Last modified by Xiaoling on 2025/04/27 16:45

From version 169.4
edited by Xiaoling
on 2022/06/15 09:28
Change comment: There is no comment for this version
To version 143.1
edited by Xiaoling
on 2022/06/10 17:24
Change comment: Uploaded new attachment "image-20220610172400-3.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,97 +1,54 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 23  (((
24 -(((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
28 28  
29 -(((
30 -
31 -)))
32 32  
33 -(((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
35 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
36 36  
37 -(((
38 -
39 -)))
40 40  
41 -(((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
43 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
44 44  
45 -(((
46 -
47 -)))
48 48  
49 -(((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
51 -)))
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
52 52  
53 -(((
54 -
55 -)))
56 56  
57 -(((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
59 -)))
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
60 60  
61 -(((
62 -
63 -)))
64 64  
65 -(((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
67 67  )))
68 -
69 -(((
70 -
71 71  )))
72 -)))
73 73  
74 -(((
75 -(((
76 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 -)))
78 -)))
79 -)))
80 -)))
81 81  
41 +[[image:1654847051249-359.png]]
82 82  
83 -[[image:1655255122126-327.png]]
84 84  
85 85  
86 -
87 87  == ​1.2  Features ==
88 88  
89 89  * LoRaWAN 1.0.3 Class A
90 90  * Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
95 95  * Cable Length : 25cm
96 96  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 97  * AT Commands to change parameters
... ... @@ -98,109 +98,38 @@
98 98  * Uplink on periodically
99 99  * Downlink to change configure
100 100  * IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
102 102  
103 103  
104 104  
105 -== 1.3  Suitable Container & Liquid ==
62 +== 1.3  Specification ==
106 106  
107 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
108 -* Container shape is regular, and surface is smooth.
109 -* Container Thickness:
110 -** Pure metal material.  2~~8mm, best is 3~~5mm
111 -** Pure non metal material: <10 mm
112 -* Pure liquid without irregular deposition.
64 +=== 1.3.1  Rated environmental conditions ===
113 113  
66 +[[image:image-20220610154839-1.png]]
114 114  
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
115 115  
116 -== 1. Mechanical ==
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
117 117  
118 -[[image:image-20220615090910-1.png]]
119 119  
120 120  
121 -[[image:image-20220615090910-2.png]]
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
122 122  
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
123 123  
124 124  
125 -== 1.5  Install LDDS20 ==
126 126  
80 +[[image:1654852253176-749.png]]
127 127  
128 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
129 129  
130 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
83 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
131 131  
132 -[[image:image-20220615091045-3.png]]
133 133  
86 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
134 134  
135 135  
136 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
137 137  
138 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
139 -
140 -[[image:image-20220615092010-11.png]]
141 -
142 -
143 -No polish needed if the container is shine metal surface without paint or non-metal container.
144 -
145 -[[image:image-20220615092044-12.png]]
146 -
147 -
148 -(% style="color:blue" %)**Step3:  **(%%)Test the installation point.
149 -
150 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
151 -
152 -
153 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
154 -
155 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
156 -
157 -
158 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
159 -
160 -
161 -(% style="color:red" %)**LED Status:**
162 -
163 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
164 -
165 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
166 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
167 -
168 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
169 -
170 -
171 -(% style="color:red" %)**Note 2:**
172 -
173 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
174 -
175 -
176 -(% style="color:blue" %)**Step4:  **(%%)Install use Epoxy ab glue.
177 -
178 -[[image:image-20220615091045-8.png]]
179 -
180 -Prepare Eproxy AB glue.
181 -
182 -
183 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
184 -
185 -
186 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
187 -
188 -[[image:image-20220615091045-9.png]]
189 -
190 -(% style="color:red" %)Note1:
191 -
192 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 -
194 -
195 -(% style="color:red" %)Note 2:
196 -
197 -(% style="color:blue" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
198 -
199 -
200 -
201 -
202 -
203 -
204 204  == 1.5 ​ Applications ==
205 205  
206 206  * Horizontal distance measurement
... ... @@ -213,6 +213,8 @@
213 213  * Sewer
214 214  * Bottom water level monitoring
215 215  
102 +
103 +
216 216  == 1.6  Pin mapping and power on ==
217 217  
218 218  
... ... @@ -249,8 +249,6 @@
249 249  )))
250 250  
251 251  (((
252 -
253 -
254 254  (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
255 255  )))
256 256  
... ... @@ -261,19 +261,11 @@
261 261  [[image:image-20220607170145-1.jpeg]]
262 262  
263 263  
264 -(((
265 265  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
266 -)))
267 267  
268 -(((
269 269  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
270 -)))
271 271  
272 -(((
273 -
274 -
275 275  **Add APP EUI in the application**
276 -)))
277 277  
278 278  [[image:image-20220610161353-4.png]]
279 279  
... ... @@ -316,15 +316,11 @@
316 316  == 2.3  ​Uplink Payload ==
317 317  
318 318  (((
319 -(((
320 320  LDDS75 will uplink payload via LoRaWAN with below payload format: 
321 -)))
322 322  
323 -(((
324 324  Uplink payload includes in total 4 bytes.
325 325  Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
326 326  )))
327 -)))
328 328  
329 329  (((
330 330  
... ... @@ -335,12 +335,12 @@
335 335  **Size (bytes)**
336 336  )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
337 337  |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
338 -[[Distance>>||anchor="H2.3.2A0Distance"]]
212 +[[Distance>>||anchor="H2.3.3A0Distance"]]
339 339  
340 340  (unit: mm)
341 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
342 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
343 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
215 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
344 344  
345 345  [[image:1654850511545-399.png]]
346 346  
... ... @@ -359,21 +359,19 @@
359 359  
360 360  === 2.3.2  Distance ===
361 361  
362 -(((
363 363  Get the distance. Flat object range 280mm - 7500mm.
364 -)))
365 365  
366 -(((
367 367  For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
368 -)))
369 369  
370 370  
371 371  * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
372 372  * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
373 373  
244 +
245 +
374 374  === 2.3.3  Interrupt Pin ===
375 375  
376 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
248 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
377 377  
378 378  **Example:**
379 379  
... ... @@ -399,18 +399,14 @@
399 399  
400 400  === 2.3.5  Sensor Flag ===
401 401  
402 -(((
403 403  0x01: Detect Ultrasonic Sensor
404 -)))
405 405  
406 -(((
407 407  0x00: No Ultrasonic Sensor
408 -)))
409 409  
410 410  
279 +===
280 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
411 411  
412 -=== 2.3.6  Decode payload in The Things Network ===
413 -
414 414  While using TTN network, you can add the payload format to decode the payload.
415 415  
416 416  
... ... @@ -418,9 +418,7 @@
418 418  
419 419  The payload decoder function for TTN V3 is here:
420 420  
421 -(((
422 422  LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
423 -)))
424 424  
425 425  
426 426  
... ... @@ -938,91 +938,92 @@
938 938  
939 939  == 2.7  LED Indicator ==
940 940  
941 -The LDDS75 has an internal LED which is to show the status of different state.
807 +The LLDS12 has an internal LED which is to show the status of different state.
942 942  
943 -
944 -* Blink once when device power on.
945 -* The device detects the sensor and flashes 5 times.
946 -* Solid ON for 5 seconds once device successful Join the network.
809 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
947 947  * Blink once when device transmit a packet.
948 948  
949 949  == 2.8  ​Firmware Change Log ==
950 950  
951 951  
952 -(((
953 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
954 -)))
815 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
955 955  
956 -(((
957 -
958 -)))
959 959  
960 -(((
961 961  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
962 -)))
963 963  
964 964  
965 965  
966 -== 2.9  Mechanical ==
822 += 3LiDAR ToF Measurement =
967 967  
824 +== 3.1 Principle of Distance Measurement ==
968 968  
969 -[[image:image-20220610172003-1.png]]
826 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
970 970  
828 +[[image:1654831757579-263.png]]
971 971  
972 -[[image:image-20220610172003-2.png]]
973 973  
974 974  
832 +== 3.2 Distance Measurement Characteristics ==
975 975  
976 -== 2.10  Battery Analysis ==
834 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
977 977  
978 -=== 2.10.1  Battery Type ===
836 +[[image:1654831774373-275.png]]
979 979  
980 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
981 981  
839 +(((
840 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
841 +)))
982 982  
983 -The battery related documents as below:
843 +(((
844 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
845 +)))
984 984  
985 -* (((
986 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
847 +(((
848 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
987 987  )))
988 -* (((
989 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
990 -)))
991 -* (((
992 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
993 -)))
994 994  
995 - [[image:image-20220610172400-3.png]]
996 996  
852 +(((
853 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
854 +)))
997 997  
998 998  
999 -=== 2.10.2  Replace the battery ===
857 +[[image:1654831797521-720.png]]
1000 1000  
1001 -(((
1002 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1003 -)))
1004 1004  
1005 1005  (((
1006 -
861 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
1007 1007  )))
1008 1008  
864 +[[image:1654831810009-716.png]]
865 +
866 +
1009 1009  (((
1010 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
868 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
1011 1011  )))
1012 1012  
1013 1013  
1014 1014  
1015 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
873 +== 3.3 Notice of usage: ==
1016 1016  
875 +Possible invalid /wrong reading for LiDAR ToF tech:
876 +
877 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
878 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
879 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
880 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
881 +
882 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
883 +
1017 1017  (((
1018 1018  (((
1019 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
886 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
1020 1020  )))
1021 1021  )))
1022 1022  
1023 1023  * (((
1024 1024  (((
1025 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
892 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
1026 1026  )))
1027 1027  )))
1028 1028  * (((
... ... @@ -1037,7 +1037,7 @@
1037 1037  )))
1038 1038  
1039 1039  (((
1040 -There are two kinds of commands to configure LDDS75, they are:
907 +There are two kinds of commands to configure LLDS12, they are:
1041 1041  )))
1042 1042  )))
1043 1043  
... ... @@ -1078,155 +1078,351 @@
1078 1078  
1079 1079  * (((
1080 1080  (((
1081 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
948 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
1082 1082  )))
1083 1083  )))
1084 1084  
1085 1085  (((
1086 1086  (((
1087 -These commands only valid for LDDS75, as below:
954 +These commands only valid for LLDS12, as below:
1088 1088  )))
1089 1089  )))
1090 1090  
1091 1091  
1092 1092  
1093 -== 3.1  Access AT Commands ==
960 +== 4.1  Set Transmit Interval Time ==
1094 1094  
1095 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
962 +Feature: Change LoRaWAN End Node Transmit Interval.
1096 1096  
1097 -[[image:image-20220610172924-4.png||height="483" width="988"]]
964 +(% style="color:#037691" %)**AT Command: AT+TDC**
1098 1098  
966 +[[image:image-20220607171554-8.png]]
1099 1099  
1100 -Or if you have below board, use below connection:
1101 1101  
969 +(((
970 +(% style="color:#037691" %)**Downlink Command: 0x01**
971 +)))
1102 1102  
1103 -[[image:image-20220610172924-5.png]]
973 +(((
974 +Format: Command Code (0x01) followed by 3 bytes time value.
975 +)))
1104 1104  
977 +(((
978 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
979 +)))
1105 1105  
981 +* (((
982 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
983 +)))
984 +* (((
985 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
986 +)))
987 +
988 +== 4.2  Set Interrupt Mode ==
989 +
990 +Feature, Set Interrupt mode for GPIO_EXIT.
991 +
992 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
993 +
994 +[[image:image-20220610105806-2.png]]
995 +
996 +
1106 1106  (((
1107 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
998 +(% style="color:#037691" %)**Downlink Command: 0x06**
1108 1108  )))
1109 1109  
1001 +(((
1002 +Format: Command Code (0x06) followed by 3 bytes.
1003 +)))
1110 1110  
1111 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1005 +(((
1006 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1007 +)))
1112 1112  
1009 +* (((
1010 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1011 +)))
1012 +* (((
1013 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1014 +)))
1113 1113  
1016 +== 4.3  Get Firmware Version Info ==
1114 1114  
1115 -== 3.2  Set Transmit Interval Time ==
1018 +Feature: use downlink to get firmware version.
1116 1116  
1117 -Feature: Change LoRaWAN End Node Transmit Interval.
1020 +(% style="color:#037691" %)**Downlink Command: 0x26**
1118 1118  
1119 -(% style="color:#037691" %)**AT Command: AT+TDC**
1022 +[[image:image-20220607171917-10.png]]
1120 1120  
1121 -[[image:image-20220610173409-7.png]]
1024 +* Reply to the confirmation package: 26 01
1025 +* Reply to non-confirmed packet: 26 00
1122 1122  
1027 +Device will send an uplink after got this downlink command. With below payload:
1123 1123  
1029 +Configures info payload:
1030 +
1031 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1032 +|=(((
1033 +**Size(bytes)**
1034 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1035 +|**Value**|Software Type|(((
1036 +Frequency
1037 +
1038 +Band
1039 +)))|Sub-band|(((
1040 +Firmware
1041 +
1042 +Version
1043 +)))|Sensor Type|Reserve|(((
1044 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1045 +Always 0x02
1046 +)))
1047 +
1048 +**Software Type**: Always 0x03 for LLDS12
1049 +
1050 +
1051 +**Frequency Band**:
1052 +
1053 +*0x01: EU868
1054 +
1055 +*0x02: US915
1056 +
1057 +*0x03: IN865
1058 +
1059 +*0x04: AU915
1060 +
1061 +*0x05: KZ865
1062 +
1063 +*0x06: RU864
1064 +
1065 +*0x07: AS923
1066 +
1067 +*0x08: AS923-1
1068 +
1069 +*0x09: AS923-2
1070 +
1071 +*0xa0: AS923-3
1072 +
1073 +
1074 +**Sub-Band**: value 0x00 ~~ 0x08
1075 +
1076 +
1077 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1078 +
1079 +
1080 +**Sensor Type**:
1081 +
1082 +0x01: LSE01
1083 +
1084 +0x02: LDDS75
1085 +
1086 +0x03: LDDS20
1087 +
1088 +0x04: LLMS01
1089 +
1090 +0x05: LSPH01
1091 +
1092 +0x06: LSNPK01
1093 +
1094 +0x07: LLDS12
1095 +
1096 +
1097 +
1098 += 5.  Battery & How to replace =
1099 +
1100 +== 5.1  Battery Type ==
1101 +
1124 1124  (((
1125 -(% style="color:#037691" %)**Downlink Command: 0x01**
1103 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1126 1126  )))
1127 1127  
1128 1128  (((
1107 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1108 +)))
1109 +
1110 +[[image:1654593587246-335.png]]
1111 +
1112 +
1113 +Minimum Working Voltage for the LLDS12:
1114 +
1115 +LLDS12:  2.45v ~~ 3.6v
1116 +
1117 +
1118 +
1119 +== 5.2  Replace Battery ==
1120 +
1129 1129  (((
1130 -Format: Command Code (0x01) followed by 3 bytes time value.
1122 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1123 +)))
1131 1131  
1132 1132  (((
1133 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1126 +And make sure the positive and negative pins match.
1134 1134  )))
1135 1135  
1136 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1137 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1129 +
1130 +
1131 +== 5.3  Power Consumption Analyze ==
1132 +
1133 +(((
1134 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1138 1138  )))
1136 +
1137 +(((
1138 +Instruction to use as below:
1139 1139  )))
1140 1140  
1141 1141  
1142 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1142 1142  
1144 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1143 1143  
1144 1144  
1145 -== 3.3  Set Interrupt Mode ==
1147 +**Step 2**: Open it and choose
1146 1146  
1147 -Feature, Set Interrupt mode for GPIO_EXIT.
1149 +* Product Model
1150 +* Uplink Interval
1151 +* Working Mode
1148 1148  
1149 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1153 +And the Life expectation in difference case will be shown on the right.
1150 1150  
1151 -[[image:image-20220610174917-9.png]]
1155 +[[image:1654593605679-189.png]]
1152 1152  
1153 1153  
1154 -(% style="color:#037691" %)**Downlink Command: 0x06**
1158 +The battery related documents as below:
1155 1155  
1156 -Format: Command Code (0x06) followed by 3 bytes.
1160 +* (((
1161 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1162 +)))
1163 +* (((
1164 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1165 +)))
1166 +* (((
1167 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1168 +)))
1157 1157  
1170 +[[image:image-20220607172042-11.png]]
1171 +
1172 +
1173 +
1174 +=== 5.3.1  ​Battery Note ===
1175 +
1158 1158  (((
1159 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1177 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1160 1160  )))
1161 1161  
1162 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1163 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1164 1164  
1165 -= 4.  FAQ =
1166 1166  
1167 -== 4.1  What is the frequency plan for LDDS75? ==
1182 +=== ​5.3.2  Replace the battery ===
1168 1168  
1169 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1184 +(((
1185 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1186 +)))
1170 1170  
1188 +(((
1189 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1190 +)))
1171 1171  
1172 1172  
1173 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1174 1174  
1175 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1176 -When downloading the images, choose the required image file for download. ​
1194 += 6.  Use AT Command =
1177 1177  
1196 +== 6.1  Access AT Commands ==
1178 1178  
1198 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1179 1179  
1180 -== 4.3  Can I use LDDS75 in condensation environment? ==
1200 +[[image:1654593668970-604.png]]
1181 1181  
1182 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1202 +**Connection:**
1183 1183  
1204 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1184 1184  
1206 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1185 1185  
1186 -= 5.  Trouble Shooting =
1208 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1187 1187  
1188 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1189 1189  
1190 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1211 +(((
1212 +(((
1213 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1214 +)))
1191 1191  
1216 +(((
1217 +LLDS12 will output system info once power on as below:
1218 +)))
1219 +)))
1192 1192  
1193 -== 5.2  AT Command input doesn't work ==
1194 1194  
1222 + [[image:1654593712276-618.png]]
1223 +
1224 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1225 +
1226 +
1227 += 7.  FAQ =
1228 +
1229 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1230 +
1231 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1232 +When downloading the images, choose the required image file for download. ​
1233 +
1234 +
1235 += 8.  Trouble Shooting =
1236 +
1237 +== 8.1  AT Commands input doesn’t work ==
1238 +
1239 +
1240 +(((
1195 1195  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1242 +)))
1196 1196  
1244 +
1245 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1246 +
1247 +
1197 1197  (((
1249 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1250 +)))
1251 +
1252 +(((
1253 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1254 +)))
1255 +
1256 +(((
1198 1198  
1199 1199  )))
1200 1200  
1260 +(((
1261 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1262 +)))
1201 1201  
1202 -= 6.  Order Info =
1264 +(((
1265 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1266 +)))
1203 1203  
1204 1204  
1205 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1206 1206  
1270 += 9.  Order Info =
1207 1207  
1208 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1209 1209  
1210 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1211 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1212 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1213 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1214 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1215 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1216 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1217 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1273 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1218 1218  
1219 -(% style="color:blue" %)**YY**(%%): Battery Option
1220 1220  
1221 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1222 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1276 +(% style="color:blue" %)**XX**(%%): The default frequency band
1223 1223  
1224 -= 7. ​ Packing Info =
1278 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1279 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1280 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1281 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1282 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1283 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1284 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1285 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1225 1225  
1287 += 10. ​ Packing Info =
1226 1226  
1289 +
1227 1227  **Package Includes**:
1228 1228  
1229 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1292 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1230 1230  
1231 1231  **Dimension and weight**:
1232 1232  
... ... @@ -1235,7 +1235,7 @@
1235 1235  * Package Size / pcs : cm
1236 1236  * Weight / pcs : g
1237 1237  
1238 -= 8.  ​Support =
1301 += 11.  ​Support =
1239 1239  
1240 1240  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1241 1241  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content