Last modified by Xiaoling on 2025/04/27 16:45

From version 169.8
edited by Xiaoling
on 2022/06/15 09:35
Change comment: There is no comment for this version
To version 143.2
edited by Xiaoling
on 2022/06/10 17:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,97 +1,54 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
31 -)))
32 32  
33 -(((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
35 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
36 36  
37 -(((
38 -
39 -)))
40 40  
41 -(((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
43 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
44 44  
45 -(((
46 -
47 -)))
48 48  
49 -(((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
51 -)))
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
52 52  
53 -(((
54 -
55 -)))
56 56  
57 -(((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
59 -)))
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
60 60  
61 -(((
62 -
63 -)))
64 64  
65 -(((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
67 67  )))
68 -
69 -(((
70 -
71 71  )))
72 -)))
73 73  
74 -(((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 -)))
78 -)))
79 -)))
80 -)))
81 81  
41 +[[image:1654847051249-359.png]]
82 82  
83 -[[image:1655255122126-327.png]]
84 84  
85 85  
86 -
87 87  == ​1.2  Features ==
88 88  
89 89  * LoRaWAN 1.0.3 Class A
90 90  * Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
95 95  * Cable Length : 25cm
96 96  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 97  * AT Commands to change parameters
... ... @@ -98,111 +98,52 @@
98 98  * Uplink on periodically
99 99  * Downlink to change configure
100 100  * IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
102 102  
103 103  
104 -== 1.3  Suitable Container & Liquid ==
105 105  
106 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
107 -* Container shape is regular, and surface is smooth.
108 -* Container Thickness:
109 -** Pure metal material.  2~~8mm, best is 3~~5mm
110 -** Pure non metal material: <10 mm
111 -* Pure liquid without irregular deposition.
62 +== 1.3  Specification ==
112 112  
64 +=== 1.3.1  Rated environmental conditions ===
113 113  
114 -== 1.4  Mechanical ==
66 +[[image:image-20220610154839-1.png]]
115 115  
116 -[[image:image-20220615090910-1.png]]
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
117 117  
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
118 118  
119 -[[image:image-20220615090910-2.png]]
120 120  
121 121  
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
122 122  
123 -== 1.5  Install LDDS20 ==
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
124 124  
125 125  
126 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
127 127  
128 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
80 +[[image:1654852253176-749.png]]
129 129  
130 -[[image:image-20220615091045-3.png]]
131 131  
83 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
132 132  
133 133  
134 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
86 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
135 135  
136 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
137 137  
138 -[[image:image-20220615092010-11.png]]
139 139  
90 +== 1.5 ​ Applications ==
140 140  
141 -No polish needed if the container is shine metal surface without paint or non-metal container.
92 +* Horizontal distance measurement
93 +* Liquid level measurement
94 +* Parking management system
95 +* Object proximity and presence detection
96 +* Intelligent trash can management system
97 +* Robot obstacle avoidance
98 +* Automatic control
99 +* Sewer
100 +* Bottom water level monitoring
142 142  
143 -[[image:image-20220615092044-12.png]]
144 144  
145 145  
146 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
147 -
148 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
149 -
150 -
151 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
152 -
153 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
154 -
155 -
156 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
157 -
158 -
159 -(% style="color:red" %)**LED Status:**
160 -
161 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
162 -
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
164 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
165 -
166 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
167 -
168 -
169 -(% style="color:red" %)**Note 2:**
170 -
171 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
172 -
173 -
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 -
176 -
177 -Prepare Eproxy AB glue.
178 -
179 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 -
181 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
182 -
183 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
184 -
185 -
186 -(% style="color:red" %)**Note 1:**
187 -
188 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
189 -
190 -
191 -(% style="color:red" %)**Note 2:**
192 -
193 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
194 -
195 -
196 -
197 -== 1.6 ​ Applications ==
198 -
199 -
200 -
201 -* Smart liquid control solution.
202 -* Smart liquefied gas solution.
203 -
204 -
205 -
206 206  == 1.6  Pin mapping and power on ==
207 207  
208 208  
... ... @@ -239,8 +239,6 @@
239 239  )))
240 240  
241 241  (((
242 -
243 -
244 244  (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
245 245  )))
246 246  
... ... @@ -251,19 +251,11 @@
251 251  [[image:image-20220607170145-1.jpeg]]
252 252  
253 253  
254 -(((
255 255  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
256 -)))
257 257  
258 -(((
259 259  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
260 -)))
261 261  
262 -(((
263 -
264 -
265 265  **Add APP EUI in the application**
266 -)))
267 267  
268 268  [[image:image-20220610161353-4.png]]
269 269  
... ... @@ -306,15 +306,11 @@
306 306  == 2.3  ​Uplink Payload ==
307 307  
308 308  (((
309 -(((
310 310  LDDS75 will uplink payload via LoRaWAN with below payload format: 
311 -)))
312 312  
313 -(((
314 314  Uplink payload includes in total 4 bytes.
315 315  Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 316  )))
317 -)))
318 318  
319 319  (((
320 320  
... ... @@ -325,12 +325,12 @@
325 325  **Size (bytes)**
326 326  )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
327 327  |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
328 -[[Distance>>||anchor="H2.3.2A0Distance"]]
212 +[[Distance>>||anchor="H2.3.3A0Distance"]]
329 329  
330 330  (unit: mm)
331 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
332 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
333 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
215 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
334 334  
335 335  [[image:1654850511545-399.png]]
336 336  
... ... @@ -349,21 +349,19 @@
349 349  
350 350  === 2.3.2  Distance ===
351 351  
352 -(((
353 353  Get the distance. Flat object range 280mm - 7500mm.
354 -)))
355 355  
356 -(((
357 357  For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
358 -)))
359 359  
360 360  
361 361  * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
362 362  * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
363 363  
244 +
245 +
364 364  === 2.3.3  Interrupt Pin ===
365 365  
366 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
367 367  
368 368  **Example:**
369 369  
... ... @@ -389,18 +389,14 @@
389 389  
390 390  === 2.3.5  Sensor Flag ===
391 391  
392 -(((
393 393  0x01: Detect Ultrasonic Sensor
394 -)))
395 395  
396 -(((
397 397  0x00: No Ultrasonic Sensor
398 -)))
399 399  
400 400  
279 +===
280 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
401 401  
402 -=== 2.3.6  Decode payload in The Things Network ===
403 -
404 404  While using TTN network, you can add the payload format to decode the payload.
405 405  
406 406  
... ... @@ -408,9 +408,7 @@
408 408  
409 409  The payload decoder function for TTN V3 is here:
410 410  
411 -(((
412 412  LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
413 -)))
414 414  
415 415  
416 416  
... ... @@ -936,20 +936,15 @@
936 936  * Solid ON for 5 seconds once device successful Join the network.
937 937  * Blink once when device transmit a packet.
938 938  
815 +
816 +
939 939  == 2.8  ​Firmware Change Log ==
940 940  
941 941  
942 -(((
943 943  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
944 -)))
945 945  
946 -(((
947 -
948 -)))
949 949  
950 -(((
951 951  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
952 -)))
953 953  
954 954  
955 955  
... ... @@ -958,13 +958,11 @@
958 958  
959 959  [[image:image-20220610172003-1.png]]
960 960  
961 -
962 962  [[image:image-20220610172003-2.png]]
963 963  
964 964  
835 +== 2.10  Battery Analysis  ==
965 965  
966 -== 2.10  Battery Analysis ==
967 -
968 968  === 2.10.1  Battery Type ===
969 969  
970 970  The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
... ... @@ -973,7 +973,7 @@
973 973  The battery related documents as below:
974 974  
975 975  * (((
976 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
845 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
977 977  )))
978 978  * (((
979 979  [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
... ... @@ -985,34 +985,77 @@
985 985   [[image:image-20220610172400-3.png]]
986 986  
987 987  
857 += 3.  LiDAR ToF Measurement =
988 988  
989 -=== 2.10.2  Replace the battery ===
859 +== 3.1 Principle of Distance Measurement ==
990 990  
861 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
862 +
863 +[[image:1654831757579-263.png]]
864 +
865 +
866 +
867 +== 3.2 Distance Measurement Characteristics ==
868 +
869 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
870 +
871 +[[image:1654831774373-275.png]]
872 +
873 +
991 991  (((
992 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
875 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
993 993  )))
994 994  
995 995  (((
996 -
879 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
997 997  )))
998 998  
999 999  (((
1000 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
883 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
1001 1001  )))
1002 1002  
1003 1003  
887 +(((
888 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
889 +)))
1004 1004  
1005 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
1006 1006  
892 +[[image:1654831797521-720.png]]
893 +
894 +
1007 1007  (((
896 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
897 +)))
898 +
899 +[[image:1654831810009-716.png]]
900 +
901 +
1008 1008  (((
1009 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
903 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
1010 1010  )))
905 +
906 +
907 +
908 +== 3.3 Notice of usage: ==
909 +
910 +Possible invalid /wrong reading for LiDAR ToF tech:
911 +
912 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
913 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
914 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
915 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
916 +
917 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
918 +
919 +(((
920 +(((
921 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
1011 1011  )))
923 +)))
1012 1012  
1013 1013  * (((
1014 1014  (((
1015 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
927 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
1016 1016  )))
1017 1017  )))
1018 1018  * (((
... ... @@ -1027,7 +1027,7 @@
1027 1027  )))
1028 1028  
1029 1029  (((
1030 -There are two kinds of commands to configure LDDS75, they are:
942 +There are two kinds of commands to configure LLDS12, they are:
1031 1031  )))
1032 1032  )))
1033 1033  
... ... @@ -1068,155 +1068,351 @@
1068 1068  
1069 1069  * (((
1070 1070  (((
1071 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
983 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
1072 1072  )))
1073 1073  )))
1074 1074  
1075 1075  (((
1076 1076  (((
1077 -These commands only valid for LDDS75, as below:
989 +These commands only valid for LLDS12, as below:
1078 1078  )))
1079 1079  )))
1080 1080  
1081 1081  
1082 1082  
1083 -== 3.1  Access AT Commands ==
995 +== 4.1  Set Transmit Interval Time ==
1084 1084  
1085 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
997 +Feature: Change LoRaWAN End Node Transmit Interval.
1086 1086  
1087 -[[image:image-20220610172924-4.png||height="483" width="988"]]
999 +(% style="color:#037691" %)**AT Command: AT+TDC**
1088 1088  
1001 +[[image:image-20220607171554-8.png]]
1089 1089  
1090 -Or if you have below board, use below connection:
1091 1091  
1004 +(((
1005 +(% style="color:#037691" %)**Downlink Command: 0x01**
1006 +)))
1092 1092  
1093 -[[image:image-20220610172924-5.png]]
1008 +(((
1009 +Format: Command Code (0x01) followed by 3 bytes time value.
1010 +)))
1094 1094  
1012 +(((
1013 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1014 +)))
1095 1095  
1016 +* (((
1017 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1018 +)))
1019 +* (((
1020 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1021 +)))
1022 +
1023 +== 4.2  Set Interrupt Mode ==
1024 +
1025 +Feature, Set Interrupt mode for GPIO_EXIT.
1026 +
1027 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
1028 +
1029 +[[image:image-20220610105806-2.png]]
1030 +
1031 +
1096 1096  (((
1097 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1033 +(% style="color:#037691" %)**Downlink Command: 0x06**
1098 1098  )))
1099 1099  
1036 +(((
1037 +Format: Command Code (0x06) followed by 3 bytes.
1038 +)))
1100 1100  
1101 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1040 +(((
1041 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1042 +)))
1102 1102  
1044 +* (((
1045 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1046 +)))
1047 +* (((
1048 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1049 +)))
1103 1103  
1051 +== 4.3  Get Firmware Version Info ==
1104 1104  
1105 -== 3.2  Set Transmit Interval Time ==
1053 +Feature: use downlink to get firmware version.
1106 1106  
1107 -Feature: Change LoRaWAN End Node Transmit Interval.
1055 +(% style="color:#037691" %)**Downlink Command: 0x26**
1108 1108  
1109 -(% style="color:#037691" %)**AT Command: AT+TDC**
1057 +[[image:image-20220607171917-10.png]]
1110 1110  
1111 -[[image:image-20220610173409-7.png]]
1059 +* Reply to the confirmation package: 26 01
1060 +* Reply to non-confirmed packet: 26 00
1112 1112  
1062 +Device will send an uplink after got this downlink command. With below payload:
1113 1113  
1064 +Configures info payload:
1065 +
1066 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1067 +|=(((
1068 +**Size(bytes)**
1069 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1070 +|**Value**|Software Type|(((
1071 +Frequency
1072 +
1073 +Band
1074 +)))|Sub-band|(((
1075 +Firmware
1076 +
1077 +Version
1078 +)))|Sensor Type|Reserve|(((
1079 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1080 +Always 0x02
1081 +)))
1082 +
1083 +**Software Type**: Always 0x03 for LLDS12
1084 +
1085 +
1086 +**Frequency Band**:
1087 +
1088 +*0x01: EU868
1089 +
1090 +*0x02: US915
1091 +
1092 +*0x03: IN865
1093 +
1094 +*0x04: AU915
1095 +
1096 +*0x05: KZ865
1097 +
1098 +*0x06: RU864
1099 +
1100 +*0x07: AS923
1101 +
1102 +*0x08: AS923-1
1103 +
1104 +*0x09: AS923-2
1105 +
1106 +*0xa0: AS923-3
1107 +
1108 +
1109 +**Sub-Band**: value 0x00 ~~ 0x08
1110 +
1111 +
1112 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1113 +
1114 +
1115 +**Sensor Type**:
1116 +
1117 +0x01: LSE01
1118 +
1119 +0x02: LDDS75
1120 +
1121 +0x03: LDDS20
1122 +
1123 +0x04: LLMS01
1124 +
1125 +0x05: LSPH01
1126 +
1127 +0x06: LSNPK01
1128 +
1129 +0x07: LLDS12
1130 +
1131 +
1132 +
1133 += 5.  Battery & How to replace =
1134 +
1135 +== 5.1  Battery Type ==
1136 +
1114 1114  (((
1115 -(% style="color:#037691" %)**Downlink Command: 0x01**
1138 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1116 1116  )))
1117 1117  
1118 1118  (((
1142 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1143 +)))
1144 +
1145 +[[image:1654593587246-335.png]]
1146 +
1147 +
1148 +Minimum Working Voltage for the LLDS12:
1149 +
1150 +LLDS12:  2.45v ~~ 3.6v
1151 +
1152 +
1153 +
1154 +== 5.2  Replace Battery ==
1155 +
1119 1119  (((
1120 -Format: Command Code (0x01) followed by 3 bytes time value.
1157 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1158 +)))
1121 1121  
1122 1122  (((
1123 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1161 +And make sure the positive and negative pins match.
1124 1124  )))
1125 1125  
1126 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1127 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1164 +
1165 +
1166 +== 5.3  Power Consumption Analyze ==
1167 +
1168 +(((
1169 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1128 1128  )))
1171 +
1172 +(((
1173 +Instruction to use as below:
1129 1129  )))
1130 1130  
1131 1131  
1177 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1132 1132  
1179 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1133 1133  
1134 1134  
1135 -== 3.3  Set Interrupt Mode ==
1182 +**Step 2**: Open it and choose
1136 1136  
1137 -Feature, Set Interrupt mode for GPIO_EXIT.
1184 +* Product Model
1185 +* Uplink Interval
1186 +* Working Mode
1138 1138  
1139 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1188 +And the Life expectation in difference case will be shown on the right.
1140 1140  
1141 -[[image:image-20220610174917-9.png]]
1190 +[[image:1654593605679-189.png]]
1142 1142  
1143 1143  
1144 -(% style="color:#037691" %)**Downlink Command: 0x06**
1193 +The battery related documents as below:
1145 1145  
1146 -Format: Command Code (0x06) followed by 3 bytes.
1195 +* (((
1196 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1197 +)))
1198 +* (((
1199 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1200 +)))
1201 +* (((
1202 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1203 +)))
1147 1147  
1205 +[[image:image-20220607172042-11.png]]
1206 +
1207 +
1208 +
1209 +=== 5.3.1  ​Battery Note ===
1210 +
1148 1148  (((
1149 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1212 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1150 1150  )))
1151 1151  
1152 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1153 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1154 1154  
1155 -= 4.  FAQ =
1156 1156  
1157 -== 4.1  What is the frequency plan for LDDS75? ==
1217 +=== ​5.3.2  Replace the battery ===
1158 1158  
1159 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1219 +(((
1220 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1221 +)))
1160 1160  
1223 +(((
1224 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1225 +)))
1161 1161  
1162 1162  
1163 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1164 1164  
1165 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1166 -When downloading the images, choose the required image file for download. ​
1229 += 6.  Use AT Command =
1167 1167  
1231 +== 6.1  Access AT Commands ==
1168 1168  
1233 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1169 1169  
1170 -== 4.3  Can I use LDDS75 in condensation environment? ==
1235 +[[image:1654593668970-604.png]]
1171 1171  
1172 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1237 +**Connection:**
1173 1173  
1239 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1174 1174  
1241 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1175 1175  
1176 -= 5.  Trouble Shooting =
1243 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1177 1177  
1178 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1179 1179  
1180 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1246 +(((
1247 +(((
1248 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1249 +)))
1181 1181  
1251 +(((
1252 +LLDS12 will output system info once power on as below:
1253 +)))
1254 +)))
1182 1182  
1183 -== 5.2  AT Command input doesn't work ==
1184 1184  
1257 + [[image:1654593712276-618.png]]
1258 +
1259 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1260 +
1261 +
1262 += 7.  FAQ =
1263 +
1264 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1265 +
1266 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1267 +When downloading the images, choose the required image file for download. ​
1268 +
1269 +
1270 += 8.  Trouble Shooting =
1271 +
1272 +== 8.1  AT Commands input doesn’t work ==
1273 +
1274 +
1275 +(((
1185 1185  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1277 +)))
1186 1186  
1279 +
1280 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1281 +
1282 +
1187 1187  (((
1284 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1285 +)))
1286 +
1287 +(((
1288 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1289 +)))
1290 +
1291 +(((
1188 1188  
1189 1189  )))
1190 1190  
1295 +(((
1296 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1297 +)))
1191 1191  
1192 -= 6.  Order Info =
1299 +(((
1300 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1301 +)))
1193 1193  
1194 1194  
1195 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1196 1196  
1305 += 9.  Order Info =
1197 1197  
1198 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1199 1199  
1200 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1201 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1202 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1203 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1204 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1205 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1206 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1207 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1308 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1208 1208  
1209 -(% style="color:blue" %)**YY**(%%): Battery Option
1210 1210  
1211 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1212 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1311 +(% style="color:blue" %)**XX**(%%): The default frequency band
1213 1213  
1214 -= 7. ​ Packing Info =
1313 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1314 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1315 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1316 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1317 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1318 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1319 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1320 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1215 1215  
1322 += 10. ​ Packing Info =
1216 1216  
1324 +
1217 1217  **Package Includes**:
1218 1218  
1219 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1327 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1220 1220  
1221 1221  **Dimension and weight**:
1222 1222  
... ... @@ -1225,7 +1225,7 @@
1225 1225  * Package Size / pcs : cm
1226 1226  * Weight / pcs : g
1227 1227  
1228 -= 8.  ​Support =
1336 += 11.  ​Support =
1229 1229  
1230 1230  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1231 1231  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content