Last modified by Mengting Qiu on 2025/08/06 17:02

From version 173.3
edited by Xiaoling
on 2022/06/15 10:11
Change comment: There is no comment for this version
To version 163.1
edited by Xiaoling
on 2022/06/15 09:10
Change comment: Uploaded new attachment "image-20220615091045-8.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -100,6 +100,8 @@
100 100  * IP66 Waterproof Enclosure
101 101  * 8500mAh Battery for long term use
102 102  
103 +
104 +
103 103  == 1.3  Suitable Container & Liquid ==
104 104  
105 105  * Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
... ... @@ -109,6 +109,8 @@
109 109  ** Pure non metal material: <10 mm
110 110  * Pure liquid without irregular deposition.
111 111  
114 +
115 +
112 112  == 1.4  Mechanical ==
113 113  
114 114  [[image:image-20220615090910-1.png]]
... ... @@ -118,112 +118,35 @@
118 118  
119 119  
120 120  
121 -== 1.5  Install LDDS20 ==
125 +== 1.5 ​ Applications ==
122 122  
127 +* Horizontal distance measurement
128 +* Liquid level measurement
129 +* Parking management system
130 +* Object proximity and presence detection
131 +* Intelligent trash can management system
132 +* Robot obstacle avoidance
133 +* Automatic control
134 +* Sewer
135 +* Bottom water level monitoring
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
137 +== 1.6  Pin mapping and power on ==
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
127 127  
128 -[[image:image-20220615091045-3.png]]
140 +[[image:1654847583902-256.png]]
129 129  
130 130  
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
144 += 2.  Configure LDDS75 to connect to LoRaWAN network =
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
135 -
136 -[[image:image-20220615092010-11.png]]
137 -
138 -
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
140 -
141 -[[image:image-20220615092044-12.png]]
142 -
143 -
144 -
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
146 -
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
148 -
149 -
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
151 -
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
153 -
154 -
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 -
157 -
158 -(% style="color:red" %)**LED Status:**
159 -
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 -
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 -
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 -
167 -
168 -(% style="color:red" %)**Note 2:**
169 -
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 -
172 -
173 -
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 -
176 -Prepare Eproxy AB glue.
177 -
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 -
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 -
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 -
184 -
185 -(% style="color:red" %)**Note 1:**
186 -
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 -
189 -
190 -(% style="color:red" %)**Note 2:**
191 -
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 -
194 -
195 -
196 -== 1.6 ​ Applications ==
197 -
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
200 -
201 -
202 -== 1.7  Precautions ==
203 -
204 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
205 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
206 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
207 -
208 -
209 -== 1.8  Pin mapping and power on ==
210 -
211 -
212 -[[image:1655257026882-201.png]]
213 -
214 -
215 -
216 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
217 -
218 -
219 219  == 2.1  How it works ==
220 220  
221 221  (((
222 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
149 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
223 223  )))
224 224  
225 225  (((
226 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
153 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
227 227  )))
228 228  
229 229  
... ... @@ -235,7 +235,7 @@
235 235  )))
236 236  
237 237  (((
238 -[[image:1655257698953-697.png]]
165 +[[image:1654848616367-242.png]]
239 239  )))
240 240  
241 241  (((
... ... @@ -245,11 +245,11 @@
245 245  (((
246 246  
247 247  
248 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
175 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
249 249  )))
250 250  
251 251  (((
252 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
179 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
253 253  )))
254 254  
255 255  [[image:image-20220607170145-1.jpeg]]
... ... @@ -279,7 +279,6 @@
279 279  [[image:image-20220610161353-7.png]]
280 280  
281 281  
282 -
283 283  You can also choose to create the device manually.
284 284  
285 285   [[image:image-20220610161538-8.png]]
... ... @@ -292,17 +292,16 @@
292 292  
293 293  
294 294  
295 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
221 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
296 296  
297 297  
298 298  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
299 299  
300 -[[image:image-20220615095102-14.png]]
226 +[[image:image-20220610161724-10.png]]
301 301  
302 302  
303 -
304 304  (((
305 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
230 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
306 306  )))
307 307  
308 308  [[image:1654849068701-275.png]]
... ... @@ -313,10 +313,12 @@
313 313  
314 314  (((
315 315  (((
316 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
241 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
242 +)))
317 317  
318 -Uplink payload includes in total 8 bytes.
319 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
244 +(((
245 +Uplink payload includes in total 4 bytes.
246 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
320 320  )))
321 321  )))
322 322  
... ... @@ -343,7 +343,7 @@
343 343  === 2.3.1  Battery Info ===
344 344  
345 345  
346 -Check the battery voltage for LDDS20.
273 +Check the battery voltage for LDDS75.
347 347  
348 348  Ex1: 0x0B45 = 2885mV
349 349  
... ... @@ -354,20 +354,20 @@
354 354  === 2.3.2  Distance ===
355 355  
356 356  (((
357 -Get the distance. Flat object range 20mm - 2000mm.
284 +Get the distance. Flat object range 280mm - 7500mm.
358 358  )))
359 359  
360 360  (((
361 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
288 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
362 362  )))
363 363  
364 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
365 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
366 366  
292 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
293 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
367 367  
368 368  === 2.3.3  Interrupt Pin ===
369 369  
370 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
297 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
371 371  
372 372  **Example:**
373 373  
... ... @@ -413,41 +413,17 @@
413 413  The payload decoder function for TTN V3 is here:
414 414  
415 415  (((
416 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
343 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
417 417  )))
418 418  
419 419  
420 420  
421 -== 2.4  Downlink Payload ==
348 +== 2.4  Uplink Interval ==
422 422  
423 -By default, LDDS20 prints the downlink payload to console port.
350 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
424 424  
425 -[[image:image-20220615100930-15.png]]
426 426  
427 427  
428 -**Examples:**
429 -
430 -
431 -* (% style="color:blue" %)**Set TDC**
432 -
433 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
434 -
435 -Payload:    01 00 00 1E    TDC=30S
436 -
437 -Payload:    01 00 00 3C    TDC=60S
438 -
439 -
440 -* (% style="color:blue" %)**Reset**
441 -
442 -If payload = 0x04FF, it will reset the LDDS20
443 -
444 -
445 -* (% style="color:blue" %)**CFM**
446 -
447 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
448 -
449 -
450 -
451 451  == 2.5  ​Show Data in DataCake IoT Server ==
452 452  
453 453  (((
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content