 Temperature sensor ===
140 140  
141 -[[image:image-20220615092044-12.png]]
260 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
142 142  
262 +**Example**:
143 143  
264 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
144 144  
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
266 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
268 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
148 148  
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
272 +=== 2.3.5  Sensor Flag ===
153 153  
274 +0x01: Detect Ultrasonic Sensor
154 154  
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
276 +0x00: No Ultrasonic Sensor
156 156  
157 157  
158 -(% style="color:red" %)**LED Status:**
279 +===
280 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
159 159  
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
282 +While using TTN network, you can add the payload format to decode the payload.
161 161  
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 164  
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
285 +[[image:1654850829385-439.png]]
166 166  
287 +The payload decoder function for TTN V3 is here:
167 167  
168 -(% style="color:red" %)**Note 2:**
289 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
169 169  
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 171  
172 172  
293 +== 2.4  Uplink Interval ==
173 173  
174 -(% style="color:blue" %)**Step4  **(%%)Install use Epoxy ab glue.
295 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link[[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
175 175  
176 -Prepare Eproxy AB glue.
177 177  
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 179  
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
299 +== 2.5  ​Show Data in DataCake IoT Server ==
181 181  
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
301 +(((
302 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
303 +)))
183 183  
305 +(((
306 +
307 +)))
184 184  
185 -(% style="color:red" %)**Note 1:**
309 +(((
310 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
311 +)))
186 186  
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
313 +(((
314 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
315 +)))
188 188  
189 189  
190 -(% style="color:red" %)**Note 2:**
318 +[[image:1654592790040-760.png]]
191 191  
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 193  
321 +[[image:1654592800389-571.png]]
194 194  
195 195  
196 -== 1.6 Applications ==
324 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
197 197  
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
326 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
200 200  
201 -== 1.7  Precautions ==
328 +[[image:1654851029373-510.png]]
202 202  
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 206  
207 -== 1.8  Pin mapping and power on ==
331 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
208 208  
333 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
209 209  
210 -[[image:1655257026882-201.png]]
211 211  
212 212  
337 +== 2.6  Frequency Plans ==
213 213  
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
339 +(((
340 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
341 +)))
215 215  
216 216  
217 -== 2.1  How it works ==
218 218  
345 +=== 2.6.1  EU863-870 (EU868) ===
346 +
219 219  (((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
348 +(% style="color:blue" %)**Uplink:**
221 221  )))
222 222  
223 223  (((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
352 +868.1 - SF7BW125 to SF12BW125
225 225  )))
226 226  
355 +(((
356 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
357 +)))
227 227  
359 +(((
360 +868.5 - SF7BW125 to SF12BW125
361 +)))
228 228  
229 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
363 +(((
364 +867.1 - SF7BW125 to SF12BW125
365 +)))
230 230  
231 231  (((
232 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
368 +867.3 - SF7BW125 to SF12BW125
233 233  )))
234 234  
235 235  (((
236 -[[image:1655257698953-697.png]]
372 +867.5 - SF7BW125 to SF12BW125
237 237  )))
238 238  
239 239  (((
240 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
376 +867.7 - SF7BW125 to SF12BW125
241 241  )))
242 242  
243 243  (((
244 -
380 +867.9 - SF7BW125 to SF12BW125
381 +)))
245 245  
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
383 +(((
384 +868.8 - FSK
247 247  )))
248 248  
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
388 +
251 251  )))
252 252  
253 -[[image:image-20220607170145-1.jpeg]]
391 +(((
392 +(% style="color:blue" %)**Downlink:**
393 +)))
254 254  
255 -
256 256  (((
257 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
396 +Uplink channels 1-9 (RX1)
258 258  )))
259 259  
260 260  (((
261 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
400 +869.525 - SF9BW125 (RX2 downlink only)
262 262  )))
263 263  
403 +
404 +
405 +=== 2.6.2  US902-928(US915) ===
406 +
264 264  (((
265 -
408 +Used in USA, Canada and South America. Default use CHE=2
266 266  
267 -**Add APP EUI in the application**
268 -)))
410 +(% style="color:blue" %)**Uplink:**
269 269  
270 -[[image:image-20220610161353-4.png]]
412 +903.9 - SF7BW125 to SF10BW125
271 271  
272 -[[image:image-20220610161353-5.png]]
414 +904.1 - SF7BW125 to SF10BW125
273 273  
274 -[[image:image-20220610161353-6.png]]
416 +904.3 - SF7BW125 to SF10BW125
275 275  
418 +904.5 - SF7BW125 to SF10BW125
276 276  
277 -[[image:image-20220610161353-7.png]]
420 +904.7 - SF7BW125 to SF10BW125
278 278  
422 +904.9 - SF7BW125 to SF10BW125
279 279  
424 +905.1 - SF7BW125 to SF10BW125
280 280  
281 -You can also choose to create the device manually.
426 +905.3 - SF7BW125 to SF10BW125
282 282  
283 - [[image:image-20220610161538-8.png]]
284 284  
429 +(% style="color:blue" %)**Downlink:**
285 285  
431 +923.3 - SF7BW500 to SF12BW500
286 286  
287 -**Add APP KEY and DEV EUI**
433 +923.9 - SF7BW500 to SF12BW500
288 288  
289 -[[image:image-20220610161538-9.png]]
435 +924.5 - SF7BW500 to SF12BW500
290 290  
437 +925.1 - SF7BW500 to SF12BW500
291 291  
439 +925.7 - SF7BW500 to SF12BW500
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
441 +926.3 - SF7BW500 to SF12BW500
294 294  
443 +926.9 - SF7BW500 to SF12BW500
295 295  
296 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
445 +927.5 - SF7BW500 to SF12BW500
297 297  
298 -[[image:image-20220615095102-14.png]]
447 +923.3 - SF12BW500(RX2 downlink only)
299 299  
300 300  
450 +
451 +)))
301 301  
453 +=== 2.6.3  CN470-510 (CN470) ===
454 +
302 302  (((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
456 +Used in China, Default use CHE=1
304 304  )))
305 305  
306 -[[image:1654849068701-275.png]]
459 +(((
460 +(% style="color:blue" %)**Uplink:**
461 +)))
307 307  
463 +(((
464 +486.3 - SF7BW125 to SF12BW125
465 +)))
308 308  
467 +(((
468 +486.5 - SF7BW125 to SF12BW125
469 +)))
309 309  
310 -== 2.3  ​Uplink Payload ==
471 +(((
472 +486.7 - SF7BW125 to SF12BW125
473 +)))
311 311  
312 312  (((
476 +486.9 - SF7BW125 to SF12BW125
477 +)))
478 +
313 313  (((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
480 +487.1 - SF7BW125 to SF12BW125
481 +)))
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
483 +(((
484 +487.3 - SF7BW125 to SF12BW125
318 318  )))
486 +
487 +(((
488 +487.5 - SF7BW125 to SF12BW125
319 319  )))
320 320  
321 321  (((
492 +487.7 - SF7BW125 to SF12BW125
493 +)))
494 +
495 +(((
322 322  
323 323  )))
324 324  
325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 -|=(% style="width: 62.5px;" %)(((
327 -**Size (bytes)**
328 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 -[[Distance>>||anchor="H2.3.2A0Distance"]]
499 +(((
500 +(% style="color:blue" %)**Downlink:**
501 +)))
331 331  
332 -(unit: mm)
333 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
503 +(((
504 +506.7 - SF7BW125 to SF12BW125
505 +)))
336 336  
337 -[[image:1654850511545-399.png]]
507 +(((
508 +506.9 - SF7BW125 to SF12BW125
509 +)))
338 338  
511 +(((
512 +507.1 - SF7BW125 to SF12BW125
513 +)))
339 339  
515 +(((
516 +507.3 - SF7BW125 to SF12BW125
517 +)))
340 340  
341 -=== 2.3.1  Battery Info ===
519 +(((
520 +507.5 - SF7BW125 to SF12BW125
521 +)))
342 342  
523 +(((
524 +507.7 - SF7BW125 to SF12BW125
525 +)))
343 343  
344 -Check the battery voltage for LDDS20.
527 +(((
528 +507.9 - SF7BW125 to SF12BW125
529 +)))
345 345  
346 -Ex1: 0x0B45 = 2885mV
531 +(((
532 +508.1 - SF7BW125 to SF12BW125
533 +)))
347 347  
348 -Ex2: 0x0B49 = 2889mV
535 +(((
536 +505.3 - SF12BW125 (RX2 downlink only)
537 +)))
349 349  
350 350  
351 351  
352 -=== 2.3.2  Distance ===
541 +=== 2.6.4  AU915-928(AU915) ===
353 353  
354 354  (((
355 -Get the distance. Flat object range 20mm - 2000mm.
356 -)))
544 +Default use CHE=2
357 357  
358 -(((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 -)))
546 +(% style="color:blue" %)**Uplink:**
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
548 +916.8 - SF7BW125 to SF12BW125
364 364  
365 -=== 2.3.3  Interrupt Pin ===
550 +917.0 - SF7BW125 to SF12BW125
366 366  
367 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
552 +917.2 - SF7BW125 to SF12BW125
368 368  
369 -**Example:**
554 +917.4 - SF7BW125 to SF12BW125
370 370  
371 -0x00: Normal uplink packet.
556 +917.6 - SF7BW125 to SF12BW125
372 372  
373 -0x01: Interrupt Uplink Packet.
558 +917.8 - SF7BW125 to SF12BW125
374 374  
560 +918.0 - SF7BW125 to SF12BW125
375 375  
562 +918.2 - SF7BW125 to SF12BW125
376 376  
377 -=== 2.3.4  DS18B20 Temperature sensor ===
378 378  
379 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
565 +(% style="color:blue" %)**Downlink:**
380 380  
381 -**Example**:
567 +923.3 - SF7BW500 to SF12BW500
382 382  
383 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
569 +923.9 - SF7BW500 to SF12BW500
384 384  
385 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
571 +924.5 - SF7BW500 to SF12BW500
386 386  
387 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
573 +925.1 - SF7BW500 to SF12BW500
388 388  
575 +925.7 - SF7BW500 to SF12BW500
389 389  
577 +926.3 - SF7BW500 to SF12BW500
390 390  
391 -=== 2.3.5  Sensor Flag ===
579 +926.9 - SF7BW500 to SF12BW500
392 392  
581 +927.5 - SF7BW500 to SF12BW500
582 +
583 +923.3 - SF12BW500(RX2 downlink only)
584 +
585 +
586 +
587 +)))
588 +
589 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
590 +
393 393  (((
394 -0x01: Detect Ultrasonic Sensor
592 +(% style="color:blue" %)**Default Uplink channel:**
395 395  )))
396 396  
397 397  (((
398 -0x00: No Ultrasonic Sensor
596 +923.2 - SF7BW125 to SF10BW125
399 399  )))
400 400  
599 +(((
600 +923.4 - SF7BW125 to SF10BW125
601 +)))
401 401  
603 +(((
604 +
605 +)))
402 402  
403 -=== 2.3.6  Decode payload in The Things Network ===
607 +(((
608 +(% style="color:blue" %)**Additional Uplink Channel**:
609 +)))
404 404  
405 -While using TTN network, you can add the payload format to decode the payload.
611 +(((
612 +(OTAA mode, channel added by JoinAccept message)
613 +)))
406 406  
615 +(((
616 +
617 +)))
407 407  
408 -[[image:1654850829385-439.png]]
619 +(((
620 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
621 +)))
409 409  
410 -The payload decoder function for TTN V3 is here:
623 +(((
624 +922.2 - SF7BW125 to SF10BW125
625 +)))
411 411  
412 412  (((
413 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
628 +922.4 - SF7BW125 to SF10BW125
414 414  )))
415 415  
631 +(((
632 +922.6 - SF7BW125 to SF10BW125
633 +)))
416 416  
635 +(((
636 +922.8 - SF7BW125 to SF10BW125
637 +)))
417 417  
418 -== 2.4  Downlink Payload ==
639 +(((
640 +923.0 - SF7BW125 to SF10BW125
641 +)))
419 419  
420 -By default, LDDS20 prints the downlink payload to console port.
643 +(((
644 +922.0 - SF7BW125 to SF10BW125
645 +)))
421 421  
422 -[[image:image-20220615100930-15.png]]
647 +(((
648 +
649 +)))
423 423  
651 +(((
652 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
653 +)))
424 424  
425 -**Examples:**
655 +(((
656 +923.6 - SF7BW125 to SF10BW125
657 +)))
426 426  
659 +(((
660 +923.8 - SF7BW125 to SF10BW125
661 +)))
427 427  
428 -* (% style="color:blue" %)**Set TDC**
663 +(((
664 +924.0 - SF7BW125 to SF10BW125
665 +)))
429 429  
430 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
667 +(((
668 +924.2 - SF7BW125 to SF10BW125
669 +)))
431 431  
432 -Payload:    01 00 00 1E    TDC=30S
671 +(((
672 +924.4 - SF7BW125 to SF10BW125
673 +)))
433 433  
434 -Payload:    01 00 00 3C    TDC=60S
675 +(((
676 +924.6 - SF7BW125 to SF10BW125
677 +)))
435 435  
679 +(((
680 +
681 +)))
436 436  
437 -* (% style="color:blue" %)**Reset**
683 +(((
684 +(% style="color:blue" %)**Downlink:**
685 +)))
438 438  
439 -If payload = 0x04FF, it will reset the LDDS20
687 +(((
688 +Uplink channels 1-8 (RX1)
689 +)))
440 440  
691 +(((
692 +923.2 - SF10BW125 (RX2)
693 +)))
441 441  
442 -* (% style="color:blue" %)**CFM**
443 443  
444 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
445 445  
697 +=== 2.6.6  KR920-923 (KR920) ===
446 446  
699 +(((
700 +(% style="color:blue" %)**Default channel:**
701 +)))
447 447  
448 -== 2.5  ​Show Data in DataCake IoT Server ==
703 +(((
704 +922.1 - SF7BW125 to SF12BW125
705 +)))
449 449  
450 450  (((
451 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
708 +922.3 - SF7BW125 to SF12BW125
452 452  )))
453 453  
454 454  (((
712 +922.5 - SF7BW125 to SF12BW125
713 +)))
714 +
715 +(((
455 455  
456 456  )))
457 457  
458 458  (((
459 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
720 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
460 460  )))
461 461  
462 462  (((
463 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
724 +922.1 - SF7BW125 to SF12BW125
464 464  )))
465 465  
727 +(((
728 +922.3 - SF7BW125 to SF12BW125
729 +)))
466 466  
467 -[[image:1654592790040-760.png]]
731 +(((
732 +922.5 - SF7BW125 to SF12BW125
733 +)))
468 468  
735 +(((
736 +922.7 - SF7BW125 to SF12BW125
737 +)))
469 469  
470 -[[image:1654592800389-571.png]]
739 +(((
740 +922.9 - SF7BW125 to SF12BW125
741 +)))
471 471  
743 +(((
744 +923.1 - SF7BW125 to SF12BW125
745 +)))
472 472  
473 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
747 +(((
748 +923.3 - SF7BW125 to SF12BW125
749 +)))
474 474  
475 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
751 +(((
752 +
753 +)))
476 476  
477 -[[image:1654851029373-510.png]]
755 +(((
756 +(% style="color:blue" %)**Downlink:**
757 +)))
478 478  
759 +(((
760 +Uplink channels 1-7(RX1)
761 +)))
479 479  
480 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
763 +(((
764 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
765 +)))
481 481  
482 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
483 483  
484 484  
485 485  
486 -== 2.6  LED Indicator ==
770 +=== 2.6.7  IN865-867 (IN865) ===
487 487  
488 -The LDDS20 has an internal LED which is to show the status of different state.
772 +(((
773 +(% style="color:blue" %)**Uplink:**
774 +)))
489 489  
776 +(((
777 +865.0625 - SF7BW125 to SF12BW125
778 +)))
490 490  
491 -* Blink once when device power on.
492 -* The device detects the sensor and flashes 5 times.
493 -* Solid ON for 5 seconds once device successful Join the network.
780 +(((
781 +865.4025 - SF7BW125 to SF12BW125
782 +)))
494 494  
495 -Blink once when device transmit a packet.
784 +(((
785 +865.9850 - SF7BW125 to SF12BW125
786 +)))
496 496  
788 +(((
789 +
790 +)))
497 497  
498 -
499 -== 2.8  ​Firmware Change Log ==
500 -
501 -
502 502  (((
503 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
793 +(% style="color:blue" %)**Downlink:**
504 504  )))
505 505  
506 506  (((
507 -
797 +Uplink channels 1-3 (RX1)
508 508  )))
509 509  
510 510  (((
511 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
801 +866.550 - SF10BW125 (RX2)
512 512  )))
513 513  
514 514  
515 515  
516 -== 2.9  Mechanical ==
517 517  
807 +== 2.7  LED Indicator ==
518 518  
519 -[[image:image-20220610172003-1.png]]
809 +The LLDS12 has an internal LED which is to show the status of different state.
520 520  
811 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
812 +* Blink once when device transmit a packet.
521 521  
522 -[[image:image-20220610172003-2.png]]
814 +== 2.8  ​Firmware Change Log ==
523 523  
524 524  
817 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
525 525  
526 -== 2.10  Battery Analysis ==
527 527  
528 -=== 2.10.1  Battery Type ===
820 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
529 529  
530 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
531 531  
532 532  
533 -The battery related documents as below:
824 += 3.  LiDAR ToF Measurement =
534 534  
535 -* (((
536 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
826 +== 3.1 Principle of Distance Measurement ==
827 +
828 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
829 +
830 +[[image:1654831757579-263.png]]
831 +
832 +
833 +
834 +== 3.2 Distance Measurement Characteristics ==
835 +
836 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
837 +
838 +[[image:1654831774373-275.png]]
839 +
840 +
841 +(((
842 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
537 537  )))
538 -* (((
539 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
844 +
845 +(((
846 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
540 540  )))
541 -* (((
542 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
848 +
849 +(((
850 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
543 543  )))
544 544  
545 - [[image:image-20220610172400-3.png]]
546 546  
854 +(((
855 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
856 +)))
547 547  
548 548  
549 -=== 2.10.2  Replace the battery ===
859 +[[image:1654831797521-720.png]]
550 550  
551 -(((
552 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
553 -)))
554 554  
555 555  (((
556 -
863 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
557 557  )))
558 558  
866 +[[image:1654831810009-716.png]]
867 +
868 +
559 559  (((
560 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
870 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
561 561  )))
562 562  
563 563  
564 564  
565 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
875 +== 3.3 Notice of usage: ==
566 566  
877 +Possible invalid /wrong reading for LiDAR ToF tech:
878 +
879 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
880 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
881 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
882 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
883 +
884 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
885 +
567 567  (((
568 568  (((
569 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
888 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
570 570  )))
571 571  )))
572 572  
573 573  * (((
574 574  (((
575 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
894 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
576 576  )))
577 577  )))
578 578  * (((
... ... @@ -587,7 +587,7 @@
587 587  )))
588 588  
589 589  (((
590 -There are two kinds of commands to configure LDDS75, they are:
909 +There are two kinds of commands to configure LLDS12, they are:
591 591  )))
592 592  )))
593 593  
... ... @@ -628,155 +628,351 @@
628 628  
629 629  * (((
630 630  (((
631 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
950 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
632 632  )))
633 633  )))
634 634  
635 635  (((
636 636  (((
637 -These commands only valid for LDDS75, as below:
956 +These commands only valid for LLDS12, as below:
638 638  )))
639 639  )))
640 640  
641 641  
642 642  
643 -== 3.1  Access AT Commands ==
962 +== 4.1  Set Transmit Interval Time ==
644 644  
645 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
964 +Feature: Change LoRaWAN End Node Transmit Interval.
646 646  
647 -[[image:image-20220610172924-4.png||height="483" width="988"]]
966 +(% style="color:#037691" %)**AT Command: AT+TDC**
648 648  
968 +[[image:image-20220607171554-8.png]]
649 649  
650 -Or if you have below board, use below connection:
651 651  
971 +(((
972 +(% style="color:#037691" %)**Downlink Command: 0x01**
973 +)))
652 652  
653 -[[image:image-20220610172924-5.png]]
975 +(((
976 +Format: Command Code (0x01) followed by 3 bytes time value.
977 +)))
654 654  
979 +(((
980 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
981 +)))
655 655  
983 +* (((
984 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
985 +)))
986 +* (((
987 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
988 +)))
989 +
990 +== 4.2  Set Interrupt Mode ==
991 +
992 +Feature, Set Interrupt mode for GPIO_EXIT.
993 +
994 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
995 +
996 +[[image:image-20220610105806-2.png]]
997 +
998 +
656 656  (((
657 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
658 658  )))
659 659  
1003 +(((
1004 +Format: Command Code (0x06) followed by 3 bytes.
1005 +)))
660 660  
661 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1007 +(((
1008 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1009 +)))
662 662  
1011 +* (((
1012 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1013 +)))
1014 +* (((
1015 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1016 +)))
663 663  
1018 +== 4.3  Get Firmware Version Info ==
664 664  
665 -== 3.2  Set Transmit Interval Time ==
1020 +Feature: use downlink to get firmware version.
666 666  
667 -Feature: Change LoRaWAN End Node Transmit Interval.
1022 +(% style="color:#037691" %)**Downlink Command: 0x26**
668 668  
669 -(% style="color:#037691" %)**AT Command: AT+TDC**
1024 +[[image:image-20220607171917-10.png]]
670 670  
671 -[[image:image-20220610173409-7.png]]
1026 +* Reply to the confirmation package: 26 01
1027 +* Reply to non-confirmed packet: 26 00
672 672  
1029 +Device will send an uplink after got this downlink command. With below payload:
673 673  
1031 +Configures info payload:
1032 +
1033 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1034 +|=(((
1035 +**Size(bytes)**
1036 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1037 +|**Value**|Software Type|(((
1038 +Frequency
1039 +
1040 +Band
1041 +)))|Sub-band|(((
1042 +Firmware
1043 +
1044 +Version
1045 +)))|Sensor Type|Reserve|(((
1046 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1047 +Always 0x02
1048 +)))
1049 +
1050 +**Software Type**: Always 0x03 for LLDS12
1051 +
1052 +
1053 +**Frequency Band**:
1054 +
1055 +*0x01: EU868
1056 +
1057 +*0x02: US915
1058 +
1059 +*0x03: IN865
1060 +
1061 +*0x04: AU915
1062 +
1063 +*0x05: KZ865
1064 +
1065 +*0x06: RU864
1066 +
1067 +*0x07: AS923
1068 +
1069 +*0x08: AS923-1
1070 +
1071 +*0x09: AS923-2
1072 +
1073 +*0xa0: AS923-3
1074 +
1075 +
1076 +**Sub-Band**: value 0x00 ~~ 0x08
1077 +
1078 +
1079 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1080 +
1081 +
1082 +**Sensor Type**:
1083 +
1084 +0x01: LSE01
1085 +
1086 +0x02: LDDS75
1087 +
1088 +0x03: LDDS20
1089 +
1090 +0x04: LLMS01
1091 +
1092 +0x05: LSPH01
1093 +
1094 +0x06: LSNPK01
1095 +
1096 +0x07: LLDS12
1097 +
1098 +
1099 +
1100 += 5.  Battery & How to replace =
1101 +
1102 +== 5.1  Battery Type ==
1103 +
674 674  (((
675 -(% style="color:#037691" %)**Downlink Command: 0x01**
1105 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
676 676  )))
677 677  
678 678  (((
1109 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1110 +)))
1111 +
1112 +[[image:1654593587246-335.png]]
1113 +
1114 +
1115 +Minimum Working Voltage for the LLDS12:
1116 +
1117 +LLDS12:  2.45v ~~ 3.6v
1118 +
1119 +
1120 +
1121 +== 5.2  Replace Battery ==
1122 +
679 679  (((
680 -Format: Command Code (0x01) followed by 3 bytes time value.
1124 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1125 +)))
681 681  
682 682  (((
683 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1128 +And make sure the positive and negative pins match.
684 684  )))
685 685  
686 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
687 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1131 +
1132 +
1133 +== 5.3  Power Consumption Analyze ==
1134 +
1135 +(((
1136 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
688 688  )))
1138 +
1139 +(((
1140 +Instruction to use as below:
689 689  )))
690 690  
691 691  
1144 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
692 692  
1146 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
693 693  
694 694  
695 -== 3.3  Set Interrupt Mode ==
1149 +**Step 2**: Open it and choose
696 696  
697 -Feature, Set Interrupt mode for GPIO_EXIT.
1151 +* Product Model
1152 +* Uplink Interval
1153 +* Working Mode
698 698  
699 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1155 +And the Life expectation in difference case will be shown on the right.
700 700  
701 -[[image:image-20220610174917-9.png]]
1157 +[[image:1654593605679-189.png]]
702 702  
703 703  
704 -(% style="color:#037691" %)**Downlink Command: 0x06**
1160 +The battery related documents as below:
705 705  
706 -Format: Command Code (0x06) followed by 3 bytes.
1162 +* (((
1163 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1164 +)))
1165 +* (((
1166 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1167 +)))
1168 +* (((
1169 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1170 +)))
707 707  
1172 +[[image:image-20220607172042-11.png]]
1173 +
1174 +
1175 +
1176 +=== 5.3.1  ​Battery Note ===
1177 +
708 708  (((
709 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1179 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
710 710  )))
711 711  
712 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
713 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
714 714  
715 -= 4.  FAQ =
716 716  
717 -== 4.1  What is the frequency plan for LDDS75? ==
1184 +=== ​5.3.2  Replace the battery ===
718 718  
719 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1186 +(((
1187 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1188 +)))
720 720  
1190 +(((
1191 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1192 +)))
721 721  
722 722  
723 -== 4.2  How to change the LoRa Frequency Bands/Region ==
724 724  
725 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
726 -When downloading the images, choose the required image file for download. ​
1196 += 6.  Use AT Command =
727 727  
1198 +== 6.1  Access AT Commands ==
728 728  
1200 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
729 729  
730 -== 4.3  Can I use LDDS75 in condensation environment? ==
1202 +[[image:1654593668970-604.png]]
731 731  
732 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1204 +**Connection:**
733 733  
1206 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
734 734  
1208 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
735 735  
736 -= 5.  Trouble Shooting =
1210 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
737 737  
738 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
739 739  
740 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1213 +(((
1214 +(((
1215 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1216 +)))
741 741  
1218 +(((
1219 +LLDS12 will output system info once power on as below:
1220 +)))
1221 +)))
742 742  
743 -== 5.2  AT Command input doesn't work ==
744 744  
1224 + [[image:1654593712276-618.png]]
1225 +
1226 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1227 +
1228 +
1229 += 7.  FAQ =
1230 +
1231 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1232 +
1233 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1234 +When downloading the images, choose the required image file for download. ​
1235 +
1236 +
1237 += 8.  Trouble Shooting =
1238 +
1239 +== 8.1  AT Commands input doesn’t work ==
1240 +
1241 +
1242 +(((
745 745  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1244 +)))
746 746  
1246 +
1247 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1248 +
1249 +
747 747  (((
1251 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1252 +)))
1253 +
1254 +(((
1255 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1256 +)))
1257 +
1258 +(((
748 748  
749 749  )))
750 750  
1262 +(((
1263 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1264 +)))
751 751  
752 -= 6.  Order Info =
1266 +(((
1267 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1268 +)))
753 753  
754 754  
755 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
756 756  
1272 += 9.  Order Info =
757 757  
758 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
759 759  
760 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
761 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
762 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
763 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
764 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
765 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
766 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
767 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1275 +Part Number: (% style="color:blue" %)**LLDS12-XX**
768 768  
769 -(% style="color:blue" %)**YY**(%%): Battery Option
770 770  
771 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
772 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1278 +(% style="color:blue" %)**XX**(%%): The default frequency band
773 773  
774 -= 7. ​ Packing Info =
1280 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1281 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1282 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1283 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1284 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1285 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1286 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1287 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
775 775  
1289 += 10. ​ Packing Info =
776 776  
1291 +
777 777  **Package Includes**:
778 778  
779 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1294 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
780 780  
781 781  **Dimension and weight**:
782 782  
... ... @@ -785,7 +785,7 @@
785 785  * Package Size / pcs : cm
786 786  * Weight / pcs : g
787 787  
788 -= 8.  ​Support =
1303 += 11.  ​Support =
789 789  
790 790  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
791 791  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content