Last modified by Mengting Qiu on 2025/08/06 17:02

From version 154.2
edited by Xiaoling
on 2022/06/15 09:00
Change comment: There is no comment for this version
To version 174.10
edited by Xiaoling
on 2022/06/15 10:44
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -22,33 +22,65 @@
22 22  
23 23  (((
24 24  (((
25 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
26 26  )))
27 27  
28 28  (((
29 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
30 +
30 30  )))
31 31  
32 32  (((
33 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
34 34  )))
35 35  
36 36  (((
37 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
38 +
38 38  )))
39 39  
40 40  (((
41 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
42 42  )))
43 43  
44 44  (((
46 +
47 +)))
48 +
49 +(((
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
51 +)))
52 +
53 +(((
54 +
55 +)))
56 +
57 +(((
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
59 +)))
60 +
61 +(((
62 +
63 +)))
64 +
65 +(((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
45 45  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
46 46  )))
47 47  )))
48 48  )))
80 +)))
49 49  
50 50  
51 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
52 52  
53 53  
54 54  
... ... @@ -56,9 +56,10 @@
56 56  
57 57  * LoRaWAN 1.0.3 Class A
58 58  * Ultra low power consumption
59 -* Distance Detection by Ultrasonic technology
60 -* Flat object range 280mm - 7500mm
61 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
62 62  * Cable Length : 25cm
63 63  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
64 64  * AT Commands to change parameters
... ... @@ -65,72 +65,130 @@
65 65  * Uplink on periodically
66 66  * Downlink to change configure
67 67  * IP66 Waterproof Enclosure
68 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
69 69  
103 +== 1.3  Suitable Container & Liquid ==
70 70  
71 -== 1.3  Specification ==
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
72 72  
73 -=== 1.3.1  Rated environmental conditions ===
112 +== 1.4  Mechanical ==
74 74  
75 -[[image:image-20220610154839-1.png]]
114 +[[image:image-20220615090910-1.png]]
76 76  
77 -(((
78 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);       **
79 79  
80 -**~ b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
81 -)))
117 +[[image:image-20220615090910-2.png]]
82 82  
83 83  
84 84  
85 -=== 1.3.2  Effective measurement range Reference beam pattern ===
121 +== 1.5  Install LDDS20 ==
86 86  
87 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
88 88  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
89 89  
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
90 90  
91 -[[image:1654852253176-749.png]]
128 +[[image:image-20220615091045-3.png]]
92 92  
93 93  
94 94  
95 -(((
96 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
97 -)))
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
98 98  
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
99 99  
100 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
136 +[[image:image-20220615092010-11.png]]
101 101  
102 102  
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
103 103  
104 -== 1.5 ​ Applications ==
141 +[[image:image-20220615092044-12.png]]
105 105  
106 -* Horizontal distance measurement
107 -* Liquid level measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
114 -* Bottom water level monitoring
115 115  
116 116  
117 -== 1.6  Pin mapping and power on ==
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
118 118  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
119 119  
120 -[[image:1654847583902-256.png]]
121 121  
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
122 122  
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
123 123  
124 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
125 125  
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 +
157 +
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
126 126  == 2.1  How it works ==
127 127  
128 128  (((
129 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
130 130  )))
131 131  
132 132  (((
133 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
134 134  )))
135 135  
136 136  
... ... @@ -142,7 +142,7 @@
142 142  )))
143 143  
144 144  (((
145 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
146 146  )))
147 147  
148 148  (((
... ... @@ -152,11 +152,11 @@
152 152  (((
153 153  
154 154  
155 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
156 156  )))
157 157  
158 158  (((
159 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
160 160  )))
161 161  
162 162  [[image:image-20220607170145-1.jpeg]]
... ... @@ -186,6 +186,7 @@
186 186  [[image:image-20220610161353-7.png]]
187 187  
188 188  
280 +
189 189  You can also choose to create the device manually.
190 190  
191 191   [[image:image-20220610161538-8.png]]
... ... @@ -198,16 +198,17 @@
198 198  
199 199  
200 200  
201 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
202 202  
203 203  
204 204  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
205 205  
206 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
207 207  
208 208  
301 +
209 209  (((
210 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
211 211  )))
212 212  
213 213  [[image:1654849068701-275.png]]
... ... @@ -218,12 +218,10 @@
218 218  
219 219  (((
220 220  (((
221 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
222 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
223 223  
224 -(((
225 -Uplink payload includes in total 4 bytes.
226 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
227 227  )))
228 228  )))
229 229  
... ... @@ -250,7 +250,7 @@
250 250  === 2.3.1  Battery Info ===
251 251  
252 252  
253 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
254 254  
255 255  Ex1: 0x0B45 = 2885mV
256 256  
... ... @@ -261,21 +261,21 @@
261 261  === 2.3.2  Distance ===
262 262  
263 263  (((
264 -Get the distance. Flat object range 280mm - 7500mm.
355 +Get the distance. Flat object range 20mm - 2000mm.
265 265  )))
266 266  
267 267  (((
268 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
269 269  )))
270 270  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
271 271  
272 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
273 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
274 274  
275 275  
276 276  === 2.3.3  Interrupt Pin ===
277 277  
278 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
369 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
279 279  
280 280  **Example:**
281 281  
... ... @@ -321,700 +321,300 @@
321 321  The payload decoder function for TTN V3 is here:
322 322  
323 323  (((
324 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
415 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
325 325  )))
326 326  
327 327  
328 328  
329 -== 2.4  Uplink Interval ==
420 +== 2.4  Downlink Payload ==
330 330  
331 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
422 +By default, LDDS20 prints the downlink payload to console port.
332 332  
424 +[[image:image-20220615100930-15.png]]
333 333  
334 334  
335 -== 2.5  ​Show Data in DataCake IoT Server ==
427 +**Examples:**
336 336  
337 -(((
338 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
339 -)))
340 340  
341 -(((
342 -
343 -)))
430 +* (% style="color:blue" %)**Set TDC**
344 344  
345 -(((
346 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
347 -)))
432 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
348 348  
349 -(((
350 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
351 -)))
434 +Payload:    01 00 00 1E    TDC=30S
352 352  
436 +Payload:    01 00 00 3C    TDC=60S
353 353  
354 -[[image:1654592790040-760.png]]
355 355  
439 +* (% style="color:blue" %)**Reset**
356 356  
357 -[[image:1654592800389-571.png]]
441 +If payload = 0x04FF, it will reset the LDDS20
358 358  
359 359  
360 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
444 +* (% style="color:blue" %)**CFM**
361 361  
362 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
446 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
363 363  
364 -[[image:1654851029373-510.png]]
365 365  
366 366  
367 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
450 +== 2.5  ​Show Data in DataCake IoT Server ==
368 368  
369 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
370 -
371 -
372 -
373 -== 2.6  Frequency Plans ==
374 -
375 375  (((
376 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
453 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
377 377  )))
378 378  
379 -
380 -
381 -=== 2.6.1  EU863-870 (EU868) ===
382 -
383 383  (((
384 -(% style="color:blue" %)**Uplink:**
385 -)))
386 -
387 -(((
388 -868.1 - SF7BW125 to SF12BW125
389 -)))
390 -
391 -(((
392 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
393 -)))
394 -
395 -(((
396 -868.5 - SF7BW125 to SF12BW125
397 -)))
398 -
399 -(((
400 -867.1 - SF7BW125 to SF12BW125
401 -)))
402 -
403 -(((
404 -867.3 - SF7BW125 to SF12BW125
405 -)))
406 -
407 -(((
408 -867.5 - SF7BW125 to SF12BW125
409 -)))
410 -
411 -(((
412 -867.7 - SF7BW125 to SF12BW125
413 -)))
414 -
415 -(((
416 -867.9 - SF7BW125 to SF12BW125
417 -)))
418 -
419 -(((
420 -868.8 - FSK
421 -)))
422 -
423 -(((
424 424  
425 425  )))
426 426  
427 427  (((
428 -(% style="color:blue" %)**Downlink:**
461 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
429 429  )))
430 430  
431 431  (((
432 -Uplink channels 1-9 (RX1)
465 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
433 433  )))
434 434  
435 -(((
436 -869.525 - SF9BW125 (RX2 downlink only)
437 -)))
438 438  
469 +[[image:1654592790040-760.png]]
439 439  
440 440  
441 -=== 2.6.2  US902-928(US915) ===
472 +[[image:1654592800389-571.png]]
442 442  
443 -(((
444 -Used in USA, Canada and South America. Default use CHE=2
445 445  
446 -(% style="color:blue" %)**Uplink:**
475 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
447 447  
448 -903.9 - SF7BW125 to SF10BW125
477 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
449 449  
450 -904.1 - SF7BW125 to SF10BW125
479 +[[image:1654851029373-510.png]]
451 451  
452 -904.3 - SF7BW125 to SF10BW125
453 453  
454 -904.5 - SF7BW125 to SF10BW125
482 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
455 455  
456 -904.7 - SF7BW125 to SF10BW125
484 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
457 457  
458 -904.9 - SF7BW125 to SF10BW125
459 459  
460 -905.1 - SF7BW125 to SF10BW125
461 461  
462 -905.3 - SF7BW125 to SF10BW125
488 +== 2.6  LED Indicator ==
463 463  
490 +The LDDS20 has an internal LED which is to show the status of different state.
464 464  
465 -(% style="color:blue" %)**Downlink:**
466 466  
467 -923.3 - SF7BW500 to SF12BW500
493 +* Blink once when device power on.
494 +* The device detects the sensor and flashes 5 times.
495 +* Solid ON for 5 seconds once device successful Join the network.
496 +* Blink once when device transmit a packet.
468 468  
469 -923.9 - SF7BW500 to SF12BW500
470 470  
471 -924.5 - SF7BW500 to SF12BW500
472 472  
473 -925.1 - SF7BW500 to SF12BW500
500 +== 2. Firmware Change Log ==
474 474  
475 -925.7 - SF7BW500 to SF12BW500
476 476  
477 -926.3 - SF7BW500 to SF12BW500
478 -
479 -926.9 - SF7BW500 to SF12BW500
480 -
481 -927.5 - SF7BW500 to SF12BW500
482 -
483 -923.3 - SF12BW500(RX2 downlink only)
484 -
485 -
486 -
487 -)))
488 -
489 -=== 2.6.3  CN470-510 (CN470) ===
490 -
491 491  (((
492 -Used in China, Default use CHE=1
504 +**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
493 493  )))
494 494  
495 495  (((
496 -(% style="color:blue" %)**Uplink:**
497 -)))
498 -
499 -(((
500 -486.3 - SF7BW125 to SF12BW125
501 -)))
502 -
503 -(((
504 -486.5 - SF7BW125 to SF12BW125
505 -)))
506 -
507 -(((
508 -486.7 - SF7BW125 to SF12BW125
509 -)))
510 -
511 -(((
512 -486.9 - SF7BW125 to SF12BW125
513 -)))
514 -
515 -(((
516 -487.1 - SF7BW125 to SF12BW125
517 -)))
518 -
519 -(((
520 -487.3 - SF7BW125 to SF12BW125
521 -)))
522 -
523 -(((
524 -487.5 - SF7BW125 to SF12BW125
525 -)))
526 -
527 -(((
528 -487.7 - SF7BW125 to SF12BW125
529 -)))
530 -
531 -(((
532 532  
533 533  )))
534 534  
535 535  (((
536 -(% style="color:blue" %)**Downlink:**
512 +**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
537 537  )))
538 538  
539 -(((
540 -506.7 - SF7BW125 to SF12BW125
541 -)))
542 542  
543 -(((
544 -506.9 - SF7BW125 to SF12BW125
545 -)))
546 546  
547 -(((
548 -507.1 - SF7BW125 to SF12BW125
549 -)))
517 +== 2.8  Battery Analysis ==
550 550  
551 -(((
552 -507.3 - SF7BW125 to SF12BW125
553 -)))
554 554  
555 -(((
556 -507.5 - SF7BW125 to SF12BW125
557 -)))
558 558  
559 -(((
560 -507.7 - SF7BW125 to SF12BW125
561 -)))
562 562  
563 -(((
564 -507.9 - SF7BW125 to SF12BW125
565 -)))
522 +=== 2.8.1  Battery Type ===
566 566  
567 -(((
568 -508.1 - SF7BW125 to SF12BW125
569 -)))
524 +The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
570 570  
571 -(((
572 -505.3 - SF12BW125 (RX2 downlink only)
573 -)))
574 574  
527 +The battery related documents as below:
575 575  
576 -
577 -=== 2.6.4  AU915-928(AU915) ===
578 -
579 -(((
580 -Default use CHE=2
581 -
582 -(% style="color:blue" %)**Uplink:**
583 -
584 -916.8 - SF7BW125 to SF12BW125
585 -
586 -917.0 - SF7BW125 to SF12BW125
587 -
588 -917.2 - SF7BW125 to SF12BW125
589 -
590 -917.4 - SF7BW125 to SF12BW125
591 -
592 -917.6 - SF7BW125 to SF12BW125
593 -
594 -917.8 - SF7BW125 to SF12BW125
595 -
596 -918.0 - SF7BW125 to SF12BW125
597 -
598 -918.2 - SF7BW125 to SF12BW125
599 -
600 -
601 -(% style="color:blue" %)**Downlink:**
602 -
603 -923.3 - SF7BW500 to SF12BW500
604 -
605 -923.9 - SF7BW500 to SF12BW500
606 -
607 -924.5 - SF7BW500 to SF12BW500
608 -
609 -925.1 - SF7BW500 to SF12BW500
610 -
611 -925.7 - SF7BW500 to SF12BW500
612 -
613 -926.3 - SF7BW500 to SF12BW500
614 -
615 -926.9 - SF7BW500 to SF12BW500
616 -
617 -927.5 - SF7BW500 to SF12BW500
618 -
619 -923.3 - SF12BW500(RX2 downlink only)
620 -
621 -
622 -
529 +* (((
530 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
623 623  )))
624 -
625 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
626 -
627 -(((
628 -(% style="color:blue" %)**Default Uplink channel:**
532 +* (((
533 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
629 629  )))
630 -
631 -(((
632 -923.2 - SF7BW125 to SF10BW125
535 +* (((
536 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
633 633  )))
634 634  
635 -(((
636 -923.4 - SF7BW125 to SF10BW125
637 -)))
539 + [[image:image-20220615102527-16.png]]
638 638  
639 -(((
640 -
641 -)))
642 642  
643 -(((
644 -(% style="color:blue" %)**Additional Uplink Channel**:
645 -)))
646 646  
647 -(((
648 -(OTAA mode, channel added by JoinAccept message)
649 -)))
543 +== 2.8.2  Battery Note ==
650 650  
651 -(((
652 -
653 -)))
545 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
654 654  
655 -(((
656 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
657 -)))
658 658  
659 -(((
660 -922.2 - SF7BW125 to SF10BW125
661 -)))
662 662  
663 -(((
664 -922.4 - SF7BW125 to SF10BW125
665 -)))
549 +=== 2.8.3  Replace the battery ===
666 666  
667 667  (((
668 -922.6 - SF7BW125 to SF10BW125
552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
669 669  )))
670 670  
671 671  (((
672 -922.8 - SF7BW125 to SF10BW125
673 -)))
674 -
675 -(((
676 -923.0 - SF7BW125 to SF10BW125
677 -)))
678 -
679 -(((
680 -922.0 - SF7BW125 to SF10BW125
681 -)))
682 -
683 -(((
684 684  
685 685  )))
686 686  
687 687  (((
688 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
689 689  )))
690 690  
691 -(((
692 -923.6 - SF7BW125 to SF10BW125
693 -)))
694 694  
695 -(((
696 -923.8 - SF7BW125 to SF10BW125
697 -)))
698 698  
699 -(((
700 -924.0 - SF7BW125 to SF10BW125
701 -)))
565 +== 2.8.4  Battery Life Analyze ==
702 702  
703 -(((
704 -924.2 - SF7BW125 to SF10BW125
705 -)))
567 +Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
706 706  
707 -(((
708 -924.4 - SF7BW125 to SF10BW125
709 -)))
569 +[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
710 710  
711 -(((
712 -924.6 - SF7BW125 to SF10BW125
713 -)))
714 714  
715 -(((
716 -
717 -)))
718 718  
719 -(((
720 -(% style="color:blue" %)**Downlink:**
721 -)))
573 += 3.  Using the AT Commands =
722 722  
723 723  (((
724 -Uplink channels 1-8 (RX1)
725 -)))
726 -
727 727  (((
728 -923.2 - SF10BW125 (RX2)
729 -)))
730 -
731 -
732 -
733 -=== 2.6.6  KR920-923 (KR920) ===
734 -
735 -(((
736 -(% style="color:blue" %)**Default channel:**
737 -)))
738 -
739 -(((
740 -922.1 - SF7BW125 to SF12BW125
741 -)))
742 -
743 -(((
744 -922.3 - SF7BW125 to SF12BW125
745 -)))
746 -
747 -(((
748 -922.5 - SF7BW125 to SF12BW125
749 -)))
750 -
751 -(((
752 752  
753 753  )))
754 -
755 -(((
756 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
757 757  )))
758 758  
759 -(((
760 -922.1 - SF7BW125 to SF12BW125
761 -)))
581 +== 3.1  Access AT Commands ==
762 762  
763 -(((
764 -922.3 - SF7BW125 to SF12BW125
765 -)))
583 +LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below.
766 766  
767 -(((
768 -922.5 - SF7BW125 to SF12BW125
769 -)))
770 770  
771 -(((
772 -922.7 - SF7BW125 to SF12BW125
773 -)))
586 +[[image:image-20220610172924-4.png||height="483" width="988"]]
774 774  
775 -(((
776 -922.9 - SF7BW125 to SF12BW125
777 -)))
778 778  
779 -(((
780 -923.1 - SF7BW125 to SF12BW125
781 -)))
589 +Or if you have below board, use below connection:
782 782  
783 -(((
784 -923.3 - SF7BW125 to SF12BW125
785 -)))
786 786  
787 -(((
788 -
789 -)))
592 +[[image:image-20220610172924-5.png]]
790 790  
791 -(((
792 -(% style="color:blue" %)**Downlink:**
793 -)))
794 794  
795 795  (((
796 -Uplink channels 1-7(RX1)
596 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below:
797 797  )))
798 798  
799 -(((
800 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 -)))
802 802  
600 + [[image:image-20220610172924-6.png||height="601" width="860"]]
803 803  
602 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]].
804 804  
805 -=== 2.6.7  IN865-867 (IN865) ===
806 806  
807 -(((
808 -(% style="color:blue" %)**Uplink:**
809 -)))
605 +AT+<CMD>?  :  Help on <CMD>
810 810  
811 -(((
812 -865.0625 - SF7BW125 to SF12BW125
813 -)))
607 +AT+<CMD>  :  Run <CMD>
814 814  
815 -(((
816 -865.4025 - SF7BW125 to SF12BW125
817 -)))
609 +AT+<CMD>=<value>  :  Set the value
818 818  
819 -(((
820 -865.9850 - SF7BW125 to SF12BW125
821 -)))
611 +AT+<CMD>=?  :  Get the value
822 822  
823 -(((
824 -
825 -)))
826 826  
827 -(((
828 -(% style="color:blue" %)**Downlink:**
829 -)))
614 +**General Commands** : 
830 830  
831 -(((
832 -Uplink channels 1-3 (RX1)
833 -)))
616 +AT                    : Attention       
834 834  
835 -(((
836 -866.550 - SF10BW125 (RX2)
837 -)))
618 +AT?                            : Short Help     
838 838  
620 +ATZ                            : MCU Reset    
839 839  
622 +AT+TDC           : Application Data Transmission Interval 
840 840  
841 -== 2.7  LED Indicator ==
842 842  
843 -The LDDS75 has an internal LED which is to show the status of different state.
625 +**Keys, IDs and EUIs management:**
844 844  
627 +AT+APPEUI              : Application EUI      
845 845  
846 -* Blink once when device power on.
847 -* The device detects the sensor and flashes 5 times.
848 -* Solid ON for 5 seconds once device successful Join the network.
849 -* Blink once when device transmit a packet.
629 +AT+APPKEY              : Application Key     
850 850  
631 +AT+APPSKEY            : Application Session Key
851 851  
852 -== 2.8  ​Firmware Change Log ==
633 +AT+DADDR              : Device Address     
853 853  
635 +AT+DEUI                   : Device EUI     
854 854  
855 -(((
856 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
857 -)))
637 +AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
858 858  
859 -(((
860 -
861 -)))
639 +AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
862 862  
863 -(((
864 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
865 -)))
641 +AT+CFM          : Confirm Mode       
866 866  
643 +AT+CFS                     : Confirm Status       
867 867  
645 +AT+JOIN          : Join LoRa? Network       
868 868  
869 -== 2.9  Mechanical ==
647 +AT+NJM          : LoRa? Network Join Mode    
870 870  
649 +AT+NJS                     : LoRa? Network Join Status    
871 871  
872 -[[image:image-20220610172003-1.png]]
651 +AT+RECV                  : Print Last Received Data in Raw Format
873 873  
653 +AT+RECVB                : Print Last Received Data in Binary Format      
874 874  
875 -[[image:image-20220610172003-2.png]]
655 +AT+SEND                  : Send Text Data      
876 876  
657 +AT+SENB                  : Send Hexadecimal Data
877 877  
878 878  
879 -== 2.10  Battery Analysis ==
660 +**LoRa Network Management :**
880 880  
881 -=== 2.10.1  Battery Type ===
662 +AT+ADR          : Adaptive Rate
882 882  
883 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
664 +AT+CLASS                : LoRa Class(Currently only support class A
884 884  
666 +AT+DCS           : Duty Cycle Setting 
885 885  
886 -The battery related documents as below:
668 +AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
887 887  
888 -* (((
889 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
890 -)))
891 -* (((
892 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
893 -)))
894 -* (((
895 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
896 -)))
670 +AT+FCD           : Frame Counter Downlink       
897 897  
898 - [[image:image-20220610172400-3.png]]
672 +AT+FCU           : Frame Counter Uplink   
899 899  
674 +AT+JN1DL                : Join Accept Delay1
900 900  
676 +AT+JN2DL                : Join Accept Delay2
901 901  
902 -=== 2.10.2  Replace the battery ===
678 +AT+PNM                   : Public Network Mode   
903 903  
904 -(((
905 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
906 -)))
680 +AT+RX1DL                : Receive Delay1      
907 907  
908 -(((
909 -
910 -)))
682 +AT+RX2DL                : Receive Delay2      
911 911  
912 -(((
913 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
914 -)))
684 +AT+RX2DR               : Rx2 Window Data Rate 
915 915  
686 +AT+RX2FQ               : Rx2 Window Frequency
916 916  
688 +AT+TXP           : Transmit Power
917 917  
918 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
919 919  
920 -(((
921 -(((
922 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
923 -)))
924 -)))
691 +**Information :**
925 925  
926 -* (((
927 -(((
928 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
929 -)))
930 -)))
931 -* (((
932 -(((
933 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
934 -)))
935 -)))
693 +AT+RSSI           : RSSI of the Last Received Packet   
936 936  
937 -(((
938 -(((
939 -
940 -)))
695 +AT+SNR           : SNR of the Last Received Packet   
941 941  
942 -(((
943 -There are two kinds of commands to configure LDDS75, they are:
944 -)))
945 -)))
697 +AT+VER           : Image Version and Frequency Band       
946 946  
947 -* (((
948 -(((
949 -(% style="color:#4f81bd" %)** General Commands**.
950 -)))
951 -)))
699 +AT+FDR           : Factory Data Reset
952 952  
953 -(((
954 -(((
955 -These commands are to configure:
956 -)))
957 -)))
701 +AT+PORT                  : Application Port    
958 958  
959 -* (((
960 -(((
961 -General system settings like: uplink interval.
962 -)))
963 -)))
964 -* (((
965 -(((
966 -LoRaWAN protocol & radio related command.
967 -)))
968 -)))
703 +AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
969 969  
970 -(((
971 -(((
972 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
973 -)))
974 -)))
705 + AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
975 975  
976 -(((
977 -(((
978 -
979 -)))
980 -)))
981 981  
982 -* (((
983 -(((
984 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
985 -)))
986 -)))
987 987  
988 -(((
989 -(((
990 -These commands only valid for LDDS75, as below:
991 -)))
992 -)))
993 -
994 -
995 -
996 -== 3.1  Access AT Commands ==
997 -
998 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
999 -
1000 -[[image:image-20220610172924-4.png||height="483" width="988"]]
1001 -
1002 -
1003 -Or if you have below board, use below connection:
1004 -
1005 -
1006 -[[image:image-20220610172924-5.png]]
1007 -
1008 -
1009 -(((
1010 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1011 -)))
1012 -
1013 -
1014 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1015 -
1016 -
1017 -
1018 1018  == 3.2  Set Transmit Interval Time ==
1019 1019  
1020 1020  Feature: Change LoRaWAN End Node Transmit Interval.
... ... @@ -1065,7 +1065,6 @@
1065 1065  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1066 1066  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1067 1067  
1068 -
1069 1069  = 4.  FAQ =
1070 1070  
1071 1071  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1125,7 +1125,6 @@
1125 1125  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1126 1126  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1127 1127  
1128 -
1129 1129  = 7. ​ Packing Info =
1130 1130  
1131 1131  
... ... @@ -1140,7 +1140,6 @@
1140 1140  * Package Size / pcs : cm
1141 1141  * Weight / pcs : g
1142 1142  
1143 -
1144 1144  = 8.  ​Support =
1145 1145  
1146 1146  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +182.9 KB
Content