Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 17 added, 0 removed)
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
- image-20220615102527-16.png
Details
- Page properties
-
- Content
-
... ... @@ -100,70 +100,128 @@ 100 100 * IP66 Waterproof Enclosure 101 101 * 8500mAh Battery for long term use 102 102 103 +== 1.3 Suitable Container & Liquid == 103 103 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 104 104 105 -== 1. 3Specification==112 +== 1.4 Mechanical == 106 106 107 - === 1.3.1 Rated environmental conditions ===114 +[[image:image-20220615090910-1.png]] 108 108 109 -[[image:image-20220610154839-1.png]] 110 110 111 -((( 112 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing); ** 117 +[[image:image-20220615090910-2.png]] 113 113 114 -**~ b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 115 -))) 116 116 117 117 121 +== 1.5 Install LDDS20 == 118 118 119 -=== 1.3.2 Effective measurement range Reference beam pattern === 120 120 121 - **(1)The testedobjectisawhitecylindricaltube made of PVC, with a heightof 100cm anda diameter of 7.5cm.**124 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 122 122 126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 123 123 128 +[[image:image-20220615091045-3.png]] 124 124 125 -[[image:1654852253176-749.png]] 126 126 127 127 132 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 128 128 129 -((( 130 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 131 -))) 134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 132 132 136 +[[image:image-20220615092010-11.png]] 133 133 134 -[[image:1654852175653-550.png]](% style="display:none" %) ** ** 135 135 139 +No polish needed if the container is shine metal surface without paint or non-metal container. 136 136 141 +[[image:image-20220615092044-12.png]] 137 137 138 -== 1.5 Applications == 139 139 140 -* Horizontal distance measurement 141 -* Liquid level measurement 142 -* Parking management system 143 -* Object proximity and presence detection 144 -* Intelligent trash can management system 145 -* Robot obstacle avoidance 146 -* Automatic control 147 -* Sewer 148 -* Bottom water level monitoring 149 149 150 -= =1.6Pinmappingandpower on==145 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 151 151 147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 152 152 153 -[[image:1654847583902-256.png]] 154 154 150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 155 155 152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]] 156 156 157 -= 2. Configure LDDS75 to connect to LoRaWAN network = 158 158 155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 156 + 157 + 158 +(% style="color:red" %)**LED Status:** 159 + 160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 161 + 162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 164 + 165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 166 + 167 + 168 +(% style="color:red" %)**Note 2:** 169 + 170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 171 + 172 + 173 + 174 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 175 + 176 +Prepare Eproxy AB glue. 177 + 178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 179 + 180 +Reset LDDS20 and see if the BLUE LED is slowly blinking. 181 + 182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 183 + 184 + 185 +(% style="color:red" %)**Note 1:** 186 + 187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 188 + 189 + 190 +(% style="color:red" %)**Note 2:** 191 + 192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 193 + 194 + 195 + 196 +== 1.6 Applications == 197 + 198 +* Smart liquid control solution. 199 +* Smart liquefied gas solution. 200 + 201 +== 1.7 Precautions == 202 + 203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 206 + 207 +== 1.8 Pin mapping and power on == 208 + 209 + 210 +[[image:1655257026882-201.png]] 211 + 212 + 213 + 214 += 2. Configure LDDS20 to connect to LoRaWAN network = 215 + 216 + 159 159 == 2.1 How it works == 160 160 161 161 ((( 162 -The LDDS 75is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 163 163 ))) 164 164 165 165 ((( 166 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0 ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20. 167 167 ))) 168 168 169 169 ... ... @@ -175,7 +175,7 @@ 175 175 ))) 176 176 177 177 ((( 178 -[[image:165 4848616367-242.png]]236 +[[image:1655257698953-697.png]] 179 179 ))) 180 180 181 181 ((( ... ... @@ -185,11 +185,11 @@ 185 185 ((( 186 186 187 187 188 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS 75.246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 189 189 ))) 190 190 191 191 ((( 192 -Each LDDS 75is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 193 193 ))) 194 194 195 195 [[image:image-20220607170145-1.jpeg]] ... ... @@ -219,6 +219,7 @@ 219 219 [[image:image-20220610161353-7.png]] 220 220 221 221 280 + 222 222 You can also choose to create the device manually. 223 223 224 224 [[image:image-20220610161538-8.png]] ... ... @@ -231,16 +231,17 @@ 231 231 232 232 233 233 234 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS 75293 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 235 235 236 236 237 237 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 238 238 239 -[[image:image-202206101 61724-10.png]]298 +[[image:image-20220615095102-14.png]] 240 240 241 241 301 + 242 242 ((( 243 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS 75will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.303 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 244 244 ))) 245 245 246 246 [[image:1654849068701-275.png]] ... ... @@ -251,12 +251,10 @@ 251 251 252 252 ((( 253 253 ((( 254 -LDDS75 will uplink payload via LoRaWAN with below payload format: 255 -))) 314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 256 256 257 -((( 258 -Uplink payload includes in total 4 bytes. 259 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 316 +Uplink payload includes in total 8 bytes. 317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload). 260 260 ))) 261 261 ))) 262 262 ... ... @@ -283,7 +283,7 @@ 283 283 === 2.3.1 Battery Info === 284 284 285 285 286 -Check the battery voltage for LDDS 75.344 +Check the battery voltage for LDDS20. 287 287 288 288 Ex1: 0x0B45 = 2885mV 289 289 ... ... @@ -294,20 +294,21 @@ 294 294 === 2.3.2 Distance === 295 295 296 296 ((( 297 -Get the distance. Flat object range 2 80mm -7500mm.355 +Get the distance. Flat object range 20mm - 2000mm. 298 298 ))) 299 299 300 300 ((( 301 -For example, if the data you get from the register is 0x0 B0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) =2821 (D) =2821 mm.**359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 302 302 ))) 303 303 362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 304 304 305 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 306 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 307 307 366 + 308 308 === 2.3.3 Interrupt Pin === 309 309 310 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3. 3A0SetInterruptMode"]] for the hardware and software set up.369 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 311 311 312 312 **Example:** 313 313 ... ... @@ -353,599 +353,164 @@ 353 353 The payload decoder function for TTN V3 is here: 354 354 355 355 ((( 356 -LDDS 75TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]415 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 357 357 ))) 358 358 359 359 360 360 361 -== 2.4 UplinkInterval ==420 +== 2.4 Downlink Payload == 362 362 363 - The LDDS75 by defaultuplink the sensor data every20minutes.User can changethis intervalby AT Commandr LoRaWAN DownlinkCommand. See this link: [[Change Uplink Interval>>doc:Main.EndDeviceAT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]422 +By default, LDDS20 prints the downlink payload to console port. 364 364 424 +[[image:image-20220615100930-15.png]] 365 365 366 366 367 - == 2.5 Show Data in DataCakeIoT Server ==427 +**Examples:** 368 368 369 -((( 370 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 371 -))) 372 372 373 -((( 374 - 375 -))) 430 +* (% style="color:blue" %)**Set TDC** 376 376 377 -((( 378 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 379 -))) 432 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 380 380 381 -((( 382 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 383 -))) 434 +Payload: 01 00 00 1E TDC=30S 384 384 436 +Payload: 01 00 00 3C TDC=60S 385 385 386 -[[image:1654592790040-760.png]] 387 387 439 +* (% style="color:blue" %)**Reset** 388 388 389 - [[image:1654592800389-571.png]]441 +If payload = 0x04FF, it will reset the LDDS20 390 390 391 391 392 -(% style="color:blue" %)** Step 3**(%%)**:Create an account or log in Datacake.**444 +* (% style="color:blue" %)**CFM** 393 393 394 - (%style="color:blue"%)**Step4**(%%)**:SearchtheLDDS75andaddDevEUI.**446 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 395 395 396 -[[image:1654851029373-510.png]] 397 397 398 398 399 - Afteradded,the sensordataarrive TTN V3, it will also arrive andshow inDatacake.450 +== 2.5 Show Data in DataCake IoT Server == 400 400 401 -[[image:image-20220610165129-11.png||height="595" width="1088"]] 402 - 403 - 404 - 405 -== 2.6 Frequency Plans == 406 - 407 407 ((( 408 - The LDDS75usesOTAA mode andbelowfrequency plans bydefault.Ifuserwanttouseitwith differentfrequencyplan,pleasereferthe ATcommandsets.453 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 409 409 ))) 410 410 411 - 412 - 413 -=== 2.6.1 EU863-870 (EU868) === 414 - 415 415 ((( 416 -(% style="color:blue" %)**Uplink:** 417 -))) 418 - 419 -((( 420 -868.1 - SF7BW125 to SF12BW125 421 -))) 422 - 423 -((( 424 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 425 -))) 426 - 427 -((( 428 -868.5 - SF7BW125 to SF12BW125 429 -))) 430 - 431 -((( 432 -867.1 - SF7BW125 to SF12BW125 433 -))) 434 - 435 -((( 436 -867.3 - SF7BW125 to SF12BW125 437 -))) 438 - 439 -((( 440 -867.5 - SF7BW125 to SF12BW125 441 -))) 442 - 443 -((( 444 -867.7 - SF7BW125 to SF12BW125 445 -))) 446 - 447 -((( 448 -867.9 - SF7BW125 to SF12BW125 449 -))) 450 - 451 -((( 452 -868.8 - FSK 453 -))) 454 - 455 -((( 456 456 457 457 ))) 458 458 459 459 ((( 460 -(% style="color:blue" %)** Downlink:**461 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 461 461 ))) 462 462 463 463 ((( 464 - Uplinkchannels1-9(RX1)465 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 465 465 ))) 466 466 467 -((( 468 -869.525 - SF9BW125 (RX2 downlink only) 469 -))) 470 470 469 +[[image:1654592790040-760.png]] 471 471 472 472 473 - === 2.6.2 US902-928(US915) ===472 +[[image:1654592800389-571.png]] 474 474 475 -((( 476 -Used in USA, Canada and South America. Default use CHE=2 477 477 478 -(% style="color:blue" %)** Uplink:**475 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 479 479 480 - 903.9-SF7BW125 to SF10BW125477 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 481 481 482 - 904.1- SF7BW125to SF10BW125479 +[[image:1654851029373-510.png]] 483 483 484 -904.3 - SF7BW125 to SF10BW125 485 485 486 - 904.5-SF7BW125toSF10BW125482 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 487 487 488 - 904.7-SF7BW125 to SF10BW125484 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 489 489 490 -904.9 - SF7BW125 to SF10BW125 491 491 492 -905.1 - SF7BW125 to SF10BW125 493 493 494 - 905.3- SF7BW125toSF10BW125488 +== 2.6 LED Indicator == 495 495 490 +The LDDS20 has an internal LED which is to show the status of different state. 496 496 497 -(% style="color:blue" %)**Downlink:** 498 498 499 -923.3 - SF7BW500 to SF12BW500 493 +* Blink once when device power on. 494 +* The device detects the sensor and flashes 5 times. 495 +* Solid ON for 5 seconds once device successful Join the network. 496 +* Blink once when device transmit a packet. 500 500 501 -923.9 - SF7BW500 to SF12BW500 502 502 503 -924.5 - SF7BW500 to SF12BW500 504 504 505 - 925.1- SF7BW500toSF12BW500500 +== 2.7 Firmware Change Log == 506 506 507 -925.7 - SF7BW500 to SF12BW500 508 508 509 -926.3 - SF7BW500 to SF12BW500 510 - 511 -926.9 - SF7BW500 to SF12BW500 512 - 513 -927.5 - SF7BW500 to SF12BW500 514 - 515 -923.3 - SF12BW500(RX2 downlink only) 516 - 517 - 518 - 519 -))) 520 - 521 -=== 2.6.3 CN470-510 (CN470) === 522 - 523 523 ((( 524 - Used inChina, DefaultuseCHE=1504 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 525 525 ))) 526 526 527 527 ((( 528 -(% style="color:blue" %)**Uplink:** 529 -))) 530 - 531 -((( 532 -486.3 - SF7BW125 to SF12BW125 533 -))) 534 - 535 -((( 536 -486.5 - SF7BW125 to SF12BW125 537 -))) 538 - 539 -((( 540 -486.7 - SF7BW125 to SF12BW125 541 -))) 542 - 543 -((( 544 -486.9 - SF7BW125 to SF12BW125 545 -))) 546 - 547 -((( 548 -487.1 - SF7BW125 to SF12BW125 549 -))) 550 - 551 -((( 552 -487.3 - SF7BW125 to SF12BW125 553 -))) 554 - 555 -((( 556 -487.5 - SF7BW125 to SF12BW125 557 -))) 558 - 559 -((( 560 -487.7 - SF7BW125 to SF12BW125 561 -))) 562 - 563 -((( 564 564 565 565 ))) 566 566 567 567 ((( 568 - (%style="color:blue"%)**Downlink:**512 +**Firmware Upgrade Method: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]** 569 569 ))) 570 570 571 -((( 572 -506.7 - SF7BW125 to SF12BW125 573 -))) 574 574 575 -((( 576 -506.9 - SF7BW125 to SF12BW125 577 -))) 578 578 579 -((( 580 -507.1 - SF7BW125 to SF12BW125 581 -))) 517 +== 2.8 Battery Analysis == 582 582 583 -((( 584 -507.3 - SF7BW125 to SF12BW125 585 -))) 586 586 587 -((( 588 -507.5 - SF7BW125 to SF12BW125 589 -))) 590 590 591 -((( 592 -507.7 - SF7BW125 to SF12BW125 593 -))) 594 594 595 -((( 596 -507.9 - SF7BW125 to SF12BW125 597 -))) 522 +=== 2.8.1 Battery Type === 598 598 599 -((( 600 -508.1 - SF7BW125 to SF12BW125 601 -))) 524 +The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 602 602 603 -((( 604 -505.3 - SF12BW125 (RX2 downlink only) 605 -))) 606 606 527 +The battery related documents as below: 607 607 608 - 609 -=== 2.6.4 AU915-928(AU915) === 610 - 611 -((( 612 -Default use CHE=2 613 - 614 -(% style="color:blue" %)**Uplink:** 615 - 616 -916.8 - SF7BW125 to SF12BW125 617 - 618 -917.0 - SF7BW125 to SF12BW125 619 - 620 -917.2 - SF7BW125 to SF12BW125 621 - 622 -917.4 - SF7BW125 to SF12BW125 623 - 624 -917.6 - SF7BW125 to SF12BW125 625 - 626 -917.8 - SF7BW125 to SF12BW125 627 - 628 -918.0 - SF7BW125 to SF12BW125 629 - 630 -918.2 - SF7BW125 to SF12BW125 631 - 632 - 633 -(% style="color:blue" %)**Downlink:** 634 - 635 -923.3 - SF7BW500 to SF12BW500 636 - 637 -923.9 - SF7BW500 to SF12BW500 638 - 639 -924.5 - SF7BW500 to SF12BW500 640 - 641 -925.1 - SF7BW500 to SF12BW500 642 - 643 -925.7 - SF7BW500 to SF12BW500 644 - 645 -926.3 - SF7BW500 to SF12BW500 646 - 647 -926.9 - SF7BW500 to SF12BW500 648 - 649 -927.5 - SF7BW500 to SF12BW500 650 - 651 -923.3 - SF12BW500(RX2 downlink only) 652 - 653 - 654 - 529 +* ((( 530 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 655 655 ))) 656 - 657 -=== 2.6.5 AS920-923 & AS923-925 (AS923) === 658 - 659 -((( 660 -(% style="color:blue" %)**Default Uplink channel:** 532 +* ((( 533 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 661 661 ))) 662 - 663 -((( 664 -923.2 - SF7BW125 to SF10BW125 535 +* ((( 536 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 665 665 ))) 666 666 667 -((( 668 -923.4 - SF7BW125 to SF10BW125 669 -))) 539 + [[image:image-20220615102527-16.png]] 670 670 671 -((( 672 - 673 -))) 674 674 675 -((( 676 -(% style="color:blue" %)**Additional Uplink Channel**: 677 -))) 678 678 679 -((( 680 -(OTAA mode, channel added by JoinAccept message) 681 -))) 543 +== 2.8.2 Battery Note == 682 682 683 -((( 684 - 685 -))) 545 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased. 686 686 687 -((( 688 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 689 -))) 690 690 691 -((( 692 -922.2 - SF7BW125 to SF10BW125 693 -))) 694 694 695 -((( 696 -922.4 - SF7BW125 to SF10BW125 697 -))) 549 +=== 2.8.3 Replace the battery === 698 698 699 699 ((( 700 - 922.6-SF7BW125 toSF10BW125552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 701 701 ))) 702 702 703 703 ((( 704 -922.8 - SF7BW125 to SF10BW125 705 -))) 706 - 707 -((( 708 -923.0 - SF7BW125 to SF10BW125 709 -))) 710 - 711 -((( 712 -922.0 - SF7BW125 to SF10BW125 713 -))) 714 - 715 -((( 716 716 717 717 ))) 718 718 719 719 ((( 720 - (%style="color:blue"%)**AS923~~ AS925forBrunei,Cambodia,HongKong,Indonesia,Laos,Taiwan,Thailand,Vietnam**:560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 721 721 ))) 722 722 723 -((( 724 -923.6 - SF7BW125 to SF10BW125 725 -))) 726 726 727 -((( 728 -923.8 - SF7BW125 to SF10BW125 729 -))) 730 730 731 -((( 732 -924.0 - SF7BW125 to SF10BW125 733 -))) 565 +== 2.8.4 Battery Life Analyze == 734 734 735 -((( 736 -924.2 - SF7BW125 to SF10BW125 737 -))) 567 +Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life: 738 738 739 -((( 740 -924.4 - SF7BW125 to SF10BW125 741 -))) 569 +[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]] 742 742 743 -((( 744 -924.6 - SF7BW125 to SF10BW125 745 -))) 746 746 747 -((( 748 - 749 -))) 750 750 751 -((( 752 -(% style="color:blue" %)**Downlink:** 753 -))) 754 - 755 -((( 756 -Uplink channels 1-8 (RX1) 757 -))) 758 - 759 -((( 760 -923.2 - SF10BW125 (RX2) 761 -))) 762 - 763 - 764 - 765 -=== 2.6.6 KR920-923 (KR920) === 766 - 767 -((( 768 -(% style="color:blue" %)**Default channel:** 769 -))) 770 - 771 -((( 772 -922.1 - SF7BW125 to SF12BW125 773 -))) 774 - 775 -((( 776 -922.3 - SF7BW125 to SF12BW125 777 -))) 778 - 779 -((( 780 -922.5 - SF7BW125 to SF12BW125 781 -))) 782 - 783 -((( 784 - 785 -))) 786 - 787 -((( 788 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 789 -))) 790 - 791 -((( 792 -922.1 - SF7BW125 to SF12BW125 793 -))) 794 - 795 -((( 796 -922.3 - SF7BW125 to SF12BW125 797 -))) 798 - 799 -((( 800 -922.5 - SF7BW125 to SF12BW125 801 -))) 802 - 803 -((( 804 -922.7 - SF7BW125 to SF12BW125 805 -))) 806 - 807 -((( 808 -922.9 - SF7BW125 to SF12BW125 809 -))) 810 - 811 -((( 812 -923.1 - SF7BW125 to SF12BW125 813 -))) 814 - 815 -((( 816 -923.3 - SF7BW125 to SF12BW125 817 -))) 818 - 819 -((( 820 - 821 -))) 822 - 823 -((( 824 -(% style="color:blue" %)**Downlink:** 825 -))) 826 - 827 -((( 828 -Uplink channels 1-7(RX1) 829 -))) 830 - 831 -((( 832 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 833 -))) 834 - 835 - 836 - 837 -=== 2.6.7 IN865-867 (IN865) === 838 - 839 -((( 840 -(% style="color:blue" %)**Uplink:** 841 -))) 842 - 843 -((( 844 -865.0625 - SF7BW125 to SF12BW125 845 -))) 846 - 847 -((( 848 -865.4025 - SF7BW125 to SF12BW125 849 -))) 850 - 851 -((( 852 -865.9850 - SF7BW125 to SF12BW125 853 -))) 854 - 855 -((( 856 - 857 -))) 858 - 859 -((( 860 -(% style="color:blue" %)**Downlink:** 861 -))) 862 - 863 -((( 864 -Uplink channels 1-3 (RX1) 865 -))) 866 - 867 -((( 868 -866.550 - SF10BW125 (RX2) 869 -))) 870 - 871 - 872 - 873 -== 2.7 LED Indicator == 874 - 875 -The LDDS75 has an internal LED which is to show the status of different state. 876 - 877 - 878 -* Blink once when device power on. 879 -* The device detects the sensor and flashes 5 times. 880 -* Solid ON for 5 seconds once device successful Join the network. 881 -* Blink once when device transmit a packet. 882 - 883 -== 2.8 Firmware Change Log == 884 - 885 - 886 -((( 887 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 888 -))) 889 - 890 -((( 891 - 892 -))) 893 - 894 -((( 895 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 896 -))) 897 - 898 - 899 - 900 -== 2.9 Mechanical == 901 - 902 - 903 -[[image:image-20220610172003-1.png]] 904 - 905 - 906 -[[image:image-20220610172003-2.png]] 907 - 908 - 909 - 910 -== 2.10 Battery Analysis == 911 - 912 -=== 2.10.1 Battery Type === 913 - 914 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 915 - 916 - 917 -The battery related documents as below: 918 - 919 -* ((( 920 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 921 -))) 922 -* ((( 923 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 924 -))) 925 -* ((( 926 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 927 -))) 928 - 929 - [[image:image-20220610172400-3.png]] 930 - 931 - 932 - 933 -=== 2.10.2 Replace the battery === 934 - 935 -((( 936 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 937 -))) 938 - 939 -((( 940 - 941 -))) 942 - 943 -((( 944 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 945 -))) 946 - 947 - 948 - 949 949 = 3. Configure LDDS75 via AT Command or LoRaWAN Downlink = 950 950 951 951 (((
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.5 KB - Content
- image-20220615102527-16.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +182.9 KB - Content