Last modified by Mengting Qiu on 2025/08/06 17:02

From version 153.1
edited by Xiaoling
on 2022/06/14 17:32
Change comment: There is no comment for this version
To version 174.9
edited by Xiaoling
on 2022/06/15 10:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,13 +1,11 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 4  
5 5  
6 6  
7 -
8 8  **Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
... ... @@ -15,10 +15,9 @@
15 15  
16 16  
17 17  
18 -
19 19  = 1.  Introduction =
20 20  
21 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
22 22  
23 23  (((
24 24  
... ... @@ -25,33 +25,65 @@
25 25  
26 26  (((
27 27  (((
28 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
30 +
33 33  )))
34 34  
35 35  (((
36 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
37 37  )))
38 38  
39 39  (((
40 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
38 +
41 41  )))
42 42  
43 43  (((
44 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
45 45  )))
46 46  
47 47  (((
46 +
47 +)))
48 +
49 +(((
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
51 +)))
52 +
53 +(((
54 +
55 +)))
56 +
57 +(((
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
59 +)))
60 +
61 +(((
62 +
63 +)))
64 +
65 +(((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
48 48  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
49 49  )))
50 50  )))
51 51  )))
80 +)))
52 52  
53 53  
54 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
55 55  
56 56  
57 57  
... ... @@ -59,9 +59,10 @@
59 59  
60 60  * LoRaWAN 1.0.3 Class A
61 61  * Ultra low power consumption
62 -* Distance Detection by Ultrasonic technology
63 -* Flat object range 280mm - 7500mm
64 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
65 65  * Cable Length : 25cm
66 66  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
67 67  * AT Commands to change parameters
... ... @@ -68,74 +68,130 @@
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
71 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
72 72  
103 +== 1.3  Suitable Container & Liquid ==
73 73  
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
74 74  
75 -== 1.3  Specification ==
112 +== 1.4  Mechanical ==
76 76  
77 -=== 1.3.1  Rated environmental conditions ===
114 +[[image:image-20220615090910-1.png]]
78 78  
79 -[[image:image-20220610154839-1.png]]
80 80  
81 -(((
82 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  **
117 +[[image:image-20220615090910-2.png]]
83 83  
84 -**~ b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
85 -)))
86 86  
87 87  
121 +== 1.5  Install LDDS20 ==
88 88  
89 -=== 1.3.2  Effective measurement range Reference beam pattern ===
90 90  
91 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
92 92  
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
93 93  
128 +[[image:image-20220615091045-3.png]]
94 94  
95 -[[image:1654852253176-749.png]]
96 96  
97 97  
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
98 98  
99 -(((
100 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
101 -)))
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
102 102  
136 +[[image:image-20220615092010-11.png]]
103 103  
104 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
105 105  
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
106 106  
141 +[[image:image-20220615092044-12.png]]
107 107  
108 -== 1.5 ​ Applications ==
109 109  
110 -* Horizontal distance measurement
111 -* Liquid level measurement
112 -* Parking management system
113 -* Object proximity and presence detection
114 -* Intelligent trash can management system
115 -* Robot obstacle avoidance
116 -* Automatic control
117 -* Sewer
118 -* Bottom water level monitoring
119 119  
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
120 120  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
121 121  
122 -== 1.6  Pin mapping and power on ==
123 123  
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
124 124  
125 -[[image:1654847583902-256.png]]
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
126 126  
127 127  
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
128 128  
129 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
130 130  
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
131 131  == 2.1  How it works ==
132 132  
133 133  (((
134 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
135 135  )))
136 136  
137 137  (((
138 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
139 139  )))
140 140  
141 141  
... ... @@ -147,7 +147,7 @@
147 147  )))
148 148  
149 149  (((
150 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
151 151  )))
152 152  
153 153  (((
... ... @@ -157,11 +157,11 @@
157 157  (((
158 158  
159 159  
160 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
161 161  )))
162 162  
163 163  (((
164 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
165 165  )))
166 166  
167 167  [[image:image-20220607170145-1.jpeg]]
... ... @@ -191,6 +191,7 @@
191 191  [[image:image-20220610161353-7.png]]
192 192  
193 193  
280 +
194 194  You can also choose to create the device manually.
195 195  
196 196   [[image:image-20220610161538-8.png]]
... ... @@ -203,16 +203,17 @@
203 203  
204 204  
205 205  
206 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
207 207  
208 208  
209 209  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
210 210  
211 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
212 212  
213 213  
301 +
214 214  (((
215 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
216 216  )))
217 217  
218 218  [[image:1654849068701-275.png]]
... ... @@ -223,12 +223,10 @@
223 223  
224 224  (((
225 225  (((
226 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
227 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
228 228  
229 -(((
230 -Uplink payload includes in total 4 bytes.
231 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
232 232  )))
233 233  )))
234 234  
... ... @@ -255,7 +255,7 @@
255 255  === 2.3.1  Battery Info ===
256 256  
257 257  
258 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
259 259  
260 260  Ex1: 0x0B45 = 2885mV
261 261  
... ... @@ -266,22 +266,21 @@
266 266  === 2.3.2  Distance ===
267 267  
268 268  (((
269 -Get the distance. Flat object range 280mm - 7500mm.
355 +Get the distance. Flat object range 20mm - 2000mm.
270 270  )))
271 271  
272 272  (((
273 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
274 274  )))
275 275  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
276 276  
277 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
278 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
279 279  
280 280  
281 -
282 282  === 2.3.3  Interrupt Pin ===
283 283  
284 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
369 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
285 285  
286 286  **Example:**
287 287  
... ... @@ -327,701 +327,300 @@
327 327  The payload decoder function for TTN V3 is here:
328 328  
329 329  (((
330 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
415 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
331 331  )))
332 332  
333 333  
334 334  
335 -== 2.4  Uplink Interval ==
420 +== 2.4  Downlink Payload ==
336 336  
337 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
422 +By default, LDDS20 prints the downlink payload to console port.
338 338  
424 +[[image:image-20220615100930-15.png]]
339 339  
340 340  
341 -== 2.5  ​Show Data in DataCake IoT Server ==
427 +**Examples:**
342 342  
343 -(((
344 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
345 -)))
346 346  
347 -(((
348 -
349 -)))
430 +* (% style="color:blue" %)**Set TDC**
350 350  
351 -(((
352 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
353 -)))
432 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
354 354  
355 -(((
356 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
357 -)))
434 +Payload:    01 00 00 1E    TDC=30S
358 358  
436 +Payload:    01 00 00 3C    TDC=60S
359 359  
360 -[[image:1654592790040-760.png]]
361 361  
439 +* (% style="color:blue" %)**Reset**
362 362  
363 -[[image:1654592800389-571.png]]
441 +If payload = 0x04FF, it will reset the LDDS20
364 364  
365 365  
366 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
444 +* (% style="color:blue" %)**CFM**
367 367  
368 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
446 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
369 369  
370 -[[image:1654851029373-510.png]]
371 371  
372 372  
373 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
450 +== 2.5  ​Show Data in DataCake IoT Server ==
374 374  
375 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
376 -
377 -
378 -
379 -== 2.6  Frequency Plans ==
380 -
381 381  (((
382 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
453 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
383 383  )))
384 384  
385 -
386 -
387 -=== 2.6.1  EU863-870 (EU868) ===
388 -
389 389  (((
390 -(% style="color:blue" %)**Uplink:**
391 -)))
392 -
393 -(((
394 -868.1 - SF7BW125 to SF12BW125
395 -)))
396 -
397 -(((
398 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
399 -)))
400 -
401 -(((
402 -868.5 - SF7BW125 to SF12BW125
403 -)))
404 -
405 -(((
406 -867.1 - SF7BW125 to SF12BW125
407 -)))
408 -
409 -(((
410 -867.3 - SF7BW125 to SF12BW125
411 -)))
412 -
413 -(((
414 -867.5 - SF7BW125 to SF12BW125
415 -)))
416 -
417 -(((
418 -867.7 - SF7BW125 to SF12BW125
419 -)))
420 -
421 -(((
422 -867.9 - SF7BW125 to SF12BW125
423 -)))
424 -
425 -(((
426 -868.8 - FSK
427 -)))
428 -
429 -(((
430 430  
431 431  )))
432 432  
433 433  (((
434 -(% style="color:blue" %)**Downlink:**
461 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
435 435  )))
436 436  
437 437  (((
438 -Uplink channels 1-9 (RX1)
465 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
439 439  )))
440 440  
441 -(((
442 -869.525 - SF9BW125 (RX2 downlink only)
443 -)))
444 444  
469 +[[image:1654592790040-760.png]]
445 445  
446 446  
447 -=== 2.6.2  US902-928(US915) ===
472 +[[image:1654592800389-571.png]]
448 448  
449 -(((
450 -Used in USA, Canada and South America. Default use CHE=2
451 451  
452 -(% style="color:blue" %)**Uplink:**
475 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
453 453  
454 -903.9 - SF7BW125 to SF10BW125
477 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
455 455  
456 -904.1 - SF7BW125 to SF10BW125
479 +[[image:1654851029373-510.png]]
457 457  
458 -904.3 - SF7BW125 to SF10BW125
459 459  
460 -904.5 - SF7BW125 to SF10BW125
482 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
461 461  
462 -904.7 - SF7BW125 to SF10BW125
484 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
463 463  
464 -904.9 - SF7BW125 to SF10BW125
465 465  
466 -905.1 - SF7BW125 to SF10BW125
467 467  
468 -905.3 - SF7BW125 to SF10BW125
488 +== 2.6  LED Indicator ==
469 469  
490 +The LDDS20 has an internal LED which is to show the status of different state.
470 470  
471 -(% style="color:blue" %)**Downlink:**
472 472  
473 -923.3 - SF7BW500 to SF12BW500
493 +* Blink once when device power on.
494 +* The device detects the sensor and flashes 5 times.
495 +* Solid ON for 5 seconds once device successful Join the network.
496 +* Blink once when device transmit a packet.
474 474  
475 -923.9 - SF7BW500 to SF12BW500
476 476  
477 -924.5 - SF7BW500 to SF12BW500
478 478  
479 -925.1 - SF7BW500 to SF12BW500
500 +== 2. Firmware Change Log ==
480 480  
481 -925.7 - SF7BW500 to SF12BW500
482 482  
483 -926.3 - SF7BW500 to SF12BW500
484 -
485 -926.9 - SF7BW500 to SF12BW500
486 -
487 -927.5 - SF7BW500 to SF12BW500
488 -
489 -923.3 - SF12BW500(RX2 downlink only)
490 -
491 -
492 -
493 -)))
494 -
495 -=== 2.6.3  CN470-510 (CN470) ===
496 -
497 497  (((
498 -Used in China, Default use CHE=1
504 +**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
499 499  )))
500 500  
501 501  (((
502 -(% style="color:blue" %)**Uplink:**
503 -)))
504 -
505 -(((
506 -486.3 - SF7BW125 to SF12BW125
507 -)))
508 -
509 -(((
510 -486.5 - SF7BW125 to SF12BW125
511 -)))
512 -
513 -(((
514 -486.7 - SF7BW125 to SF12BW125
515 -)))
516 -
517 -(((
518 -486.9 - SF7BW125 to SF12BW125
519 -)))
520 -
521 -(((
522 -487.1 - SF7BW125 to SF12BW125
523 -)))
524 -
525 -(((
526 -487.3 - SF7BW125 to SF12BW125
527 -)))
528 -
529 -(((
530 -487.5 - SF7BW125 to SF12BW125
531 -)))
532 -
533 -(((
534 -487.7 - SF7BW125 to SF12BW125
535 -)))
536 -
537 -(((
538 538  
539 539  )))
540 540  
541 541  (((
542 -(% style="color:blue" %)**Downlink:**
512 +**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
543 543  )))
544 544  
545 -(((
546 -506.7 - SF7BW125 to SF12BW125
547 -)))
548 548  
549 -(((
550 -506.9 - SF7BW125 to SF12BW125
551 -)))
552 552  
553 -(((
554 -507.1 - SF7BW125 to SF12BW125
555 -)))
517 +== 2.8  Battery Analysis ==
556 556  
557 -(((
558 -507.3 - SF7BW125 to SF12BW125
559 -)))
560 560  
561 -(((
562 -507.5 - SF7BW125 to SF12BW125
563 -)))
564 564  
565 -(((
566 -507.7 - SF7BW125 to SF12BW125
567 -)))
568 568  
569 -(((
570 -507.9 - SF7BW125 to SF12BW125
571 -)))
522 +=== 2.8.1  Battery Type ===
572 572  
573 -(((
574 -508.1 - SF7BW125 to SF12BW125
575 -)))
524 +The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
576 576  
577 -(((
578 -505.3 - SF12BW125 (RX2 downlink only)
579 -)))
580 580  
527 +The battery related documents as below:
581 581  
582 -
583 -=== 2.6.4  AU915-928(AU915) ===
584 -
585 -(((
586 -Default use CHE=2
587 -
588 -(% style="color:blue" %)**Uplink:**
589 -
590 -916.8 - SF7BW125 to SF12BW125
591 -
592 -917.0 - SF7BW125 to SF12BW125
593 -
594 -917.2 - SF7BW125 to SF12BW125
595 -
596 -917.4 - SF7BW125 to SF12BW125
597 -
598 -917.6 - SF7BW125 to SF12BW125
599 -
600 -917.8 - SF7BW125 to SF12BW125
601 -
602 -918.0 - SF7BW125 to SF12BW125
603 -
604 -918.2 - SF7BW125 to SF12BW125
605 -
606 -
607 -(% style="color:blue" %)**Downlink:**
608 -
609 -923.3 - SF7BW500 to SF12BW500
610 -
611 -923.9 - SF7BW500 to SF12BW500
612 -
613 -924.5 - SF7BW500 to SF12BW500
614 -
615 -925.1 - SF7BW500 to SF12BW500
616 -
617 -925.7 - SF7BW500 to SF12BW500
618 -
619 -926.3 - SF7BW500 to SF12BW500
620 -
621 -926.9 - SF7BW500 to SF12BW500
622 -
623 -927.5 - SF7BW500 to SF12BW500
624 -
625 -923.3 - SF12BW500(RX2 downlink only)
626 -
627 -
628 -
529 +* (((
530 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
629 629  )))
630 -
631 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
632 -
633 -(((
634 -(% style="color:blue" %)**Default Uplink channel:**
532 +* (((
533 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
635 635  )))
636 -
637 -(((
638 -923.2 - SF7BW125 to SF10BW125
535 +* (((
536 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 639  )))
640 640  
641 -(((
642 -923.4 - SF7BW125 to SF10BW125
643 -)))
539 + [[image:image-20220615102527-16.png]]
644 644  
645 -(((
646 -
647 -)))
648 648  
649 -(((
650 -(% style="color:blue" %)**Additional Uplink Channel**:
651 -)))
652 652  
653 -(((
654 -(OTAA mode, channel added by JoinAccept message)
655 -)))
543 +== 2.8.2  Battery Note ==
656 656  
657 -(((
658 -
659 -)))
545 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
660 660  
661 -(((
662 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
663 -)))
664 664  
665 -(((
666 -922.2 - SF7BW125 to SF10BW125
667 -)))
668 668  
669 -(((
670 -922.4 - SF7BW125 to SF10BW125
671 -)))
549 +=== 2.8.3  Replace the battery ===
672 672  
673 673  (((
674 -922.6 - SF7BW125 to SF10BW125
552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
675 675  )))
676 676  
677 677  (((
678 -922.8 - SF7BW125 to SF10BW125
679 -)))
680 -
681 -(((
682 -923.0 - SF7BW125 to SF10BW125
683 -)))
684 -
685 -(((
686 -922.0 - SF7BW125 to SF10BW125
687 -)))
688 -
689 -(((
690 690  
691 691  )))
692 692  
693 693  (((
694 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
695 695  )))
696 696  
697 -(((
698 -923.6 - SF7BW125 to SF10BW125
699 -)))
700 700  
701 -(((
702 -923.8 - SF7BW125 to SF10BW125
703 -)))
704 704  
705 -(((
706 -924.0 - SF7BW125 to SF10BW125
707 -)))
565 +== 2.8.4  Battery Life Analyze ==
708 708  
709 -(((
710 -924.2 - SF7BW125 to SF10BW125
711 -)))
567 +Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
712 712  
713 -(((
714 -924.4 - SF7BW125 to SF10BW125
715 -)))
569 +[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
716 716  
717 -(((
718 -924.6 - SF7BW125 to SF10BW125
719 -)))
720 720  
721 -(((
722 -
723 -)))
724 724  
725 -(((
726 -(% style="color:blue" %)**Downlink:**
727 -)))
573 += 3.  Using the AT Commands =
728 728  
729 729  (((
730 -Uplink channels 1-8 (RX1)
731 -)))
732 -
733 733  (((
734 -923.2 - SF10BW125 (RX2)
735 -)))
736 -
737 -
738 -
739 -=== 2.6.6  KR920-923 (KR920) ===
740 -
741 -(((
742 -(% style="color:blue" %)**Default channel:**
743 -)))
744 -
745 -(((
746 -922.1 - SF7BW125 to SF12BW125
747 -)))
748 -
749 -(((
750 -922.3 - SF7BW125 to SF12BW125
751 -)))
752 -
753 -(((
754 -922.5 - SF7BW125 to SF12BW125
755 -)))
756 -
757 -(((
758 758  
759 759  )))
760 -
761 -(((
762 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
763 763  )))
764 764  
765 -(((
766 -922.1 - SF7BW125 to SF12BW125
767 -)))
581 +== 3.1  Access AT Commands ==
768 768  
769 -(((
770 -922.3 - SF7BW125 to SF12BW125
771 -)))
583 +LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below.
772 772  
773 -(((
774 -922.5 - SF7BW125 to SF12BW125
775 -)))
776 776  
777 -(((
778 -922.7 - SF7BW125 to SF12BW125
779 -)))
586 +[[image:image-20220610172924-4.png||height="483" width="988"]]
780 780  
781 -(((
782 -922.9 - SF7BW125 to SF12BW125
783 -)))
784 784  
785 -(((
786 -923.1 - SF7BW125 to SF12BW125
787 -)))
589 +Or if you have below board, use below connection:
788 788  
789 -(((
790 -923.3 - SF7BW125 to SF12BW125
791 -)))
792 792  
793 -(((
794 -
795 -)))
592 +[[image:image-20220610172924-5.png]]
796 796  
797 -(((
798 -(% style="color:blue" %)**Downlink:**
799 -)))
800 800  
801 801  (((
802 -Uplink channels 1-7(RX1)
596 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below:
803 803  )))
804 804  
805 -(((
806 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
807 -)))
808 808  
600 + [[image:image-20220610172924-6.png||height="601" width="860"]]
809 809  
602 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]].
810 810  
811 -=== 2.6.7  IN865-867 (IN865) ===
812 812  
813 -(((
814 -(% style="color:blue" %)**Uplink:**
815 -)))
605 +AT+<CMD>?  :  Help on <CMD>
816 816  
817 -(((
818 -865.0625 - SF7BW125 to SF12BW125
819 -)))
607 +AT+<CMD>  :  Run <CMD>
820 820  
821 -(((
822 -865.4025 - SF7BW125 to SF12BW125
823 -)))
609 +AT+<CMD>=<value>  :  Set the value
824 824  
825 -(((
826 -865.9850 - SF7BW125 to SF12BW125
827 -)))
611 +AT+<CMD>=?  :  Get the value
828 828  
829 -(((
830 -
831 -)))
832 832  
833 -(((
834 -(% style="color:blue" %)**Downlink:**
835 -)))
614 +**General Commands**      
836 836  
837 -(((
838 -Uplink channels 1-3 (RX1)
839 -)))
616 +AT                    : Attention       
840 840  
841 -(((
842 -866.550 - SF10BW125 (RX2)
843 -)))
618 +AT?                            : Short Help     
844 844  
620 +ATZ                            : MCU Reset    
845 845  
622 +AT+TDC           : Application Data Transmission Interval 
846 846  
847 -== 2.7  LED Indicator ==
848 848  
849 -The LDDS75 has an internal LED which is to show the status of different state.
625 +**Keys, IDs and EUIs management**
850 850  
627 +AT+APPEUI              : Application EUI      
851 851  
852 -* Blink once when device power on.
853 -* The device detects the sensor and flashes 5 times.
854 -* Solid ON for 5 seconds once device successful Join the network.
855 -* Blink once when device transmit a packet.
629 +AT+APPKEY              : Application Key     
856 856  
631 +AT+APPSKEY            : Application Session Key
857 857  
633 +AT+DADDR              : Device Address     
858 858  
859 -== 2.8  ​Firmware Change Log ==
635 +AT+DEUI                   : Device EUI     
860 860  
637 +AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
861 861  
862 -(((
863 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
864 -)))
639 +AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
865 865  
866 -(((
867 -
868 -)))
641 +AT+CFM          : Confirm Mode       
869 869  
870 -(((
871 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
872 -)))
643 +AT+CFS                     : Confirm Status       
873 873  
645 +AT+JOIN          : Join LoRa? Network       
874 874  
647 +AT+NJM          : LoRa? Network Join Mode    
875 875  
876 -== 2.9  Mechanical ==
649 +AT+NJS                     : LoRa? Network Join Status    
877 877  
651 +AT+RECV                  : Print Last Received Data in Raw Format
878 878  
879 -[[image:image-20220610172003-1.png]]
653 +AT+RECVB                : Print Last Received Data in Binary Format      
880 880  
655 +AT+SEND                  : Send Text Data      
881 881  
882 -[[image:image-20220610172003-2.png]]
657 +AT+SENB                  : Send Hexadecimal Data
883 883  
884 884  
660 +**LoRa Network Management**
885 885  
886 -== 2.10  Battery Analysis ==
662 +AT+ADR          : Adaptive Rate
887 887  
888 -=== 2.10.1  Battery Type ===
664 +AT+CLASS                : LoRa Class(Currently only support class A
889 889  
890 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
666 +AT+DCS           : Duty Cycle Setting 
891 891  
668 +AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
892 892  
893 -The battery related documents as below:
670 +AT+FCD           : Frame Counter Downlink       
894 894  
895 -* (((
896 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
897 -)))
898 -* (((
899 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
900 -)))
901 -* (((
902 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
903 -)))
672 +AT+FCU           : Frame Counter Uplink   
904 904  
905 - [[image:image-20220610172400-3.png]]
674 +AT+JN1DL                : Join Accept Delay1
906 906  
676 +AT+JN2DL                : Join Accept Delay2
907 907  
678 +AT+PNM                   : Public Network Mode   
908 908  
909 -=== 2.10.2  Replace the battery ===
680 +AT+RX1DL                : Receive Delay1      
910 910  
911 -(((
912 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
913 -)))
682 +AT+RX2DL                : Receive Delay2      
914 914  
915 -(((
916 -
917 -)))
684 +AT+RX2DR               : Rx2 Window Data Rate 
918 918  
919 -(((
920 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
921 -)))
686 +AT+RX2FQ               : Rx2 Window Frequency
922 922  
688 +AT+TXP           : Transmit Power
923 923  
924 924  
925 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
691 +**Information** 
926 926  
927 -(((
928 -(((
929 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
930 -)))
931 -)))
693 +AT+RSSI           : RSSI of the Last Received Packet   
932 932  
933 -* (((
934 -(((
935 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
936 -)))
937 -)))
938 -* (((
939 -(((
940 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
941 -)))
942 -)))
695 +AT+SNR           : SNR of the Last Received Packet   
943 943  
944 -(((
945 -(((
946 -
947 -)))
697 +AT+VER           : Image Version and Frequency Band       
948 948  
949 -(((
950 -There are two kinds of commands to configure LDDS75, they are:
951 -)))
952 -)))
699 +AT+FDR           : Factory Data Reset
953 953  
954 -* (((
955 -(((
956 -(% style="color:#4f81bd" %)** General Commands**.
957 -)))
958 -)))
701 +AT+PORT                  : Application Port    
959 959  
960 -(((
961 -(((
962 -These commands are to configure:
963 -)))
964 -)))
703 +AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
965 965  
966 -* (((
967 -(((
968 -General system settings like: uplink interval.
969 -)))
970 -)))
971 -* (((
972 -(((
973 -LoRaWAN protocol & radio related command.
974 -)))
975 -)))
705 + AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
976 976  
977 -(((
978 -(((
979 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
980 -)))
981 -)))
982 982  
983 -(((
984 -(((
985 -
986 -)))
987 -)))
988 988  
989 -* (((
990 -(((
991 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
992 -)))
993 -)))
994 -
995 -(((
996 -(((
997 -These commands only valid for LDDS75, as below:
998 -)))
999 -)))
1000 -
1001 -
1002 -
1003 -== 3.1  Access AT Commands ==
1004 -
1005 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
1006 -
1007 -[[image:image-20220610172924-4.png||height="483" width="988"]]
1008 -
1009 -
1010 -Or if you have below board, use below connection:
1011 -
1012 -
1013 -[[image:image-20220610172924-5.png]]
1014 -
1015 -
1016 -(((
1017 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1018 -)))
1019 -
1020 -
1021 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1022 -
1023 -
1024 -
1025 1025  == 3.2  Set Transmit Interval Time ==
1026 1026  
1027 1027  Feature: Change LoRaWAN End Node Transmit Interval.
... ... @@ -1072,8 +1072,6 @@
1072 1072  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1073 1073  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1074 1074  
1075 -
1076 -
1077 1077  = 4.  FAQ =
1078 1078  
1079 1079  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1133,8 +1133,6 @@
1133 1133  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1134 1134  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1135 1135  
1136 -
1137 -
1138 1138  = 7. ​ Packing Info =
1139 1139  
1140 1140  
... ... @@ -1149,8 +1149,6 @@
1149 1149  * Package Size / pcs : cm
1150 1150  * Weight / pcs : g
1151 1151  
1152 -
1153 -
1154 1154  = 8.  ​Support =
1155 1155  
1156 1156  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +182.9 KB
Content