<
From version < 150.9 >
edited by Xiaoling
on 2022/06/11 08:38
To version < 120.1 >
edited by Xiaoling
on 2022/06/10 15:44
>
Change comment: Uploaded new attachment "1654847051249-359.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -3,7 +3,6 @@
3 3  
4 4  **Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -11,7 +11,6 @@
11 11  
12 12  
13 13  
14 -
15 15  = 1.  Introduction =
16 16  
17 17  == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
... ... @@ -35,12 +35,12 @@
35 35  Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 36  
37 37  
38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
36 +(% style="color:#4472c4" %) ***** (%%)Actually lifetime depends on network coverage and uplink interval and other factors
39 39  )))
40 40  )))
41 41  
42 42  
43 -[[image:1654847051249-359.png]]
41 +[[image:1654826306458-414.png]]
44 44  
45 45  
46 46  
... ... @@ -47,52 +47,41 @@
47 47  == ​1.2  Features ==
48 48  
49 49  * LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Distance Detection by Ultrasonic technology
52 -* Flat object range 280mm - 7500mm
53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
54 -* Cable Length : 25cm
48 +* Ultra-low power consumption
49 +* Laser technology for distance detection
50 +* Operating Range - 0.1m~~12m
51 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
52 +* Monitor Battery Level
55 55  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 56  * AT Commands to change parameters
57 57  * Uplink on periodically
58 58  * Downlink to change configure
59 -* IP66 Waterproof Enclosure
60 -* 4000mAh or 8500mAh Battery for long term use
57 +* 8500mAh Battery for long term use
61 61  
59 +== 1.3  Probe Specification ==
62 62  
61 +* Storage temperature :-20℃~~75℃
62 +* Operating temperature - -20℃~~60℃
63 +* Operating Range - 0.1m~~12m①
64 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
65 +* Distance resolution - 5mm
66 +* Ambient light immunity - 70klux
67 +* Enclosure rating - IP65
68 +* Light source - LED
69 +* Central wavelength - 850nm
70 +* FOV - 3.6°
71 +* Material of enclosure - ABS+PC
72 +* Wire length - 25cm
63 63  
64 -== 1.3  Specification ==
74 +== 1.4  Probe Dimension ==
65 65  
66 -=== 1.3.1  Rated environmental conditions ===
67 67  
68 -[[image:image-20220610154839-1.png]]
77 +[[image:1654827224480-952.png]]
69 69  
70 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
71 71  
72 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
73 -
74 -
75 -
76 -=== 1.3.2  Effective measurement range Reference beam pattern ===
77 -
78 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
79 -
80 -
81 -
82 -[[image:1654852253176-749.png]]
83 -
84 -
85 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
86 -
87 -
88 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
89 -
90 -
91 -
92 92  == 1.5 ​ Applications ==
93 93  
94 94  * Horizontal distance measurement
95 -* Liquid level measurement
96 96  * Parking management system
97 97  * Object proximity and presence detection
98 98  * Intelligent trash can management system
... ... @@ -99,29 +99,26 @@
99 99  * Robot obstacle avoidance
100 100  * Automatic control
101 101  * Sewer
102 -* Bottom water level monitoring
103 103  
104 104  == 1.6  Pin mapping and power on ==
105 105  
106 106  
107 -[[image:1654847583902-256.png]]
93 +[[image:1654827332142-133.png]]
108 108  
109 109  
96 += 2.  Configure LLDS12 to connect to LoRaWAN network =
110 110  
111 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
112 -
113 113  == 2.1  How it works ==
114 114  
115 115  (((
116 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
101 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
117 117  )))
118 118  
119 119  (((
120 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
105 +In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
121 121  )))
122 122  
123 123  
124 -
125 125  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126 126  
127 127  (((
... ... @@ -129,7 +129,7 @@
129 129  )))
130 130  
131 131  (((
132 -[[image:1654848616367-242.png]]
116 +[[image:1654827857527-556.png]]
133 133  )))
134 134  
135 135  (((
... ... @@ -137,57 +137,57 @@
137 137  )))
138 138  
139 139  (((
140 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
124 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
141 141  )))
142 142  
143 143  (((
144 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
128 +Each LSPH01 is shipped with a sticker with the default device EUI as below:
145 145  )))
146 146  
147 147  [[image:image-20220607170145-1.jpeg]]
148 148  
149 149  
150 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
151 151  
152 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
135 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
153 153  
154 -**Add APP EUI in the application**
155 155  
156 -[[image:image-20220610161353-4.png]]
138 +**Register the device**
157 157  
158 -[[image:image-20220610161353-5.png]]
159 159  
160 -[[image:image-20220610161353-6.png]]
141 +[[image:1654592600093-601.png]]
161 161  
162 162  
163 -[[image:image-20220610161353-7.png]]
164 164  
145 +**Add APP EUI and DEV EUI**
165 165  
166 -You can also choose to create the device manually.
147 +[[image:1654592619856-881.png]]
167 167  
168 - [[image:image-20220610161538-8.png]]
169 169  
170 170  
151 +**Add APP EUI in the application**
171 171  
172 -**Add APP KEY and DEV EUI**
153 +[[image:1654592632656-512.png]]
173 173  
174 -[[image:image-20220610161538-9.png]]
175 175  
176 176  
157 +**Add APP KEY**
177 177  
178 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
159 +[[image:1654592653453-934.png]]
179 179  
180 180  
162 +(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
163 +
164 +
181 181  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182 182  
183 -[[image:image-20220610161724-10.png]]
167 +[[image:image-20220607170442-2.png]]
184 184  
185 185  
186 186  (((
187 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
171 +(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 188  )))
189 189  
190 -[[image:1654849068701-275.png]]
174 +[[image:1654833501679-968.png]]
191 191  
192 192  
193 193  
... ... @@ -194,10 +194,11 @@
194 194  == 2.3  ​Uplink Payload ==
195 195  
196 196  (((
197 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
181 +LLDS12 will uplink payload via LoRaWAN with below payload format: 
182 +)))
198 198  
199 -Uplink payload includes in total 4 bytes.
200 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
184 +(((
185 +Uplink payload includes in total 11 bytes.
201 201  )))
202 202  
203 203  (((
... ... @@ -207,23 +207,23 @@
207 207  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
208 208  |=(% style="width: 62.5px;" %)(((
209 209  **Size (bytes)**
210 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
211 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
212 -[[Distance>>||anchor="H2.3.3A0Distance"]]
195 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
196 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
197 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
198 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
199 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
200 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
201 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
202 +)))
213 213  
214 -(unit: mm)
215 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 -[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 -)))|[[Sensor Flag>>path:#Sensor_Flag]]
204 +[[image:1654833689380-972.png]]
218 218  
219 -[[image:1654850511545-399.png]]
220 220  
221 221  
222 -
223 223  === 2.3.1  Battery Info ===
224 224  
225 225  
226 -Check the battery voltage for LDDS75.
211 +Check the battery voltage for LLDS12.
227 227  
228 228  Ex1: 0x0B45 = 2885mV
229 229  
... ... @@ -231,66 +231,103 @@
231 231  
232 232  
233 233  
234 -=== 2.3.2  Distance ===
219 +=== 2.3.2  DS18B20 Temperature sensor ===
235 235  
236 -Get the distance. Flat object range 280mm - 7500mm.
221 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
237 237  
238 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
239 239  
224 +**Example**:
240 240  
241 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
242 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
226 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
243 243  
244 -=== 2.3.3  Interrupt Pin ===
228 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
245 245  
246 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
247 247  
248 -**Example:**
249 249  
250 -0x00: Normal uplink packet.
232 +=== 2.3.3  Distance ===
251 251  
252 -0x01: Interrupt Uplink Packet.
234 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
253 253  
254 254  
237 +**Example**:
255 255  
256 -=== 2.3.4  DS18B20 Temperature sensor ===
239 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
257 257  
258 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
259 259  
242 +
243 +=== 2.3.4  Distance signal strength ===
244 +
245 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
246 +
247 +
260 260  **Example**:
261 261  
262 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
250 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
263 263  
264 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
252 +Customers can judge whether they need to adjust the environment based on the signal strength.
265 265  
266 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
267 267  
268 268  
256 +=== 2.3.5  Interrupt Pin ===
269 269  
270 -=== 2.3.5  Sensor Flag ===
258 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
271 271  
272 -0x01: Detect Ultrasonic Sensor
260 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
273 273  
274 -0x00: No Ultrasonic Sensor
262 +**Example:**
275 275  
264 +0x00: Normal uplink packet.
276 276  
266 +0x01: Interrupt Uplink Packet.
277 277  
278 -=== 2.3.6  Decode payload in The Things Network ===
279 279  
269 +
270 +=== 2.3.6  LiDAR temp ===
271 +
272 +Characterize the internal temperature value of the sensor.
273 +
274 +**Example: **
275 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
276 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
277 +
278 +
279 +
280 +=== 2.3.7  Message Type ===
281 +
282 +(((
283 +For a normal uplink payload, the message type is always 0x01.
284 +)))
285 +
286 +(((
287 +Valid Message Type:
288 +)))
289 +
290 +
291 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
292 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
293 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
294 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
295 +
296 +=== 2.3.8  Decode payload in The Things Network ===
297 +
280 280  While using TTN network, you can add the payload format to decode the payload.
281 281  
282 282  
283 -[[image:1654850829385-439.png]]
301 +[[image:1654592762713-715.png]]
284 284  
285 -The payload decoder function for TTN V3 is here:
303 +(((
304 +The payload decoder function for TTN is here:
305 +)))
286 286  
287 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
307 +(((
308 +LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
309 +)))
288 288  
289 289  
290 290  
291 291  == 2.4  Uplink Interval ==
292 292  
293 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
315 +The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
294 294  
295 295  
296 296  
... ... @@ -321,25 +321,47 @@
321 321  
322 322  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
323 323  
324 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
346 +(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
325 325  
326 -[[image:1654851029373-510.png]]
348 +[[image:1654832691989-514.png]]
327 327  
328 328  
329 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
351 +[[image:1654592833877-762.png]]
330 330  
331 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
332 332  
354 +[[image:1654832740634-933.png]]
333 333  
334 334  
335 -== 2.6  Frequency Plans ==
336 336  
337 337  (((
338 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
359 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
339 339  )))
340 340  
362 +(((
363 +
364 +)))
341 341  
366 +[[image:1654833065139-942.png]]
342 342  
368 +
369 +
370 +[[image:1654833092678-390.png]]
371 +
372 +
373 +
374 +After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
375 +
376 +[[image:1654833163048-332.png]]
377 +
378 +
379 +
380 +== 2.6  Frequency Plans ==
381 +
382 +(((
383 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
384 +)))
385 +
386 +
343 343  === 2.6.1  EU863-870 (EU868) ===
344 344  
345 345  (((
... ... @@ -403,51 +403,20 @@
403 403  === 2.6.2  US902-928(US915) ===
404 404  
405 405  (((
406 -Used in USA, Canada and South America. Default use CHE=2
450 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
451 +)))
407 407  
408 -(% style="color:blue" %)**Uplink:**
453 +(((
454 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
455 +)))
409 409  
410 -903.9 - SF7BW125 to SF10BW125
411 -
412 -904.1 - SF7BW125 to SF10BW125
413 -
414 -904.3 - SF7BW125 to SF10BW125
415 -
416 -904.5 - SF7BW125 to SF10BW125
417 -
418 -904.7 - SF7BW125 to SF10BW125
419 -
420 -904.9 - SF7BW125 to SF10BW125
421 -
422 -905.1 - SF7BW125 to SF10BW125
423 -
424 -905.3 - SF7BW125 to SF10BW125
425 -
426 -
427 -(% style="color:blue" %)**Downlink:**
428 -
429 -923.3 - SF7BW500 to SF12BW500
430 -
431 -923.9 - SF7BW500 to SF12BW500
432 -
433 -924.5 - SF7BW500 to SF12BW500
434 -
435 -925.1 - SF7BW500 to SF12BW500
436 -
437 -925.7 - SF7BW500 to SF12BW500
438 -
439 -926.3 - SF7BW500 to SF12BW500
440 -
441 -926.9 - SF7BW500 to SF12BW500
442 -
443 -927.5 - SF7BW500 to SF12BW500
444 -
445 -923.3 - SF12BW500(RX2 downlink only)
446 -
447 -
448 -
457 +(((
458 +After Join success, the end node will switch to the correct sub band by:
449 449  )))
450 450  
461 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
462 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
463 +
451 451  === 2.6.3  CN470-510 (CN470) ===
452 452  
453 453  (((
... ... @@ -536,54 +536,28 @@
536 536  
537 537  
538 538  
552 +
539 539  === 2.6.4  AU915-928(AU915) ===
540 540  
541 541  (((
542 -Default use CHE=2
556 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
557 +)))
543 543  
544 -(% style="color:blue" %)**Uplink:**
559 +(((
560 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
561 +)))
545 545  
546 -916.8 - SF7BW125 to SF12BW125
547 -
548 -917.0 - SF7BW125 to SF12BW125
549 -
550 -917.2 - SF7BW125 to SF12BW125
551 -
552 -917.4 - SF7BW125 to SF12BW125
553 -
554 -917.6 - SF7BW125 to SF12BW125
555 -
556 -917.8 - SF7BW125 to SF12BW125
557 -
558 -918.0 - SF7BW125 to SF12BW125
559 -
560 -918.2 - SF7BW125 to SF12BW125
561 -
562 -
563 -(% style="color:blue" %)**Downlink:**
564 -
565 -923.3 - SF7BW500 to SF12BW500
566 -
567 -923.9 - SF7BW500 to SF12BW500
568 -
569 -924.5 - SF7BW500 to SF12BW500
570 -
571 -925.1 - SF7BW500 to SF12BW500
572 -
573 -925.7 - SF7BW500 to SF12BW500
574 -
575 -926.3 - SF7BW500 to SF12BW500
576 -
577 -926.9 - SF7BW500 to SF12BW500
578 -
579 -927.5 - SF7BW500 to SF12BW500
580 -
581 -923.3 - SF12BW500(RX2 downlink only)
582 -
583 -
563 +(((
584 584  
585 585  )))
586 586  
567 +(((
568 +After Join success, the end node will switch to the correct sub band by:
569 +)))
570 +
571 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
572 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
573 +
587 587  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
588 588  
589 589  (((
... ... @@ -692,6 +692,7 @@
692 692  
693 693  
694 694  
682 +
695 695  === 2.6.6  KR920-923 (KR920) ===
696 696  
697 697  (((
... ... @@ -764,6 +764,7 @@
764 764  
765 765  
766 766  
755 +
767 767  === 2.6.7  IN865-867 (IN865) ===
768 768  
769 769  (((
... ... @@ -800,20 +800,18 @@
800 800  
801 801  
802 802  
792 +
803 803  == 2.7  LED Indicator ==
804 804  
805 -The LDDS75 has an internal LED which is to show the status of different state.
795 +The LLDS12 has an internal LED which is to show the status of different state.
806 806  
807 -
808 -* Blink once when device power on.
809 -* The device detects the sensor and flashes 5 times.
810 -* Solid ON for 5 seconds once device successful Join the network.
797 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
811 811  * Blink once when device transmit a packet.
812 812  
813 813  == 2.8  ​Firmware Change Log ==
814 814  
815 815  
816 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
803 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
817 817  
818 818  
819 819  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -820,58 +820,71 @@
820 820  
821 821  
822 822  
823 -== 2.9  Mechanical ==
810 += 3LiDAR ToF Measurement =
824 824  
812 +== 3.1 Principle of Distance Measurement ==
825 825  
826 -[[image:image-20220610172003-1.png]]
814 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
827 827  
828 -[[image:image-20220610172003-2.png]]
816 +[[image:1654831757579-263.png]]
829 829  
830 830  
831 -== 2.10  Battery Analysis ==
832 832  
833 -=== 2.10.1  Battery Type ===
820 +== 3.2 Distance Measurement Characteristics ==
834 834  
835 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
822 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
836 836  
824 +[[image:1654831774373-275.png]]
837 837  
838 -The battery related documents as below:
839 839  
840 -* (((
841 -[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
827 +(((
828 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
842 842  )))
843 -* (((
844 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
830 +
831 +(((
832 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
845 845  )))
846 -* (((
847 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
834 +
835 +(((
836 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
848 848  )))
849 849  
850 - [[image:image-20220610172400-3.png]]
851 851  
840 +(((
841 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
842 +)))
852 852  
853 853  
854 -=== 2.10.2  Replace the battery ===
845 +[[image:1654831797521-720.png]]
855 855  
856 -(((
857 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
858 -)))
859 859  
860 860  (((
861 -
849 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
862 862  )))
863 863  
852 +[[image:1654831810009-716.png]]
853 +
854 +
864 864  (((
865 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
856 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
866 866  )))
867 867  
868 868  
869 869  
870 -= 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
861 +== 3.3 Notice of usage: ==
871 871  
863 +Possible invalid /wrong reading for LiDAR ToF tech:
864 +
865 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
866 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
867 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
868 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
869 +
870 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
871 +
872 872  (((
873 873  (((
874 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
874 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
875 875  )))
876 876  )))
877 877  
... ... @@ -892,7 +892,7 @@
892 892  )))
893 893  
894 894  (((
895 -There are two kinds of commands to configure LDDS75, they are:
895 +There are two kinds of commands to configure LLDS12, they are:
896 896  )))
897 897  )))
898 898  
... ... @@ -933,148 +933,352 @@
933 933  
934 934  * (((
935 935  (((
936 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
936 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
937 937  )))
938 938  )))
939 939  
940 940  (((
941 941  (((
942 -These commands only valid for LDDS75, as below:
942 +These commands only valid for LLDS12, as below:
943 943  )))
944 944  )))
945 945  
946 946  
947 947  
948 -== 3.1  Access AT Commands ==
948 +== 4.1  Set Transmit Interval Time ==
949 949  
950 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
950 +Feature: Change LoRaWAN End Node Transmit Interval.
951 951  
952 -[[image:image-20220610172924-4.png||height="483" width="988"]]
952 +(% style="color:#037691" %)**AT Command: AT+TDC**
953 953  
954 +[[image:image-20220607171554-8.png]]
954 954  
955 -Or if you have below board, use below connection:
956 956  
957 +(((
958 +(% style="color:#037691" %)**Downlink Command: 0x01**
959 +)))
957 957  
958 -[[image:image-20220610172924-5.png]]
961 +(((
962 +Format: Command Code (0x01) followed by 3 bytes time value.
963 +)))
959 959  
965 +(((
966 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
967 +)))
960 960  
961 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
969 +* (((
970 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
971 +)))
972 +* (((
973 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
974 +)))
962 962  
976 +== 4.2  Set Interrupt Mode ==
963 963  
964 - [[image:image-20220610172924-6.png||height="601" width="860"]]
978 +Feature, Set Interrupt mode for GPIO_EXIT.
965 965  
980 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
966 966  
982 +[[image:image-20220610105806-2.png]]
967 967  
968 -== 3.2  Set Transmit Interval Time ==
969 969  
970 -Feature: Change LoRaWAN End Node Transmit Interval.
985 +(((
986 +(% style="color:#037691" %)**Downlink Command: 0x06**
987 +)))
971 971  
972 -(% style="color:#037691" %)**AT Command: AT+TDC**
989 +(((
990 +Format: Command Code (0x06) followed by 3 bytes.
991 +)))
973 973  
974 -[[image:image-20220610173409-7.png]]
993 +(((
994 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
995 +)))
975 975  
997 +* (((
998 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
999 +)))
1000 +* (((
1001 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1002 +)))
976 976  
1004 +== 4.3  Get Firmware Version Info ==
1005 +
1006 +Feature: use downlink to get firmware version.
1007 +
1008 +(% style="color:#037691" %)**Downlink Command: 0x26**
1009 +
1010 +[[image:image-20220607171917-10.png]]
1011 +
1012 +* Reply to the confirmation package: 26 01
1013 +* Reply to non-confirmed packet: 26 00
1014 +
1015 +Device will send an uplink after got this downlink command. With below payload:
1016 +
1017 +Configures info payload:
1018 +
1019 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1020 +|=(((
1021 +**Size(bytes)**
1022 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1023 +|**Value**|Software Type|(((
1024 +Frequency
1025 +
1026 +Band
1027 +)))|Sub-band|(((
1028 +Firmware
1029 +
1030 +Version
1031 +)))|Sensor Type|Reserve|(((
1032 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1033 +Always 0x02
1034 +)))
1035 +
1036 +**Software Type**: Always 0x03 for LLDS12
1037 +
1038 +
1039 +**Frequency Band**:
1040 +
1041 +*0x01: EU868
1042 +
1043 +*0x02: US915
1044 +
1045 +*0x03: IN865
1046 +
1047 +*0x04: AU915
1048 +
1049 +*0x05: KZ865
1050 +
1051 +*0x06: RU864
1052 +
1053 +*0x07: AS923
1054 +
1055 +*0x08: AS923-1
1056 +
1057 +*0x09: AS923-2
1058 +
1059 +*0xa0: AS923-3
1060 +
1061 +
1062 +**Sub-Band**: value 0x00 ~~ 0x08
1063 +
1064 +
1065 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1066 +
1067 +
1068 +**Sensor Type**:
1069 +
1070 +0x01: LSE01
1071 +
1072 +0x02: LDDS75
1073 +
1074 +0x03: LDDS20
1075 +
1076 +0x04: LLMS01
1077 +
1078 +0x05: LSPH01
1079 +
1080 +0x06: LSNPK01
1081 +
1082 +0x07: LLDS12
1083 +
1084 +
1085 +
1086 += 5.  Battery & How to replace =
1087 +
1088 +== 5.1  Battery Type ==
1089 +
977 977  (((
978 -(% style="color:#037691" %)**Downlink Command: 0x01**
1091 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
979 979  )))
980 980  
981 981  (((
1095 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1096 +)))
1097 +
1098 +[[image:1654593587246-335.png]]
1099 +
1100 +
1101 +Minimum Working Voltage for the LLDS12:
1102 +
1103 +LLDS12:  2.45v ~~ 3.6v
1104 +
1105 +
1106 +
1107 +== 5.2  Replace Battery ==
1108 +
982 982  (((
983 -Format: Command Code (0x01) followed by 3 bytes time value.
1110 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1111 +)))
984 984  
985 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1113 +(((
1114 +And make sure the positive and negative pins match.
1115 +)))
986 986  
987 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
988 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1117 +
1118 +
1119 +== 5.3  Power Consumption Analyze ==
1120 +
1121 +(((
1122 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
989 989  )))
990 990  
1125 +(((
1126 +Instruction to use as below:
1127 +)))
991 991  
992 -
1129 +
1130 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1131 +
1132 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1133 +
1134 +
1135 +**Step 2**: Open it and choose
1136 +
1137 +* Product Model
1138 +* Uplink Interval
1139 +* Working Mode
1140 +
1141 +And the Life expectation in difference case will be shown on the right.
1142 +
1143 +[[image:1654593605679-189.png]]
1144 +
1145 +
1146 +The battery related documents as below:
1147 +
1148 +* (((
1149 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
993 993  )))
1151 +* (((
1152 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1153 +)))
1154 +* (((
1155 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1156 +)))
994 994  
995 -== 3.3  Set Interrupt Mode ==
1158 +[[image:image-20220607172042-11.png]]
996 996  
997 -Feature, Set Interrupt mode for GPIO_EXIT.
998 998  
999 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1000 1000  
1001 -[[image:image-20220610174917-9.png]]
1162 +=== 5.3.1  ​Battery Note ===
1002 1002  
1164 +(((
1165 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1166 +)))
1003 1003  
1004 -(% style="color:#037691" %)**Downlink Command: 0x06**
1005 1005  
1006 -Format: Command Code (0x06) followed by 3 bytes.
1007 1007  
1008 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1170 +=== ​5.3.2  Replace the battery ===
1009 1009  
1010 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1011 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1172 +(((
1173 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1174 +)))
1012 1012  
1013 -= 4.  FAQ =
1176 +(((
1177 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1178 +)))
1014 1014  
1015 -== 4.1  What is the frequency plan for LDDS75? ==
1016 1016  
1017 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1018 1018  
1182 += 6.  Use AT Command =
1019 1019  
1184 +== 6.1  Access AT Commands ==
1020 1020  
1021 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1186 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1022 1022  
1023 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1024 -When downloading the images, choose the required image file for download. ​
1188 +[[image:1654593668970-604.png]]
1025 1025  
1190 +**Connection:**
1026 1026  
1192 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1027 1027  
1028 -== 4.3  Can I use LDDS75 in condensation environment? ==
1194 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1029 1029  
1030 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1196 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1031 1031  
1032 1032  
1199 +(((
1200 +(((
1201 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1202 +)))
1033 1033  
1034 -= 5.  Trouble Shooting =
1204 +(((
1205 +LLDS12 will output system info once power on as below:
1206 +)))
1207 +)))
1035 1035  
1036 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1037 1037  
1038 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1210 + [[image:1654593712276-618.png]]
1039 1039  
1212 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1040 1040  
1041 -== 5.2  AT Command input doesn't work ==
1042 1042  
1215 += 7.  FAQ =
1216 +
1217 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1218 +
1219 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1220 +When downloading the images, choose the required image file for download. ​
1221 +
1222 +
1223 += 8.  Trouble Shooting =
1224 +
1225 +== 8.1  AT Commands input doesn’t work ==
1226 +
1227 +
1228 +(((
1043 1043  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1230 +)))
1044 1044  
1232 +
1233 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1234 +
1235 +
1045 1045  (((
1237 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1238 +)))
1239 +
1240 +(((
1241 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1242 +)))
1243 +
1244 +(((
1046 1046  
1047 1047  )))
1048 1048  
1248 +(((
1249 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1250 +)))
1049 1049  
1050 -= 6.  Order Info =
1252 +(((
1253 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1254 +)))
1051 1051  
1052 1052  
1053 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1054 1054  
1258 += 9.  Order Info =
1055 1055  
1056 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1057 1057  
1058 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1059 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1060 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1061 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1062 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1063 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1064 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1065 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1261 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1066 1066  
1067 -(% style="color:blue" %)**YY**(%%): Battery Option
1068 1068  
1069 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1070 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1264 +(% style="color:blue" %)**XX**(%%): The default frequency band
1071 1071  
1072 -= 7. ​ Packing Info =
1266 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1267 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1268 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1269 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1270 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1271 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1272 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1273 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1073 1073  
1074 1074  
1276 += 10. ​ Packing Info =
1277 +
1278 +
1075 1075  **Package Includes**:
1076 1076  
1077 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1281 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1078 1078  
1079 1079  **Dimension and weight**:
1080 1080  
... ... @@ -1083,7 +1083,8 @@
1083 1083  * Package Size / pcs : cm
1084 1084  * Weight / pcs : g
1085 1085  
1086 -= 8.  ​Support =
1087 1087  
1291 += 11.  ​Support =
1292 +
1088 1088  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1089 1089  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654847583902-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0