Last modified by Xiaoling on 2025/04/27 16:45

From version 170.5
edited by Xiaoling
on 2022/06/15 09:46
Change comment: There is no comment for this version
To version 143.3
edited by Xiaoling
on 2022/06/10 17:25
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,97 +1,54 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
31 -)))
32 32  
33 -(((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
35 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
36 36  
37 -(((
38 -
39 -)))
40 40  
41 -(((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
43 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
44 44  
45 -(((
46 -
47 -)))
48 48  
49 -(((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
51 -)))
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
52 52  
53 -(((
54 -
55 -)))
56 56  
57 -(((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
59 -)))
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
60 60  
61 -(((
62 -
63 -)))
64 64  
65 -(((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
67 67  )))
68 -
69 -(((
70 -
71 71  )))
72 -)))
73 73  
74 -(((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 -)))
78 -)))
79 -)))
80 -)))
81 81  
41 +[[image:1654847051249-359.png]]
82 82  
83 -[[image:1655255122126-327.png]]
84 84  
85 85  
86 -
87 87  == ​1.2  Features ==
88 88  
89 89  * LoRaWAN 1.0.3 Class A
90 90  * Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
95 95  * Cable Length : 25cm
96 96  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 97  * AT Commands to change parameters
... ... @@ -98,136 +98,69 @@
98 98  * Uplink on periodically
99 99  * Downlink to change configure
100 100  * IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
102 102  
103 103  
104 104  
62 +== 1.3  Specification ==
105 105  
106 -== 1.3  Suitable Container & Liquid ==
64 +=== 1.3.1  Rated environmental conditions ===
107 107  
108 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
109 -* Container shape is regular, and surface is smooth.
110 -* Container Thickness:
111 -** Pure metal material.  2~~8mm, best is 3~~5mm
112 -** Pure non metal material: <10 mm
113 -* Pure liquid without irregular deposition.
66 +[[image:image-20220610154839-1.png]]
114 114  
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
115 115  
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
116 116  
117 -== 1.4  Mechanical ==
118 118  
119 -[[image:image-20220615090910-1.png]]
120 120  
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
121 121  
122 -[[image:image-20220615090910-2.png]]
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
123 123  
124 124  
125 125  
126 -== 1.5  Install LDDS20 ==
80 +[[image:1654852253176-749.png]]
127 127  
128 128  
129 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
83 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
130 130  
131 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
132 132  
133 -[[image:image-20220615091045-3.png]]
86 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
134 134  
135 135  
136 136  
137 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
90 +== 1.5 Applications ==
138 138  
139 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
92 +* Horizontal distance measurement
93 +* Liquid level measurement
94 +* Parking management system
95 +* Object proximity and presence detection
96 +* Intelligent trash can management system
97 +* Robot obstacle avoidance
98 +* Automatic control
99 +* Sewer
100 +* Bottom water level monitoring
140 140  
141 -[[image:image-20220615092010-11.png]]
142 142  
143 143  
144 -No polish needed if the container is shine metal surface without paint or non-metal container.
104 +== 1.6  Pin mapping and power on ==
145 145  
146 -[[image:image-20220615092044-12.png]]
147 147  
107 +[[image:1654847583902-256.png]]
148 148  
149 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
150 150  
151 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
152 152  
111 += 2.  Configure LDDS75 to connect to LoRaWAN network =
153 153  
154 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
155 -
156 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
157 -
158 -
159 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
160 -
161 -
162 -(% style="color:red" %)**LED Status:**
163 -
164 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
165 -
166 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
167 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
168 -
169 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
170 -
171 -
172 -(% style="color:red" %)**Note 2:**
173 -
174 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
175 -
176 -
177 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
178 -
179 -
180 -Prepare Eproxy AB glue.
181 -
182 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
183 -
184 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
185 -
186 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
187 -
188 -
189 -(% style="color:red" %)**Note 1:**
190 -
191 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
192 -
193 -
194 -(% style="color:red" %)**Note 2:**
195 -
196 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
197 -
198 -
199 -
200 -== 1.6 ​ Applications ==
201 -
202 -* Smart liquid control solution.
203 -* Smart liquefied gas solution.
204 -
205 -
206 -== 1.7  Precautions ==
207 -
208 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
209 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
210 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
211 -
212 -
213 -== 1.8  Pin mapping and power on ==
214 -
215 -
216 -[[image:1655257026882-201.png]]
217 -
218 -
219 -
220 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
221 -
222 -
223 223  == 2.1  How it works ==
224 224  
225 225  (((
226 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
116 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
227 227  )))
228 228  
229 229  (((
230 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
120 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
231 231  )))
232 232  
233 233  
... ... @@ -247,8 +247,6 @@
247 247  )))
248 248  
249 249  (((
250 -
251 -
252 252  (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
253 253  )))
254 254  
... ... @@ -259,19 +259,11 @@
259 259  [[image:image-20220607170145-1.jpeg]]
260 260  
261 261  
262 -(((
263 263  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
264 -)))
265 265  
266 -(((
267 267  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
268 -)))
269 269  
270 -(((
271 -
272 -
273 273  **Add APP EUI in the application**
274 -)))
275 275  
276 276  [[image:image-20220610161353-4.png]]
277 277  
... ... @@ -314,15 +314,11 @@
314 314  == 2.3  ​Uplink Payload ==
315 315  
316 316  (((
317 -(((
318 318  LDDS75 will uplink payload via LoRaWAN with below payload format: 
319 -)))
320 320  
321 -(((
322 322  Uplink payload includes in total 4 bytes.
323 323  Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
324 324  )))
325 -)))
326 326  
327 327  (((
328 328  
... ... @@ -333,12 +333,12 @@
333 333  **Size (bytes)**
334 334  )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
335 335  |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
336 -[[Distance>>||anchor="H2.3.2A0Distance"]]
212 +[[Distance>>||anchor="H2.3.3A0Distance"]]
337 337  
338 338  (unit: mm)
339 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
340 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
341 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
215 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
342 342  
343 343  [[image:1654850511545-399.png]]
344 344  
... ... @@ -357,21 +357,19 @@
357 357  
358 358  === 2.3.2  Distance ===
359 359  
360 -(((
361 361  Get the distance. Flat object range 280mm - 7500mm.
362 -)))
363 363  
364 -(((
365 365  For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
366 -)))
367 367  
368 368  
369 369  * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
370 370  * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
371 371  
244 +
245 +
372 372  === 2.3.3  Interrupt Pin ===
373 373  
374 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
375 375  
376 376  **Example:**
377 377  
... ... @@ -397,18 +397,14 @@
397 397  
398 398  === 2.3.5  Sensor Flag ===
399 399  
400 -(((
401 401  0x01: Detect Ultrasonic Sensor
402 -)))
403 403  
404 -(((
405 405  0x00: No Ultrasonic Sensor
406 -)))
407 407  
408 408  
279 +===
280 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
409 409  
410 -=== 2.3.6  Decode payload in The Things Network ===
411 -
412 412  While using TTN network, you can add the payload format to decode the payload.
413 413  
414 414  
... ... @@ -416,9 +416,7 @@
416 416  
417 417  The payload decoder function for TTN V3 is here:
418 418  
419 -(((
420 420  LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
421 -)))
422 422  
423 423  
424 424  
... ... @@ -944,20 +944,15 @@
944 944  * Solid ON for 5 seconds once device successful Join the network.
945 945  * Blink once when device transmit a packet.
946 946  
815 +
816 +
947 947  == 2.8  ​Firmware Change Log ==
948 948  
949 949  
950 -(((
951 951  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
952 -)))
953 953  
954 -(((
955 -
956 -)))
957 957  
958 -(((
959 959  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
960 -)))
961 961  
962 962  
963 963  
... ... @@ -966,13 +966,11 @@
966 966  
967 967  [[image:image-20220610172003-1.png]]
968 968  
969 -
970 970  [[image:image-20220610172003-2.png]]
971 971  
972 972  
835 +== 2.10  Battery Analysis  ==
973 973  
974 -== 2.10  Battery Analysis ==
975 -
976 976  === 2.10.1  Battery Type ===
977 977  
978 978  The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
... ... @@ -981,7 +981,7 @@
981 981  The battery related documents as below:
982 982  
983 983  * (((
984 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
845 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
985 985  )))
986 986  * (((
987 987  [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
... ... @@ -996,31 +996,84 @@
996 996  
997 997  === 2.10.2  Replace the battery ===
998 998  
860 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
861 +
862 +
863 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
864 +
865 +
866 +
867 += 3.  LiDAR ToF Measurement =
868 +
869 +== 3.1 Principle of Distance Measurement ==
870 +
871 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
872 +
873 +[[image:1654831757579-263.png]]
874 +
875 +
876 +
877 +== 3.2 Distance Measurement Characteristics ==
878 +
879 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
880 +
881 +[[image:1654831774373-275.png]]
882 +
883 +
999 999  (((
1000 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
885 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
1001 1001  )))
1002 1002  
1003 1003  (((
1004 -
889 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
1005 1005  )))
1006 1006  
1007 1007  (((
1008 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
893 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
1009 1009  )))
1010 1010  
1011 1011  
897 +(((
898 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
899 +)))
1012 1012  
1013 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
1014 1014  
902 +[[image:1654831797521-720.png]]
903 +
904 +
1015 1015  (((
906 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
907 +)))
908 +
909 +[[image:1654831810009-716.png]]
910 +
911 +
1016 1016  (((
1017 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
913 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
1018 1018  )))
915 +
916 +
917 +
918 +== 3.3 Notice of usage: ==
919 +
920 +Possible invalid /wrong reading for LiDAR ToF tech:
921 +
922 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
923 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
924 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
925 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
926 +
927 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
928 +
929 +(((
930 +(((
931 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
1019 1019  )))
933 +)))
1020 1020  
1021 1021  * (((
1022 1022  (((
1023 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
937 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
1024 1024  )))
1025 1025  )))
1026 1026  * (((
... ... @@ -1035,7 +1035,7 @@
1035 1035  )))
1036 1036  
1037 1037  (((
1038 -There are two kinds of commands to configure LDDS75, they are:
952 +There are two kinds of commands to configure LLDS12, they are:
1039 1039  )))
1040 1040  )))
1041 1041  
... ... @@ -1076,155 +1076,351 @@
1076 1076  
1077 1077  * (((
1078 1078  (((
1079 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
993 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
1080 1080  )))
1081 1081  )))
1082 1082  
1083 1083  (((
1084 1084  (((
1085 -These commands only valid for LDDS75, as below:
999 +These commands only valid for LLDS12, as below:
1086 1086  )))
1087 1087  )))
1088 1088  
1089 1089  
1090 1090  
1091 -== 3.1  Access AT Commands ==
1005 +== 4.1  Set Transmit Interval Time ==
1092 1092  
1093 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
1007 +Feature: Change LoRaWAN End Node Transmit Interval.
1094 1094  
1095 -[[image:image-20220610172924-4.png||height="483" width="988"]]
1009 +(% style="color:#037691" %)**AT Command: AT+TDC**
1096 1096  
1011 +[[image:image-20220607171554-8.png]]
1097 1097  
1098 -Or if you have below board, use below connection:
1099 1099  
1014 +(((
1015 +(% style="color:#037691" %)**Downlink Command: 0x01**
1016 +)))
1100 1100  
1101 -[[image:image-20220610172924-5.png]]
1018 +(((
1019 +Format: Command Code (0x01) followed by 3 bytes time value.
1020 +)))
1102 1102  
1022 +(((
1023 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1024 +)))
1103 1103  
1026 +* (((
1027 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1028 +)))
1029 +* (((
1030 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1031 +)))
1032 +
1033 +== 4.2  Set Interrupt Mode ==
1034 +
1035 +Feature, Set Interrupt mode for GPIO_EXIT.
1036 +
1037 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
1038 +
1039 +[[image:image-20220610105806-2.png]]
1040 +
1041 +
1104 1104  (((
1105 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1043 +(% style="color:#037691" %)**Downlink Command: 0x06**
1106 1106  )))
1107 1107  
1046 +(((
1047 +Format: Command Code (0x06) followed by 3 bytes.
1048 +)))
1108 1108  
1109 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1050 +(((
1051 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1052 +)))
1110 1110  
1054 +* (((
1055 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1056 +)))
1057 +* (((
1058 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1059 +)))
1111 1111  
1061 +== 4.3  Get Firmware Version Info ==
1112 1112  
1113 -== 3.2  Set Transmit Interval Time ==
1063 +Feature: use downlink to get firmware version.
1114 1114  
1115 -Feature: Change LoRaWAN End Node Transmit Interval.
1065 +(% style="color:#037691" %)**Downlink Command: 0x26**
1116 1116  
1117 -(% style="color:#037691" %)**AT Command: AT+TDC**
1067 +[[image:image-20220607171917-10.png]]
1118 1118  
1119 -[[image:image-20220610173409-7.png]]
1069 +* Reply to the confirmation package: 26 01
1070 +* Reply to non-confirmed packet: 26 00
1120 1120  
1072 +Device will send an uplink after got this downlink command. With below payload:
1121 1121  
1074 +Configures info payload:
1075 +
1076 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1077 +|=(((
1078 +**Size(bytes)**
1079 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1080 +|**Value**|Software Type|(((
1081 +Frequency
1082 +
1083 +Band
1084 +)))|Sub-band|(((
1085 +Firmware
1086 +
1087 +Version
1088 +)))|Sensor Type|Reserve|(((
1089 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1090 +Always 0x02
1091 +)))
1092 +
1093 +**Software Type**: Always 0x03 for LLDS12
1094 +
1095 +
1096 +**Frequency Band**:
1097 +
1098 +*0x01: EU868
1099 +
1100 +*0x02: US915
1101 +
1102 +*0x03: IN865
1103 +
1104 +*0x04: AU915
1105 +
1106 +*0x05: KZ865
1107 +
1108 +*0x06: RU864
1109 +
1110 +*0x07: AS923
1111 +
1112 +*0x08: AS923-1
1113 +
1114 +*0x09: AS923-2
1115 +
1116 +*0xa0: AS923-3
1117 +
1118 +
1119 +**Sub-Band**: value 0x00 ~~ 0x08
1120 +
1121 +
1122 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1123 +
1124 +
1125 +**Sensor Type**:
1126 +
1127 +0x01: LSE01
1128 +
1129 +0x02: LDDS75
1130 +
1131 +0x03: LDDS20
1132 +
1133 +0x04: LLMS01
1134 +
1135 +0x05: LSPH01
1136 +
1137 +0x06: LSNPK01
1138 +
1139 +0x07: LLDS12
1140 +
1141 +
1142 +
1143 += 5.  Battery & How to replace =
1144 +
1145 +== 5.1  Battery Type ==
1146 +
1122 1122  (((
1123 -(% style="color:#037691" %)**Downlink Command: 0x01**
1148 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1124 1124  )))
1125 1125  
1126 1126  (((
1152 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1153 +)))
1154 +
1155 +[[image:1654593587246-335.png]]
1156 +
1157 +
1158 +Minimum Working Voltage for the LLDS12:
1159 +
1160 +LLDS12:  2.45v ~~ 3.6v
1161 +
1162 +
1163 +
1164 +== 5.2  Replace Battery ==
1165 +
1127 1127  (((
1128 -Format: Command Code (0x01) followed by 3 bytes time value.
1167 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1168 +)))
1129 1129  
1130 1130  (((
1131 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1171 +And make sure the positive and negative pins match.
1132 1132  )))
1133 1133  
1134 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1135 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1174 +
1175 +
1176 +== 5.3  Power Consumption Analyze ==
1177 +
1178 +(((
1179 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1136 1136  )))
1181 +
1182 +(((
1183 +Instruction to use as below:
1137 1137  )))
1138 1138  
1139 1139  
1187 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1140 1140  
1189 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1141 1141  
1142 1142  
1143 -== 3.3  Set Interrupt Mode ==
1192 +**Step 2**: Open it and choose
1144 1144  
1145 -Feature, Set Interrupt mode for GPIO_EXIT.
1194 +* Product Model
1195 +* Uplink Interval
1196 +* Working Mode
1146 1146  
1147 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1198 +And the Life expectation in difference case will be shown on the right.
1148 1148  
1149 -[[image:image-20220610174917-9.png]]
1200 +[[image:1654593605679-189.png]]
1150 1150  
1151 1151  
1152 -(% style="color:#037691" %)**Downlink Command: 0x06**
1203 +The battery related documents as below:
1153 1153  
1154 -Format: Command Code (0x06) followed by 3 bytes.
1205 +* (((
1206 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1207 +)))
1208 +* (((
1209 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1210 +)))
1211 +* (((
1212 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1213 +)))
1155 1155  
1215 +[[image:image-20220607172042-11.png]]
1216 +
1217 +
1218 +
1219 +=== 5.3.1  ​Battery Note ===
1220 +
1156 1156  (((
1157 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1222 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1158 1158  )))
1159 1159  
1160 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1161 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1162 1162  
1163 -= 4.  FAQ =
1164 1164  
1165 -== 4.1  What is the frequency plan for LDDS75? ==
1227 +=== ​5.3.2  Replace the battery ===
1166 1166  
1167 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1229 +(((
1230 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1231 +)))
1168 1168  
1233 +(((
1234 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1235 +)))
1169 1169  
1170 1170  
1171 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1172 1172  
1173 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1174 -When downloading the images, choose the required image file for download. ​
1239 += 6.  Use AT Command =
1175 1175  
1241 +== 6.1  Access AT Commands ==
1176 1176  
1243 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1177 1177  
1178 -== 4.3  Can I use LDDS75 in condensation environment? ==
1245 +[[image:1654593668970-604.png]]
1179 1179  
1180 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1247 +**Connection:**
1181 1181  
1249 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1182 1182  
1251 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1183 1183  
1184 -= 5.  Trouble Shooting =
1253 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1185 1185  
1186 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1187 1187  
1188 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1256 +(((
1257 +(((
1258 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1259 +)))
1189 1189  
1261 +(((
1262 +LLDS12 will output system info once power on as below:
1263 +)))
1264 +)))
1190 1190  
1191 -== 5.2  AT Command input doesn't work ==
1192 1192  
1267 + [[image:1654593712276-618.png]]
1268 +
1269 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1270 +
1271 +
1272 += 7.  FAQ =
1273 +
1274 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1275 +
1276 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1277 +When downloading the images, choose the required image file for download. ​
1278 +
1279 +
1280 += 8.  Trouble Shooting =
1281 +
1282 +== 8.1  AT Commands input doesn’t work ==
1283 +
1284 +
1285 +(((
1193 1193  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1287 +)))
1194 1194  
1289 +
1290 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1291 +
1292 +
1195 1195  (((
1294 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1295 +)))
1296 +
1297 +(((
1298 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1299 +)))
1300 +
1301 +(((
1196 1196  
1197 1197  )))
1198 1198  
1305 +(((
1306 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1307 +)))
1199 1199  
1200 -= 6.  Order Info =
1309 +(((
1310 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1311 +)))
1201 1201  
1202 1202  
1203 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1204 1204  
1315 += 9.  Order Info =
1205 1205  
1206 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1207 1207  
1208 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1209 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1210 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1211 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1212 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1213 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1214 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1215 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1318 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1216 1216  
1217 -(% style="color:blue" %)**YY**(%%): Battery Option
1218 1218  
1219 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1220 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1321 +(% style="color:blue" %)**XX**(%%): The default frequency band
1221 1221  
1222 -= 7. ​ Packing Info =
1323 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1324 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1325 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1326 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1327 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1328 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1329 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1330 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1223 1223  
1332 += 10. ​ Packing Info =
1224 1224  
1334 +
1225 1225  **Package Includes**:
1226 1226  
1227 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1337 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1228 1228  
1229 1229  **Dimension and weight**:
1230 1230  
... ... @@ -1233,7 +1233,7 @@
1233 1233  * Package Size / pcs : cm
1234 1234  * Weight / pcs : g
1235 1235  
1236 -= 8.  ​Support =
1346 += 11.  ​Support =
1237 1237  
1238 1238  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1239 1239  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content