Last modified by Xiaoling on 2025/04/27 16:45

From version 169.6
edited by Xiaoling
on 2022/06/15 09:34
Change comment: There is no comment for this version
To version 143.2
edited by Xiaoling
on 2022/06/10 17:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,97 +1,54 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
31 -)))
32 32  
33 -(((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
35 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
36 36  
37 -(((
38 -
39 -)))
40 40  
41 -(((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
43 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
44 44  
45 -(((
46 -
47 -)))
48 48  
49 -(((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
51 -)))
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
52 52  
53 -(((
54 -
55 -)))
56 56  
57 -(((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
59 -)))
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
60 60  
61 -(((
62 -
63 -)))
64 64  
65 -(((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
67 67  )))
68 -
69 -(((
70 -
71 71  )))
72 -)))
73 73  
74 -(((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 -)))
78 -)))
79 -)))
80 -)))
81 81  
41 +[[image:1654847051249-359.png]]
82 82  
83 -[[image:1655255122126-327.png]]
84 84  
85 85  
86 -
87 87  == ​1.2  Features ==
88 88  
89 89  * LoRaWAN 1.0.3 Class A
90 90  * Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
95 95  * Cable Length : 25cm
96 96  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 97  * AT Commands to change parameters
... ... @@ -98,102 +98,38 @@
98 98  * Uplink on periodically
99 99  * Downlink to change configure
100 100  * IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
102 102  
103 103  
104 -== 1.3  Suitable Container & Liquid ==
105 105  
106 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
107 -* Container shape is regular, and surface is smooth.
108 -* Container Thickness:
109 -** Pure metal material.  2~~8mm, best is 3~~5mm
110 -** Pure non metal material: <10 mm
111 -* Pure liquid without irregular deposition.
62 +== 1.3  Specification ==
112 112  
64 +=== 1.3.1  Rated environmental conditions ===
113 113  
114 -== 1.4  Mechanical ==
66 +[[image:image-20220610154839-1.png]]
115 115  
116 -[[image:image-20220615090910-1.png]]
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
117 117  
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
118 118  
119 -[[image:image-20220615090910-2.png]]
120 120  
121 121  
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
122 122  
123 -== 1.5  Install LDDS20 ==
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
124 124  
125 125  
126 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
127 127  
128 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
80 +[[image:1654852253176-749.png]]
129 129  
130 -[[image:image-20220615091045-3.png]]
131 131  
83 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
132 132  
133 133  
134 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
86 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
135 135  
136 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
137 137  
138 -[[image:image-20220615092010-11.png]]
139 139  
140 -
141 -No polish needed if the container is shine metal surface without paint or non-metal container.
142 -
143 -[[image:image-20220615092044-12.png]]
144 -
145 -
146 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
147 -
148 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
149 -
150 -
151 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
152 -
153 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
154 -
155 -
156 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
157 -
158 -
159 -(% style="color:red" %)**LED Status:**
160 -
161 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
162 -
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
164 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
165 -
166 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
167 -
168 -
169 -(% style="color:red" %)**Note 2:**
170 -
171 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
172 -
173 -
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 -
176 -
177 -Prepare Eproxy AB glue.
178 -
179 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 -
181 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
182 -
183 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
184 -
185 -
186 -(% style="color:red" %)**Note 1:**
187 -
188 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
189 -
190 -
191 -(% style="color:red" %)**Note 2:**
192 -
193 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
194 -
195 -
196 -
197 197  == 1.5 ​ Applications ==
198 198  
199 199  * Horizontal distance measurement
... ... @@ -206,6 +206,8 @@
206 206  * Sewer
207 207  * Bottom water level monitoring
208 208  
102 +
103 +
209 209  == 1.6  Pin mapping and power on ==
210 210  
211 211  
... ... @@ -242,8 +242,6 @@
242 242  )))
243 243  
244 244  (((
245 -
246 -
247 247  (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
248 248  )))
249 249  
... ... @@ -254,19 +254,11 @@
254 254  [[image:image-20220607170145-1.jpeg]]
255 255  
256 256  
257 -(((
258 258  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
259 -)))
260 260  
261 -(((
262 262  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
263 -)))
264 264  
265 -(((
266 -
267 -
268 268  **Add APP EUI in the application**
269 -)))
270 270  
271 271  [[image:image-20220610161353-4.png]]
272 272  
... ... @@ -309,15 +309,11 @@
309 309  == 2.3  ​Uplink Payload ==
310 310  
311 311  (((
312 -(((
313 313  LDDS75 will uplink payload via LoRaWAN with below payload format: 
314 -)))
315 315  
316 -(((
317 317  Uplink payload includes in total 4 bytes.
318 318  Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
319 319  )))
320 -)))
321 321  
322 322  (((
323 323  
... ... @@ -328,12 +328,12 @@
328 328  **Size (bytes)**
329 329  )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
330 330  |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
331 -[[Distance>>||anchor="H2.3.2A0Distance"]]
212 +[[Distance>>||anchor="H2.3.3A0Distance"]]
332 332  
333 333  (unit: mm)
334 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
335 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
336 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
215 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
337 337  
338 338  [[image:1654850511545-399.png]]
339 339  
... ... @@ -352,21 +352,19 @@
352 352  
353 353  === 2.3.2  Distance ===
354 354  
355 -(((
356 356  Get the distance. Flat object range 280mm - 7500mm.
357 -)))
358 358  
359 -(((
360 360  For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
361 -)))
362 362  
363 363  
364 364  * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
365 365  * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
366 366  
244 +
245 +
367 367  === 2.3.3  Interrupt Pin ===
368 368  
369 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
370 370  
371 371  **Example:**
372 372  
... ... @@ -392,18 +392,14 @@
392 392  
393 393  === 2.3.5  Sensor Flag ===
394 394  
395 -(((
396 396  0x01: Detect Ultrasonic Sensor
397 -)))
398 398  
399 -(((
400 400  0x00: No Ultrasonic Sensor
401 -)))
402 402  
403 403  
279 +===
280 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
404 404  
405 -=== 2.3.6  Decode payload in The Things Network ===
406 -
407 407  While using TTN network, you can add the payload format to decode the payload.
408 408  
409 409  
... ... @@ -411,9 +411,7 @@
411 411  
412 412  The payload decoder function for TTN V3 is here:
413 413  
414 -(((
415 415  LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
416 -)))
417 417  
418 418  
419 419  
... ... @@ -939,20 +939,15 @@
939 939  * Solid ON for 5 seconds once device successful Join the network.
940 940  * Blink once when device transmit a packet.
941 941  
815 +
816 +
942 942  == 2.8  ​Firmware Change Log ==
943 943  
944 944  
945 -(((
946 946  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
947 -)))
948 948  
949 -(((
950 -
951 -)))
952 952  
953 -(((
954 954  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
955 -)))
956 956  
957 957  
958 958  
... ... @@ -961,13 +961,11 @@
961 961  
962 962  [[image:image-20220610172003-1.png]]
963 963  
964 -
965 965  [[image:image-20220610172003-2.png]]
966 966  
967 967  
835 +== 2.10  Battery Analysis  ==
968 968  
969 -== 2.10  Battery Analysis ==
970 -
971 971  === 2.10.1  Battery Type ===
972 972  
973 973  The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
... ... @@ -976,7 +976,7 @@
976 976  The battery related documents as below:
977 977  
978 978  * (((
979 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
845 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
980 980  )))
981 981  * (((
982 982  [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
... ... @@ -988,34 +988,77 @@
988 988   [[image:image-20220610172400-3.png]]
989 989  
990 990  
857 += 3.  LiDAR ToF Measurement =
991 991  
992 -=== 2.10.2  Replace the battery ===
859 +== 3.1 Principle of Distance Measurement ==
993 993  
861 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
862 +
863 +[[image:1654831757579-263.png]]
864 +
865 +
866 +
867 +== 3.2 Distance Measurement Characteristics ==
868 +
869 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
870 +
871 +[[image:1654831774373-275.png]]
872 +
873 +
994 994  (((
995 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
875 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
996 996  )))
997 997  
998 998  (((
999 -
879 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
1000 1000  )))
1001 1001  
1002 1002  (((
1003 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
883 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
1004 1004  )))
1005 1005  
1006 1006  
887 +(((
888 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
889 +)))
1007 1007  
1008 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
1009 1009  
892 +[[image:1654831797521-720.png]]
893 +
894 +
1010 1010  (((
896 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
897 +)))
898 +
899 +[[image:1654831810009-716.png]]
900 +
901 +
1011 1011  (((
1012 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
903 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
1013 1013  )))
905 +
906 +
907 +
908 +== 3.3 Notice of usage: ==
909 +
910 +Possible invalid /wrong reading for LiDAR ToF tech:
911 +
912 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
913 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
914 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
915 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
916 +
917 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
918 +
919 +(((
920 +(((
921 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
1014 1014  )))
923 +)))
1015 1015  
1016 1016  * (((
1017 1017  (((
1018 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
927 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
1019 1019  )))
1020 1020  )))
1021 1021  * (((
... ... @@ -1030,7 +1030,7 @@
1030 1030  )))
1031 1031  
1032 1032  (((
1033 -There are two kinds of commands to configure LDDS75, they are:
942 +There are two kinds of commands to configure LLDS12, they are:
1034 1034  )))
1035 1035  )))
1036 1036  
... ... @@ -1071,155 +1071,351 @@
1071 1071  
1072 1072  * (((
1073 1073  (((
1074 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
983 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
1075 1075  )))
1076 1076  )))
1077 1077  
1078 1078  (((
1079 1079  (((
1080 -These commands only valid for LDDS75, as below:
989 +These commands only valid for LLDS12, as below:
1081 1081  )))
1082 1082  )))
1083 1083  
1084 1084  
1085 1085  
1086 -== 3.1  Access AT Commands ==
995 +== 4.1  Set Transmit Interval Time ==
1087 1087  
1088 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
997 +Feature: Change LoRaWAN End Node Transmit Interval.
1089 1089  
1090 -[[image:image-20220610172924-4.png||height="483" width="988"]]
999 +(% style="color:#037691" %)**AT Command: AT+TDC**
1091 1091  
1001 +[[image:image-20220607171554-8.png]]
1092 1092  
1093 -Or if you have below board, use below connection:
1094 1094  
1004 +(((
1005 +(% style="color:#037691" %)**Downlink Command: 0x01**
1006 +)))
1095 1095  
1096 -[[image:image-20220610172924-5.png]]
1008 +(((
1009 +Format: Command Code (0x01) followed by 3 bytes time value.
1010 +)))
1097 1097  
1012 +(((
1013 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1014 +)))
1098 1098  
1016 +* (((
1017 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1018 +)))
1019 +* (((
1020 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1021 +)))
1022 +
1023 +== 4.2  Set Interrupt Mode ==
1024 +
1025 +Feature, Set Interrupt mode for GPIO_EXIT.
1026 +
1027 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
1028 +
1029 +[[image:image-20220610105806-2.png]]
1030 +
1031 +
1099 1099  (((
1100 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1033 +(% style="color:#037691" %)**Downlink Command: 0x06**
1101 1101  )))
1102 1102  
1036 +(((
1037 +Format: Command Code (0x06) followed by 3 bytes.
1038 +)))
1103 1103  
1104 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1040 +(((
1041 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1042 +)))
1105 1105  
1044 +* (((
1045 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1046 +)))
1047 +* (((
1048 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1049 +)))
1106 1106  
1051 +== 4.3  Get Firmware Version Info ==
1107 1107  
1108 -== 3.2  Set Transmit Interval Time ==
1053 +Feature: use downlink to get firmware version.
1109 1109  
1110 -Feature: Change LoRaWAN End Node Transmit Interval.
1055 +(% style="color:#037691" %)**Downlink Command: 0x26**
1111 1111  
1112 -(% style="color:#037691" %)**AT Command: AT+TDC**
1057 +[[image:image-20220607171917-10.png]]
1113 1113  
1114 -[[image:image-20220610173409-7.png]]
1059 +* Reply to the confirmation package: 26 01
1060 +* Reply to non-confirmed packet: 26 00
1115 1115  
1062 +Device will send an uplink after got this downlink command. With below payload:
1116 1116  
1064 +Configures info payload:
1065 +
1066 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1067 +|=(((
1068 +**Size(bytes)**
1069 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1070 +|**Value**|Software Type|(((
1071 +Frequency
1072 +
1073 +Band
1074 +)))|Sub-band|(((
1075 +Firmware
1076 +
1077 +Version
1078 +)))|Sensor Type|Reserve|(((
1079 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1080 +Always 0x02
1081 +)))
1082 +
1083 +**Software Type**: Always 0x03 for LLDS12
1084 +
1085 +
1086 +**Frequency Band**:
1087 +
1088 +*0x01: EU868
1089 +
1090 +*0x02: US915
1091 +
1092 +*0x03: IN865
1093 +
1094 +*0x04: AU915
1095 +
1096 +*0x05: KZ865
1097 +
1098 +*0x06: RU864
1099 +
1100 +*0x07: AS923
1101 +
1102 +*0x08: AS923-1
1103 +
1104 +*0x09: AS923-2
1105 +
1106 +*0xa0: AS923-3
1107 +
1108 +
1109 +**Sub-Band**: value 0x00 ~~ 0x08
1110 +
1111 +
1112 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1113 +
1114 +
1115 +**Sensor Type**:
1116 +
1117 +0x01: LSE01
1118 +
1119 +0x02: LDDS75
1120 +
1121 +0x03: LDDS20
1122 +
1123 +0x04: LLMS01
1124 +
1125 +0x05: LSPH01
1126 +
1127 +0x06: LSNPK01
1128 +
1129 +0x07: LLDS12
1130 +
1131 +
1132 +
1133 += 5.  Battery & How to replace =
1134 +
1135 +== 5.1  Battery Type ==
1136 +
1117 1117  (((
1118 -(% style="color:#037691" %)**Downlink Command: 0x01**
1138 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1119 1119  )))
1120 1120  
1121 1121  (((
1142 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1143 +)))
1144 +
1145 +[[image:1654593587246-335.png]]
1146 +
1147 +
1148 +Minimum Working Voltage for the LLDS12:
1149 +
1150 +LLDS12:  2.45v ~~ 3.6v
1151 +
1152 +
1153 +
1154 +== 5.2  Replace Battery ==
1155 +
1122 1122  (((
1123 -Format: Command Code (0x01) followed by 3 bytes time value.
1157 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1158 +)))
1124 1124  
1125 1125  (((
1126 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1161 +And make sure the positive and negative pins match.
1127 1127  )))
1128 1128  
1129 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1130 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1164 +
1165 +
1166 +== 5.3  Power Consumption Analyze ==
1167 +
1168 +(((
1169 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1131 1131  )))
1171 +
1172 +(((
1173 +Instruction to use as below:
1132 1132  )))
1133 1133  
1134 1134  
1177 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1135 1135  
1179 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1136 1136  
1137 1137  
1138 -== 3.3  Set Interrupt Mode ==
1182 +**Step 2**: Open it and choose
1139 1139  
1140 -Feature, Set Interrupt mode for GPIO_EXIT.
1184 +* Product Model
1185 +* Uplink Interval
1186 +* Working Mode
1141 1141  
1142 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1188 +And the Life expectation in difference case will be shown on the right.
1143 1143  
1144 -[[image:image-20220610174917-9.png]]
1190 +[[image:1654593605679-189.png]]
1145 1145  
1146 1146  
1147 -(% style="color:#037691" %)**Downlink Command: 0x06**
1193 +The battery related documents as below:
1148 1148  
1149 -Format: Command Code (0x06) followed by 3 bytes.
1195 +* (((
1196 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1197 +)))
1198 +* (((
1199 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1200 +)))
1201 +* (((
1202 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1203 +)))
1150 1150  
1205 +[[image:image-20220607172042-11.png]]
1206 +
1207 +
1208 +
1209 +=== 5.3.1  ​Battery Note ===
1210 +
1151 1151  (((
1152 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1212 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1153 1153  )))
1154 1154  
1155 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1156 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1157 1157  
1158 -= 4.  FAQ =
1159 1159  
1160 -== 4.1  What is the frequency plan for LDDS75? ==
1217 +=== ​5.3.2  Replace the battery ===
1161 1161  
1162 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1219 +(((
1220 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1221 +)))
1163 1163  
1223 +(((
1224 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1225 +)))
1164 1164  
1165 1165  
1166 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1167 1167  
1168 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1169 -When downloading the images, choose the required image file for download. ​
1229 += 6.  Use AT Command =
1170 1170  
1231 +== 6.1  Access AT Commands ==
1171 1171  
1233 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1172 1172  
1173 -== 4.3  Can I use LDDS75 in condensation environment? ==
1235 +[[image:1654593668970-604.png]]
1174 1174  
1175 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1237 +**Connection:**
1176 1176  
1239 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1177 1177  
1241 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1178 1178  
1179 -= 5.  Trouble Shooting =
1243 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1180 1180  
1181 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1182 1182  
1183 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1246 +(((
1247 +(((
1248 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1249 +)))
1184 1184  
1251 +(((
1252 +LLDS12 will output system info once power on as below:
1253 +)))
1254 +)))
1185 1185  
1186 -== 5.2  AT Command input doesn't work ==
1187 1187  
1257 + [[image:1654593712276-618.png]]
1258 +
1259 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1260 +
1261 +
1262 += 7.  FAQ =
1263 +
1264 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1265 +
1266 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1267 +When downloading the images, choose the required image file for download. ​
1268 +
1269 +
1270 += 8.  Trouble Shooting =
1271 +
1272 +== 8.1  AT Commands input doesn’t work ==
1273 +
1274 +
1275 +(((
1188 1188  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1277 +)))
1189 1189  
1279 +
1280 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1281 +
1282 +
1190 1190  (((
1284 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1285 +)))
1286 +
1287 +(((
1288 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1289 +)))
1290 +
1291 +(((
1191 1191  
1192 1192  )))
1193 1193  
1295 +(((
1296 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1297 +)))
1194 1194  
1195 -= 6.  Order Info =
1299 +(((
1300 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1301 +)))
1196 1196  
1197 1197  
1198 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1199 1199  
1305 += 9.  Order Info =
1200 1200  
1201 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1202 1202  
1203 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1204 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1205 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1206 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1207 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1208 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1209 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1210 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1308 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1211 1211  
1212 -(% style="color:blue" %)**YY**(%%): Battery Option
1213 1213  
1214 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1215 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1311 +(% style="color:blue" %)**XX**(%%): The default frequency band
1216 1216  
1217 -= 7. ​ Packing Info =
1313 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1314 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1315 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1316 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1317 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1318 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1319 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1320 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1218 1218  
1322 += 10. ​ Packing Info =
1219 1219  
1324 +
1220 1220  **Package Includes**:
1221 1221  
1222 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1327 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1223 1223  
1224 1224  **Dimension and weight**:
1225 1225  
... ... @@ -1228,7 +1228,7 @@
1228 1228  * Package Size / pcs : cm
1229 1229  * Weight / pcs : g
1230 1230  
1231 -= 8.  ​Support =
1336 += 11.  ​Support =
1232 1232  
1233 1233  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1234 1234  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content