<
From version < 150.8 >
edited by Xiaoling
on 2022/06/11 08:37
To version < 120.2 >
edited by Xiaoling
on 2022/06/10 15:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -3,7 +3,6 @@
3 3  
4 4  **Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -11,7 +11,6 @@
11 11  
12 12  
13 13  
14 -
15 15  = 1.  Introduction =
16 16  
17 17  == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
... ... @@ -35,7 +35,7 @@
35 35  Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 36  
37 37  
38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
36 +(% style="color:#4472c4" %) ***** (%%)Actually lifetime depends on network coverage and uplink interval and other factors
39 39  )))
40 40  )))
41 41  
... ... @@ -47,53 +47,41 @@
47 47  == ​1.2  Features ==
48 48  
49 49  * LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Distance Detection by Ultrasonic technology
52 -* Flat object range 280mm - 7500mm
53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
54 -* Cable Length : 25cm
48 +* Ultra-low power consumption
49 +* Laser technology for distance detection
50 +* Operating Range - 0.1m~~12m
51 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
52 +* Monitor Battery Level
55 55  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 56  * AT Commands to change parameters
57 57  * Uplink on periodically
58 58  * Downlink to change configure
59 -* IP66 Waterproof Enclosure
60 -* 4000mAh or 8500mAh Battery for long term use
57 +* 8500mAh Battery for long term use
61 61  
59 +== 1.3  Probe Specification ==
62 62  
61 +* Storage temperature :-20℃~~75℃
62 +* Operating temperature - -20℃~~60℃
63 +* Operating Range - 0.1m~~12m①
64 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
65 +* Distance resolution - 5mm
66 +* Ambient light immunity - 70klux
67 +* Enclosure rating - IP65
68 +* Light source - LED
69 +* Central wavelength - 850nm
70 +* FOV - 3.6°
71 +* Material of enclosure - ABS+PC
72 +* Wire length - 25cm
63 63  
74 +== 1.4  Probe Dimension ==
64 64  
65 -== 1.3  Specification ==
66 66  
67 -=== 1.3.1  Rated environmental conditions ===
77 +[[image:1654827224480-952.png]]
68 68  
69 -[[image:image-20220610154839-1.png]]
70 70  
71 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
72 -
73 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
74 -
75 -
76 -
77 -=== 1.3.2  Effective measurement range Reference beam pattern ===
78 -
79 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
80 -
81 -
82 -
83 -[[image:1654852253176-749.png]]
84 -
85 -
86 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
87 -
88 -
89 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
90 -
91 -
92 -
93 93  == 1.5 ​ Applications ==
94 94  
95 95  * Horizontal distance measurement
96 -* Liquid level measurement
97 97  * Parking management system
98 98  * Object proximity and presence detection
99 99  * Intelligent trash can management system
... ... @@ -100,29 +100,26 @@
100 100  * Robot obstacle avoidance
101 101  * Automatic control
102 102  * Sewer
103 -* Bottom water level monitoring
104 104  
105 105  == 1.6  Pin mapping and power on ==
106 106  
107 107  
108 -[[image:1654847583902-256.png]]
93 +[[image:1654827332142-133.png]]
109 109  
110 110  
96 += 2.  Configure LLDS12 to connect to LoRaWAN network =
111 111  
112 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
113 -
114 114  == 2.1  How it works ==
115 115  
116 116  (((
117 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
101 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
118 118  )))
119 119  
120 120  (((
121 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
105 +In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
122 122  )))
123 123  
124 124  
125 -
126 126  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
127 127  
128 128  (((
... ... @@ -130,7 +130,7 @@
130 130  )))
131 131  
132 132  (((
133 -[[image:1654848616367-242.png]]
116 +[[image:1654827857527-556.png]]
134 134  )))
135 135  
136 136  (((
... ... @@ -138,57 +138,57 @@
138 138  )))
139 139  
140 140  (((
141 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
124 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
142 142  )))
143 143  
144 144  (((
145 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
128 +Each LSPH01 is shipped with a sticker with the default device EUI as below:
146 146  )))
147 147  
148 148  [[image:image-20220607170145-1.jpeg]]
149 149  
150 150  
151 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
152 152  
153 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
135 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
154 154  
155 -**Add APP EUI in the application**
156 156  
157 -[[image:image-20220610161353-4.png]]
138 +**Register the device**
158 158  
159 -[[image:image-20220610161353-5.png]]
160 160  
161 -[[image:image-20220610161353-6.png]]
141 +[[image:1654592600093-601.png]]
162 162  
163 163  
164 -[[image:image-20220610161353-7.png]]
165 165  
145 +**Add APP EUI and DEV EUI**
166 166  
167 -You can also choose to create the device manually.
147 +[[image:1654592619856-881.png]]
168 168  
169 - [[image:image-20220610161538-8.png]]
170 170  
171 171  
151 +**Add APP EUI in the application**
172 172  
173 -**Add APP KEY and DEV EUI**
153 +[[image:1654592632656-512.png]]
174 174  
175 -[[image:image-20220610161538-9.png]]
176 176  
177 177  
157 +**Add APP KEY**
178 178  
179 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
159 +[[image:1654592653453-934.png]]
180 180  
181 181  
162 +(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
163 +
164 +
182 182  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
183 183  
184 -[[image:image-20220610161724-10.png]]
167 +[[image:image-20220607170442-2.png]]
185 185  
186 186  
187 187  (((
188 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
171 +(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
189 189  )))
190 190  
191 -[[image:1654849068701-275.png]]
174 +[[image:1654833501679-968.png]]
192 192  
193 193  
194 194  
... ... @@ -195,10 +195,11 @@
195 195  == 2.3  ​Uplink Payload ==
196 196  
197 197  (((
198 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
181 +LLDS12 will uplink payload via LoRaWAN with below payload format: 
182 +)))
199 199  
200 -Uplink payload includes in total 4 bytes.
201 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
184 +(((
185 +Uplink payload includes in total 11 bytes.
202 202  )))
203 203  
204 204  (((
... ... @@ -208,23 +208,23 @@
208 208  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
209 209  |=(% style="width: 62.5px;" %)(((
210 210  **Size (bytes)**
211 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
212 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
213 -[[Distance>>||anchor="H2.3.3A0Distance"]]
195 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
196 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
197 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
198 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
199 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
200 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
201 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
202 +)))
214 214  
215 -(unit: mm)
216 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
217 -[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
218 -)))|[[Sensor Flag>>path:#Sensor_Flag]]
204 +[[image:1654833689380-972.png]]
219 219  
220 -[[image:1654850511545-399.png]]
221 221  
222 222  
223 -
224 224  === 2.3.1  Battery Info ===
225 225  
226 226  
227 -Check the battery voltage for LDDS75.
211 +Check the battery voltage for LLDS12.
228 228  
229 229  Ex1: 0x0B45 = 2885mV
230 230  
... ... @@ -232,66 +232,103 @@
232 232  
233 233  
234 234  
235 -=== 2.3.2  Distance ===
219 +=== 2.3.2  DS18B20 Temperature sensor ===
236 236  
237 -Get the distance. Flat object range 280mm - 7500mm.
221 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
238 238  
239 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
240 240  
224 +**Example**:
241 241  
242 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
243 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
226 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
244 244  
245 -=== 2.3.3  Interrupt Pin ===
228 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
246 246  
247 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
248 248  
249 -**Example:**
250 250  
251 -0x00: Normal uplink packet.
232 +=== 2.3.3  Distance ===
252 252  
253 -0x01: Interrupt Uplink Packet.
234 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
254 254  
255 255  
237 +**Example**:
256 256  
257 -=== 2.3.4  DS18B20 Temperature sensor ===
239 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
258 258  
259 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
260 260  
242 +
243 +=== 2.3.4  Distance signal strength ===
244 +
245 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
246 +
247 +
261 261  **Example**:
262 262  
263 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
250 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
264 264  
265 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
252 +Customers can judge whether they need to adjust the environment based on the signal strength.
266 266  
267 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
268 268  
269 269  
256 +=== 2.3.5  Interrupt Pin ===
270 270  
271 -=== 2.3.5  Sensor Flag ===
258 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
272 272  
273 -0x01: Detect Ultrasonic Sensor
260 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
274 274  
275 -0x00: No Ultrasonic Sensor
262 +**Example:**
276 276  
264 +0x00: Normal uplink packet.
277 277  
266 +0x01: Interrupt Uplink Packet.
278 278  
279 -=== 2.3.6  Decode payload in The Things Network ===
280 280  
269 +
270 +=== 2.3.6  LiDAR temp ===
271 +
272 +Characterize the internal temperature value of the sensor.
273 +
274 +**Example: **
275 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
276 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
277 +
278 +
279 +
280 +=== 2.3.7  Message Type ===
281 +
282 +(((
283 +For a normal uplink payload, the message type is always 0x01.
284 +)))
285 +
286 +(((
287 +Valid Message Type:
288 +)))
289 +
290 +
291 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
292 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
293 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
294 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
295 +
296 +=== 2.3.8  Decode payload in The Things Network ===
297 +
281 281  While using TTN network, you can add the payload format to decode the payload.
282 282  
283 283  
284 -[[image:1654850829385-439.png]]
301 +[[image:1654592762713-715.png]]
285 285  
286 -The payload decoder function for TTN V3 is here:
303 +(((
304 +The payload decoder function for TTN is here:
305 +)))
287 287  
288 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
307 +(((
308 +LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
309 +)))
289 289  
290 290  
291 291  
292 292  == 2.4  Uplink Interval ==
293 293  
294 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
315 +The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
295 295  
296 296  
297 297  
... ... @@ -322,25 +322,47 @@
322 322  
323 323  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
324 324  
325 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
346 +(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
326 326  
327 -[[image:1654851029373-510.png]]
348 +[[image:1654832691989-514.png]]
328 328  
329 329  
330 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
351 +[[image:1654592833877-762.png]]
331 331  
332 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
333 333  
354 +[[image:1654832740634-933.png]]
334 334  
335 335  
336 -== 2.6  Frequency Plans ==
337 337  
338 338  (((
339 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
359 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
340 340  )))
341 341  
362 +(((
363 +
364 +)))
342 342  
366 +[[image:1654833065139-942.png]]
343 343  
368 +
369 +
370 +[[image:1654833092678-390.png]]
371 +
372 +
373 +
374 +After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
375 +
376 +[[image:1654833163048-332.png]]
377 +
378 +
379 +
380 +== 2.6  Frequency Plans ==
381 +
382 +(((
383 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
384 +)))
385 +
386 +
344 344  === 2.6.1  EU863-870 (EU868) ===
345 345  
346 346  (((
... ... @@ -404,51 +404,20 @@
404 404  === 2.6.2  US902-928(US915) ===
405 405  
406 406  (((
407 -Used in USA, Canada and South America. Default use CHE=2
450 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
451 +)))
408 408  
409 -(% style="color:blue" %)**Uplink:**
453 +(((
454 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
455 +)))
410 410  
411 -903.9 - SF7BW125 to SF10BW125
412 -
413 -904.1 - SF7BW125 to SF10BW125
414 -
415 -904.3 - SF7BW125 to SF10BW125
416 -
417 -904.5 - SF7BW125 to SF10BW125
418 -
419 -904.7 - SF7BW125 to SF10BW125
420 -
421 -904.9 - SF7BW125 to SF10BW125
422 -
423 -905.1 - SF7BW125 to SF10BW125
424 -
425 -905.3 - SF7BW125 to SF10BW125
426 -
427 -
428 -(% style="color:blue" %)**Downlink:**
429 -
430 -923.3 - SF7BW500 to SF12BW500
431 -
432 -923.9 - SF7BW500 to SF12BW500
433 -
434 -924.5 - SF7BW500 to SF12BW500
435 -
436 -925.1 - SF7BW500 to SF12BW500
437 -
438 -925.7 - SF7BW500 to SF12BW500
439 -
440 -926.3 - SF7BW500 to SF12BW500
441 -
442 -926.9 - SF7BW500 to SF12BW500
443 -
444 -927.5 - SF7BW500 to SF12BW500
445 -
446 -923.3 - SF12BW500(RX2 downlink only)
447 -
448 -
449 -
457 +(((
458 +After Join success, the end node will switch to the correct sub band by:
450 450  )))
451 451  
461 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
462 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
463 +
452 452  === 2.6.3  CN470-510 (CN470) ===
453 453  
454 454  (((
... ... @@ -537,54 +537,28 @@
537 537  
538 538  
539 539  
552 +
540 540  === 2.6.4  AU915-928(AU915) ===
541 541  
542 542  (((
543 -Default use CHE=2
556 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
557 +)))
544 544  
545 -(% style="color:blue" %)**Uplink:**
559 +(((
560 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
561 +)))
546 546  
547 -916.8 - SF7BW125 to SF12BW125
548 -
549 -917.0 - SF7BW125 to SF12BW125
550 -
551 -917.2 - SF7BW125 to SF12BW125
552 -
553 -917.4 - SF7BW125 to SF12BW125
554 -
555 -917.6 - SF7BW125 to SF12BW125
556 -
557 -917.8 - SF7BW125 to SF12BW125
558 -
559 -918.0 - SF7BW125 to SF12BW125
560 -
561 -918.2 - SF7BW125 to SF12BW125
562 -
563 -
564 -(% style="color:blue" %)**Downlink:**
565 -
566 -923.3 - SF7BW500 to SF12BW500
567 -
568 -923.9 - SF7BW500 to SF12BW500
569 -
570 -924.5 - SF7BW500 to SF12BW500
571 -
572 -925.1 - SF7BW500 to SF12BW500
573 -
574 -925.7 - SF7BW500 to SF12BW500
575 -
576 -926.3 - SF7BW500 to SF12BW500
577 -
578 -926.9 - SF7BW500 to SF12BW500
579 -
580 -927.5 - SF7BW500 to SF12BW500
581 -
582 -923.3 - SF12BW500(RX2 downlink only)
583 -
584 -
563 +(((
585 585  
586 586  )))
587 587  
567 +(((
568 +After Join success, the end node will switch to the correct sub band by:
569 +)))
570 +
571 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
572 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
573 +
588 588  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
589 589  
590 590  (((
... ... @@ -693,6 +693,7 @@
693 693  
694 694  
695 695  
682 +
696 696  === 2.6.6  KR920-923 (KR920) ===
697 697  
698 698  (((
... ... @@ -765,6 +765,7 @@
765 765  
766 766  
767 767  
755 +
768 768  === 2.6.7  IN865-867 (IN865) ===
769 769  
770 770  (((
... ... @@ -801,20 +801,18 @@
801 801  
802 802  
803 803  
792 +
804 804  == 2.7  LED Indicator ==
805 805  
806 -The LDDS75 has an internal LED which is to show the status of different state.
795 +The LLDS12 has an internal LED which is to show the status of different state.
807 807  
808 -
809 -* Blink once when device power on.
810 -* The device detects the sensor and flashes 5 times.
811 -* Solid ON for 5 seconds once device successful Join the network.
797 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
812 812  * Blink once when device transmit a packet.
813 813  
814 814  == 2.8  ​Firmware Change Log ==
815 815  
816 816  
817 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
803 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
818 818  
819 819  
820 820  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -821,58 +821,71 @@
821 821  
822 822  
823 823  
824 -== 2.9  Mechanical ==
810 += 3LiDAR ToF Measurement =
825 825  
812 +== 3.1 Principle of Distance Measurement ==
826 826  
827 -[[image:image-20220610172003-1.png]]
814 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
828 828  
829 -[[image:image-20220610172003-2.png]]
816 +[[image:1654831757579-263.png]]
830 830  
831 831  
832 -== 2.10  Battery Analysis ==
833 833  
834 -=== 2.10.1  Battery Type ===
820 +== 3.2 Distance Measurement Characteristics ==
835 835  
836 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
822 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
837 837  
824 +[[image:1654831774373-275.png]]
838 838  
839 -The battery related documents as below:
840 840  
841 -* (((
842 -[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
827 +(((
828 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
843 843  )))
844 -* (((
845 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
830 +
831 +(((
832 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
846 846  )))
847 -* (((
848 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
834 +
835 +(((
836 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
849 849  )))
850 850  
851 - [[image:image-20220610172400-3.png]]
852 852  
840 +(((
841 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
842 +)))
853 853  
854 854  
855 -=== 2.10.2  Replace the battery ===
845 +[[image:1654831797521-720.png]]
856 856  
857 -(((
858 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
859 -)))
860 860  
861 861  (((
862 -
849 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
863 863  )))
864 864  
852 +[[image:1654831810009-716.png]]
853 +
854 +
865 865  (((
866 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
856 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
867 867  )))
868 868  
869 869  
870 870  
871 -= 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
861 +== 3.3 Notice of usage: ==
872 872  
863 +Possible invalid /wrong reading for LiDAR ToF tech:
864 +
865 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
866 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
867 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
868 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
869 +
870 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
871 +
873 873  (((
874 874  (((
875 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
874 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
876 876  )))
877 877  )))
878 878  
... ... @@ -893,7 +893,7 @@
893 893  )))
894 894  
895 895  (((
896 -There are two kinds of commands to configure LDDS75, they are:
895 +There are two kinds of commands to configure LLDS12, they are:
897 897  )))
898 898  )))
899 899  
... ... @@ -934,150 +934,352 @@
934 934  
935 935  * (((
936 936  (((
937 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
936 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
938 938  )))
939 939  )))
940 940  
941 941  (((
942 942  (((
943 -These commands only valid for LDDS75, as below:
942 +These commands only valid for LLDS12, as below:
944 944  )))
945 945  )))
946 946  
947 947  
948 948  
949 -== 3.1  Access AT Commands ==
948 +== 4.1  Set Transmit Interval Time ==
950 950  
951 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
950 +Feature: Change LoRaWAN End Node Transmit Interval.
952 952  
953 -[[image:image-20220610172924-4.png||height="483" width="988"]]
952 +(% style="color:#037691" %)**AT Command: AT+TDC**
954 954  
954 +[[image:image-20220607171554-8.png]]
955 955  
956 -Or if you have below board, use below connection:
957 957  
957 +(((
958 +(% style="color:#037691" %)**Downlink Command: 0x01**
959 +)))
958 958  
959 -[[image:image-20220610172924-5.png]]
961 +(((
962 +Format: Command Code (0x01) followed by 3 bytes time value.
963 +)))
960 960  
965 +(((
966 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
967 +)))
961 961  
962 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
969 +* (((
970 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
971 +)))
972 +* (((
973 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
974 +)))
963 963  
976 +== 4.2  Set Interrupt Mode ==
964 964  
965 - [[image:image-20220610172924-6.png||height="601" width="860"]]
978 +Feature, Set Interrupt mode for GPIO_EXIT.
966 966  
980 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
967 967  
982 +[[image:image-20220610105806-2.png]]
968 968  
969 -== 3.2  Set Transmit Interval Time ==
970 970  
971 -Feature: Change LoRaWAN End Node Transmit Interval.
985 +(((
986 +(% style="color:#037691" %)**Downlink Command: 0x06**
987 +)))
972 972  
973 -(% style="color:#037691" %)**AT Command: AT+TDC**
989 +(((
990 +Format: Command Code (0x06) followed by 3 bytes.
991 +)))
974 974  
975 -[[image:image-20220610173409-7.png]]
993 +(((
994 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
995 +)))
976 976  
997 +* (((
998 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
999 +)))
1000 +* (((
1001 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1002 +)))
977 977  
1004 +== 4.3  Get Firmware Version Info ==
1005 +
1006 +Feature: use downlink to get firmware version.
1007 +
1008 +(% style="color:#037691" %)**Downlink Command: 0x26**
1009 +
1010 +[[image:image-20220607171917-10.png]]
1011 +
1012 +* Reply to the confirmation package: 26 01
1013 +* Reply to non-confirmed packet: 26 00
1014 +
1015 +Device will send an uplink after got this downlink command. With below payload:
1016 +
1017 +Configures info payload:
1018 +
1019 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1020 +|=(((
1021 +**Size(bytes)**
1022 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1023 +|**Value**|Software Type|(((
1024 +Frequency
1025 +
1026 +Band
1027 +)))|Sub-band|(((
1028 +Firmware
1029 +
1030 +Version
1031 +)))|Sensor Type|Reserve|(((
1032 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1033 +Always 0x02
1034 +)))
1035 +
1036 +**Software Type**: Always 0x03 for LLDS12
1037 +
1038 +
1039 +**Frequency Band**:
1040 +
1041 +*0x01: EU868
1042 +
1043 +*0x02: US915
1044 +
1045 +*0x03: IN865
1046 +
1047 +*0x04: AU915
1048 +
1049 +*0x05: KZ865
1050 +
1051 +*0x06: RU864
1052 +
1053 +*0x07: AS923
1054 +
1055 +*0x08: AS923-1
1056 +
1057 +*0x09: AS923-2
1058 +
1059 +*0xa0: AS923-3
1060 +
1061 +
1062 +**Sub-Band**: value 0x00 ~~ 0x08
1063 +
1064 +
1065 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1066 +
1067 +
1068 +**Sensor Type**:
1069 +
1070 +0x01: LSE01
1071 +
1072 +0x02: LDDS75
1073 +
1074 +0x03: LDDS20
1075 +
1076 +0x04: LLMS01
1077 +
1078 +0x05: LSPH01
1079 +
1080 +0x06: LSNPK01
1081 +
1082 +0x07: LLDS12
1083 +
1084 +
1085 +
1086 += 5.  Battery & How to replace =
1087 +
1088 +== 5.1  Battery Type ==
1089 +
978 978  (((
979 -(% style="color:#037691" %)**Downlink Command: 0x01**
1091 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
980 980  )))
981 981  
982 982  (((
1095 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1096 +)))
1097 +
1098 +[[image:1654593587246-335.png]]
1099 +
1100 +
1101 +Minimum Working Voltage for the LLDS12:
1102 +
1103 +LLDS12:  2.45v ~~ 3.6v
1104 +
1105 +
1106 +
1107 +== 5.2  Replace Battery ==
1108 +
983 983  (((
984 -Format: Command Code (0x01) followed by 3 bytes time value.
1110 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1111 +)))
985 985  
986 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1113 +(((
1114 +And make sure the positive and negative pins match.
1115 +)))
987 987  
988 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
989 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1117 +
1118 +
1119 +== 5.3  Power Consumption Analyze ==
1120 +
1121 +(((
1122 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
990 990  )))
991 991  
1125 +(((
1126 +Instruction to use as below:
1127 +)))
992 992  
993 -
1129 +
1130 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1131 +
1132 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1133 +
1134 +
1135 +**Step 2**: Open it and choose
1136 +
1137 +* Product Model
1138 +* Uplink Interval
1139 +* Working Mode
1140 +
1141 +And the Life expectation in difference case will be shown on the right.
1142 +
1143 +[[image:1654593605679-189.png]]
1144 +
1145 +
1146 +The battery related documents as below:
1147 +
1148 +* (((
1149 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
994 994  )))
1151 +* (((
1152 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1153 +)))
1154 +* (((
1155 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1156 +)))
995 995  
996 -== 3.3  Set Interrupt Mode ==
1158 +[[image:image-20220607172042-11.png]]
997 997  
998 -Feature, Set Interrupt mode for GPIO_EXIT.
999 999  
1000 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1001 1001  
1002 -[[image:image-20220610174917-9.png]]
1162 +=== 5.3.1  ​Battery Note ===
1003 1003  
1164 +(((
1165 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1166 +)))
1004 1004  
1005 -(% style="color:#037691" %)**Downlink Command: 0x06**
1006 1006  
1007 -Format: Command Code (0x06) followed by 3 bytes.
1008 1008  
1009 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1170 +=== ​5.3.2  Replace the battery ===
1010 1010  
1011 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1012 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1172 +(((
1173 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1174 +)))
1013 1013  
1176 +(((
1177 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1178 +)))
1014 1014  
1015 -= 4.  FAQ =
1016 1016  
1017 -== 4.1  What is the frequency plan for LDDS75? ==
1018 1018  
1019 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1182 += 6.  Use AT Command =
1020 1020  
1184 +== 6.1  Access AT Commands ==
1021 1021  
1186 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1022 1022  
1023 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1188 +[[image:1654593668970-604.png]]
1024 1024  
1025 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1026 -When downloading the images, choose the required image file for download. ​
1190 +**Connection:**
1027 1027  
1192 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1028 1028  
1194 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1029 1029  
1030 -== 4.3  Can I use LDDS75 in condensation environment? ==
1196 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1031 1031  
1032 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1033 1033  
1199 +(((
1200 +(((
1201 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1202 +)))
1034 1034  
1204 +(((
1205 +LLDS12 will output system info once power on as below:
1206 +)))
1207 +)))
1035 1035  
1036 -= 5.  Trouble Shooting =
1037 1037  
1038 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1210 + [[image:1654593712276-618.png]]
1039 1039  
1040 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1212 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1041 1041  
1042 1042  
1043 -== 5.2  AT Command input doesn't work ==
1215 += 7FAQ =
1044 1044  
1217 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1218 +
1219 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1220 +When downloading the images, choose the required image file for download. ​
1221 +
1222 +
1223 += 8.  Trouble Shooting =
1224 +
1225 +== 8.1  AT Commands input doesn’t work ==
1226 +
1227 +
1228 +(((
1045 1045  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1230 +)))
1046 1046  
1232 +
1233 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1234 +
1235 +
1047 1047  (((
1237 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1238 +)))
1239 +
1240 +(((
1241 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1242 +)))
1243 +
1244 +(((
1048 1048  
1049 1049  )))
1050 1050  
1248 +(((
1249 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1250 +)))
1051 1051  
1052 -= 6.  Order Info =
1252 +(((
1253 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1254 +)))
1053 1053  
1054 1054  
1055 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1056 1056  
1258 += 9.  Order Info =
1057 1057  
1058 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1059 1059  
1060 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1061 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1062 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1063 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1064 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1065 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1066 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1067 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1261 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1068 1068  
1069 -(% style="color:blue" %)**YY**(%%): Battery Option
1070 1070  
1071 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1072 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1264 +(% style="color:blue" %)**XX**(%%): The default frequency band
1073 1073  
1266 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1267 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1268 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1269 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1270 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1271 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1272 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1273 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1074 1074  
1075 -= 7. ​ Packing Info =
1076 1076  
1276 += 10. ​ Packing Info =
1077 1077  
1278 +
1078 1078  **Package Includes**:
1079 1079  
1080 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1281 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1081 1081  
1082 1082  **Dimension and weight**:
1083 1083  
... ... @@ -1087,7 +1087,7 @@
1087 1087  * Weight / pcs : g
1088 1088  
1089 1089  
1090 -= 8.  ​Support =
1291 += 11.  ​Support =
1091 1091  
1092 1092  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1093 1093  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654847583902-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0