Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.51
edited by Xiaoling
on 2022/06/11 09:19
Change comment: There is no comment for this version
To version 174.10
edited by Xiaoling
on 2022/06/15 10:44
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,9 +12,11 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
... ... @@ -21,7 +21,8 @@
21 21  
22 22  (((
23 23  (((
24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
25 25  )))
26 26  
27 27  (((
... ... @@ -29,7 +29,7 @@
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
41 41  )))
42 42  
43 43  (((
... ... @@ -45,7 +45,7 @@
45 45  )))
46 46  
47 47  (((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 49  )))
50 50  
51 51  (((
... ... @@ -53,7 +53,7 @@
53 53  )))
54 54  
55 55  (((
56 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
57 57  )))
58 58  
59 59  (((
... ... @@ -61,13 +61,24 @@
61 61  )))
62 62  
63 63  (((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
64 64  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 65  )))
66 66  )))
67 67  )))
80 +)))
68 68  
69 69  
70 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
71 71  
72 72  
73 73  
... ... @@ -75,9 +75,10 @@
75 75  
76 76  * LoRaWAN 1.0.3 Class A
77 77  * Ultra low power consumption
78 -* Distance Detection by Ultrasonic technology
79 -* Flat object range 280mm - 7500mm
80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
81 81  * Cable Length : 25cm
82 82  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
83 83  * AT Commands to change parameters
... ... @@ -84,69 +84,130 @@
84 84  * Uplink on periodically
85 85  * Downlink to change configure
86 86  * IP66 Waterproof Enclosure
87 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
88 88  
89 -== 1.3  Specification ==
103 +== 1.3  Suitable Container & Liquid ==
90 90  
91 -=== 1.3.1  Rated environmental conditions ===
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
92 92  
93 -[[image:image-20220610154839-1.png]]
112 +== 1.4  Mechanical ==
94 94  
95 -(((
96 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
97 -)))
114 +[[image:image-20220615090910-1.png]]
98 98  
99 99  
117 +[[image:image-20220615090910-2.png]]
100 100  
101 -=== 1.3.2  Effective measurement range Reference beam pattern ===
102 102  
103 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
104 104  
121 +== 1.5  Install LDDS20 ==
105 105  
106 106  
107 -[[image:1654852253176-749.png]]
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
108 108  
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
109 109  
128 +[[image:image-20220615091045-3.png]]
110 110  
111 -(((
112 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
113 -)))
114 114  
115 115  
116 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
117 117  
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
118 118  
136 +[[image:image-20220615092010-11.png]]
119 119  
120 -== 1.5 ​ Applications ==
121 121  
122 -* Horizontal distance measurement
123 -* Liquid level measurement
124 -* Parking management system
125 -* Object proximity and presence detection
126 -* Intelligent trash can management system
127 -* Robot obstacle avoidance
128 -* Automatic control
129 -* Sewer
130 -* Bottom water level monitoring
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
131 131  
141 +[[image:image-20220615092044-12.png]]
132 132  
133 -== 1.6  Pin mapping and power on ==
134 134  
135 135  
136 -[[image:1654847583902-256.png]]
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
137 137  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
138 138  
139 139  
140 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
141 141  
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
153 +
154 +
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 +
157 +
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
142 142  == 2.1  How it works ==
143 143  
144 144  (((
145 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
146 146  )))
147 147  
148 148  (((
149 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
150 150  )))
151 151  
152 152  
... ... @@ -158,7 +158,7 @@
158 158  )))
159 159  
160 160  (((
161 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
162 162  )))
163 163  
164 164  (((
... ... @@ -166,11 +166,13 @@
166 166  )))
167 167  
168 168  (((
169 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
244 +
245 +
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
170 170  )))
171 171  
172 172  (((
173 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
174 174  )))
175 175  
176 176  [[image:image-20220607170145-1.jpeg]]
... ... @@ -185,6 +185,8 @@
185 185  )))
186 186  
187 187  (((
265 +
266 +
188 188  **Add APP EUI in the application**
189 189  )))
190 190  
... ... @@ -198,6 +198,7 @@
198 198  [[image:image-20220610161353-7.png]]
199 199  
200 200  
280 +
201 201  You can also choose to create the device manually.
202 202  
203 203   [[image:image-20220610161538-8.png]]
... ... @@ -210,16 +210,17 @@
210 210  
211 211  
212 212  
213 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
214 214  
215 215  
216 216  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
217 217  
218 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
219 219  
220 220  
301 +
221 221  (((
222 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
223 223  )))
224 224  
225 225  [[image:1654849068701-275.png]]
... ... @@ -230,12 +230,10 @@
230 230  
231 231  (((
232 232  (((
233 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
234 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
235 235  
236 -(((
237 -Uplink payload includes in total 4 bytes.
238 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
239 239  )))
240 240  )))
241 241  
... ... @@ -262,7 +262,7 @@
262 262  === 2.3.1  Battery Info ===
263 263  
264 264  
265 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
266 266  
267 267  Ex1: 0x0B45 = 2885mV
268 268  
... ... @@ -273,22 +273,21 @@
273 273  === 2.3.2  Distance ===
274 274  
275 275  (((
276 -Get the distance. Flat object range 280mm - 7500mm.
355 +Get the distance. Flat object range 20mm - 2000mm.
277 277  )))
278 278  
279 279  (((
280 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
281 281  )))
282 282  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
283 283  
284 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
285 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
286 286  
287 287  
288 -
289 289  === 2.3.3  Interrupt Pin ===
290 290  
291 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
369 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
292 292  
293 293  **Example:**
294 294  
... ... @@ -334,690 +334,300 @@
334 334  The payload decoder function for TTN V3 is here:
335 335  
336 336  (((
337 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
415 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
338 338  )))
339 339  
340 340  
341 341  
342 -== 2.4  Uplink Interval ==
420 +== 2.4  Downlink Payload ==
343 343  
344 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
422 +By default, LDDS20 prints the downlink payload to console port.
345 345  
424 +[[image:image-20220615100930-15.png]]
346 346  
347 347  
348 -== 2.5  ​Show Data in DataCake IoT Server ==
427 +**Examples:**
349 349  
350 -(((
351 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
352 -)))
353 353  
354 -(((
355 -
356 -)))
430 +* (% style="color:blue" %)**Set TDC**
357 357  
358 -(((
359 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
360 -)))
432 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
361 361  
362 -(((
363 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
364 -)))
434 +Payload:    01 00 00 1E    TDC=30S
365 365  
436 +Payload:    01 00 00 3C    TDC=60S
366 366  
367 -[[image:1654592790040-760.png]]
368 368  
439 +* (% style="color:blue" %)**Reset**
369 369  
370 -[[image:1654592800389-571.png]]
441 +If payload = 0x04FF, it will reset the LDDS20
371 371  
372 372  
373 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
444 +* (% style="color:blue" %)**CFM**
374 374  
375 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
446 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
376 376  
377 -[[image:1654851029373-510.png]]
378 378  
379 379  
380 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
450 +== 2.5  ​Show Data in DataCake IoT Server ==
381 381  
382 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
383 -
384 -
385 -
386 -== 2.6  Frequency Plans ==
387 -
388 388  (((
389 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
453 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
390 390  )))
391 391  
392 -
393 -
394 -=== 2.6.1  EU863-870 (EU868) ===
395 -
396 396  (((
397 -(% style="color:blue" %)**Uplink:**
398 -)))
399 -
400 -(((
401 -868.1 - SF7BW125 to SF12BW125
402 -)))
403 -
404 -(((
405 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
406 -)))
407 -
408 -(((
409 -868.5 - SF7BW125 to SF12BW125
410 -)))
411 -
412 -(((
413 -867.1 - SF7BW125 to SF12BW125
414 -)))
415 -
416 -(((
417 -867.3 - SF7BW125 to SF12BW125
418 -)))
419 -
420 -(((
421 -867.5 - SF7BW125 to SF12BW125
422 -)))
423 -
424 -(((
425 -867.7 - SF7BW125 to SF12BW125
426 -)))
427 -
428 -(((
429 -867.9 - SF7BW125 to SF12BW125
430 -)))
431 -
432 -(((
433 -868.8 - FSK
434 -)))
435 -
436 -(((
437 437  
438 438  )))
439 439  
440 440  (((
441 -(% style="color:blue" %)**Downlink:**
461 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
442 442  )))
443 443  
444 444  (((
445 -Uplink channels 1-9 (RX1)
465 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
446 446  )))
447 447  
448 -(((
449 -869.525 - SF9BW125 (RX2 downlink only)
450 -)))
451 451  
469 +[[image:1654592790040-760.png]]
452 452  
453 453  
454 -=== 2.6.2  US902-928(US915) ===
472 +[[image:1654592800389-571.png]]
455 455  
456 -(((
457 -Used in USA, Canada and South America. Default use CHE=2
458 458  
459 -(% style="color:blue" %)**Uplink:**
475 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
460 460  
461 -903.9 - SF7BW125 to SF10BW125
477 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
462 462  
463 -904.1 - SF7BW125 to SF10BW125
479 +[[image:1654851029373-510.png]]
464 464  
465 -904.3 - SF7BW125 to SF10BW125
466 466  
467 -904.5 - SF7BW125 to SF10BW125
482 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
468 468  
469 -904.7 - SF7BW125 to SF10BW125
484 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
470 470  
471 -904.9 - SF7BW125 to SF10BW125
472 472  
473 -905.1 - SF7BW125 to SF10BW125
474 474  
475 -905.3 - SF7BW125 to SF10BW125
488 +== 2.6  LED Indicator ==
476 476  
490 +The LDDS20 has an internal LED which is to show the status of different state.
477 477  
478 -(% style="color:blue" %)**Downlink:**
479 479  
480 -923.3 - SF7BW500 to SF12BW500
493 +* Blink once when device power on.
494 +* The device detects the sensor and flashes 5 times.
495 +* Solid ON for 5 seconds once device successful Join the network.
496 +* Blink once when device transmit a packet.
481 481  
482 -923.9 - SF7BW500 to SF12BW500
483 483  
484 -924.5 - SF7BW500 to SF12BW500
485 485  
486 -925.1 - SF7BW500 to SF12BW500
500 +== 2. Firmware Change Log ==
487 487  
488 -925.7 - SF7BW500 to SF12BW500
489 489  
490 -926.3 - SF7BW500 to SF12BW500
491 -
492 -926.9 - SF7BW500 to SF12BW500
493 -
494 -927.5 - SF7BW500 to SF12BW500
495 -
496 -923.3 - SF12BW500(RX2 downlink only)
497 -
498 -
499 -
500 -)))
501 -
502 -=== 2.6.3  CN470-510 (CN470) ===
503 -
504 504  (((
505 -Used in China, Default use CHE=1
504 +**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
506 506  )))
507 507  
508 508  (((
509 -(% style="color:blue" %)**Uplink:**
510 -)))
511 -
512 -(((
513 -486.3 - SF7BW125 to SF12BW125
514 -)))
515 -
516 -(((
517 -486.5 - SF7BW125 to SF12BW125
518 -)))
519 -
520 -(((
521 -486.7 - SF7BW125 to SF12BW125
522 -)))
523 -
524 -(((
525 -486.9 - SF7BW125 to SF12BW125
526 -)))
527 -
528 -(((
529 -487.1 - SF7BW125 to SF12BW125
530 -)))
531 -
532 -(((
533 -487.3 - SF7BW125 to SF12BW125
534 -)))
535 -
536 -(((
537 -487.5 - SF7BW125 to SF12BW125
538 -)))
539 -
540 -(((
541 -487.7 - SF7BW125 to SF12BW125
542 -)))
543 -
544 -(((
545 545  
546 546  )))
547 547  
548 548  (((
549 -(% style="color:blue" %)**Downlink:**
512 +**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
550 550  )))
551 551  
552 -(((
553 -506.7 - SF7BW125 to SF12BW125
554 -)))
555 555  
556 -(((
557 -506.9 - SF7BW125 to SF12BW125
558 -)))
559 559  
560 -(((
561 -507.1 - SF7BW125 to SF12BW125
562 -)))
517 +== 2.8  Battery Analysis ==
563 563  
564 -(((
565 -507.3 - SF7BW125 to SF12BW125
566 -)))
567 567  
568 -(((
569 -507.5 - SF7BW125 to SF12BW125
570 -)))
571 571  
572 -(((
573 -507.7 - SF7BW125 to SF12BW125
574 -)))
575 575  
576 -(((
577 -507.9 - SF7BW125 to SF12BW125
578 -)))
522 +=== 2.8.1  Battery Type ===
579 579  
580 -(((
581 -508.1 - SF7BW125 to SF12BW125
582 -)))
524 +The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
583 583  
584 -(((
585 -505.3 - SF12BW125 (RX2 downlink only)
586 -)))
587 587  
527 +The battery related documents as below:
588 588  
589 -
590 -=== 2.6.4  AU915-928(AU915) ===
591 -
592 -(((
593 -Default use CHE=2
594 -
595 -(% style="color:blue" %)**Uplink:**
596 -
597 -916.8 - SF7BW125 to SF12BW125
598 -
599 -917.0 - SF7BW125 to SF12BW125
600 -
601 -917.2 - SF7BW125 to SF12BW125
602 -
603 -917.4 - SF7BW125 to SF12BW125
604 -
605 -917.6 - SF7BW125 to SF12BW125
606 -
607 -917.8 - SF7BW125 to SF12BW125
608 -
609 -918.0 - SF7BW125 to SF12BW125
610 -
611 -918.2 - SF7BW125 to SF12BW125
612 -
613 -
614 -(% style="color:blue" %)**Downlink:**
615 -
616 -923.3 - SF7BW500 to SF12BW500
617 -
618 -923.9 - SF7BW500 to SF12BW500
619 -
620 -924.5 - SF7BW500 to SF12BW500
621 -
622 -925.1 - SF7BW500 to SF12BW500
623 -
624 -925.7 - SF7BW500 to SF12BW500
625 -
626 -926.3 - SF7BW500 to SF12BW500
627 -
628 -926.9 - SF7BW500 to SF12BW500
629 -
630 -927.5 - SF7BW500 to SF12BW500
631 -
632 -923.3 - SF12BW500(RX2 downlink only)
633 -
634 -
635 -
529 +* (((
530 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
636 636  )))
637 -
638 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
639 -
640 -(((
641 -(% style="color:blue" %)**Default Uplink channel:**
532 +* (((
533 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
642 642  )))
643 -
644 -(((
645 -923.2 - SF7BW125 to SF10BW125
535 +* (((
536 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
646 646  )))
647 647  
648 -(((
649 -923.4 - SF7BW125 to SF10BW125
650 -)))
539 + [[image:image-20220615102527-16.png]]
651 651  
652 -(((
653 -
654 -)))
655 655  
656 -(((
657 -(% style="color:blue" %)**Additional Uplink Channel**:
658 -)))
659 659  
660 -(((
661 -(OTAA mode, channel added by JoinAccept message)
662 -)))
543 +== 2.8.2  Battery Note ==
663 663  
664 -(((
665 -
666 -)))
545 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
667 667  
668 -(((
669 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
670 -)))
671 671  
672 -(((
673 -922.2 - SF7BW125 to SF10BW125
674 -)))
675 675  
676 -(((
677 -922.4 - SF7BW125 to SF10BW125
678 -)))
549 +=== 2.8.3  Replace the battery ===
679 679  
680 680  (((
681 -922.6 - SF7BW125 to SF10BW125
552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
682 682  )))
683 683  
684 684  (((
685 -922.8 - SF7BW125 to SF10BW125
686 -)))
687 -
688 -(((
689 -923.0 - SF7BW125 to SF10BW125
690 -)))
691 -
692 -(((
693 -922.0 - SF7BW125 to SF10BW125
694 -)))
695 -
696 -(((
697 697  
698 698  )))
699 699  
700 700  (((
701 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
702 702  )))
703 703  
704 -(((
705 -923.6 - SF7BW125 to SF10BW125
706 -)))
707 707  
708 -(((
709 -923.8 - SF7BW125 to SF10BW125
710 -)))
711 711  
712 -(((
713 -924.0 - SF7BW125 to SF10BW125
714 -)))
565 +== 2.8.4  Battery Life Analyze ==
715 715  
716 -(((
717 -924.2 - SF7BW125 to SF10BW125
718 -)))
567 +Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
719 719  
720 -(((
721 -924.4 - SF7BW125 to SF10BW125
722 -)))
569 +[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
723 723  
724 -(((
725 -924.6 - SF7BW125 to SF10BW125
726 -)))
727 727  
728 -(((
729 -
730 -)))
731 731  
732 -(((
733 -(% style="color:blue" %)**Downlink:**
734 -)))
573 += 3.  Using the AT Commands =
735 735  
736 736  (((
737 -Uplink channels 1-8 (RX1)
738 -)))
739 -
740 740  (((
741 -923.2 - SF10BW125 (RX2)
742 -)))
743 -
744 -
745 -
746 -=== 2.6.6  KR920-923 (KR920) ===
747 -
748 -(((
749 -(% style="color:blue" %)**Default channel:**
750 -)))
751 -
752 -(((
753 -922.1 - SF7BW125 to SF12BW125
754 -)))
755 -
756 -(((
757 -922.3 - SF7BW125 to SF12BW125
758 -)))
759 -
760 -(((
761 -922.5 - SF7BW125 to SF12BW125
762 -)))
763 -
764 -(((
765 765  
766 766  )))
767 -
768 -(((
769 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
770 770  )))
771 771  
772 -(((
773 -922.1 - SF7BW125 to SF12BW125
774 -)))
581 +== 3.1  Access AT Commands ==
775 775  
776 -(((
777 -922.3 - SF7BW125 to SF12BW125
778 -)))
583 +LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below.
779 779  
780 -(((
781 -922.5 - SF7BW125 to SF12BW125
782 -)))
783 783  
784 -(((
785 -922.7 - SF7BW125 to SF12BW125
786 -)))
586 +[[image:image-20220610172924-4.png||height="483" width="988"]]
787 787  
788 -(((
789 -922.9 - SF7BW125 to SF12BW125
790 -)))
791 791  
792 -(((
793 -923.1 - SF7BW125 to SF12BW125
794 -)))
589 +Or if you have below board, use below connection:
795 795  
796 -(((
797 -923.3 - SF7BW125 to SF12BW125
798 -)))
799 799  
800 -(((
801 -
802 -)))
592 +[[image:image-20220610172924-5.png]]
803 803  
804 -(((
805 -(% style="color:blue" %)**Downlink:**
806 -)))
807 807  
808 808  (((
809 -Uplink channels 1-7(RX1)
596 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below:
810 810  )))
811 811  
812 -(((
813 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
814 -)))
815 815  
600 + [[image:image-20220610172924-6.png||height="601" width="860"]]
816 816  
602 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]].
817 817  
818 -=== 2.6.7  IN865-867 (IN865) ===
819 819  
820 -(((
821 -(% style="color:blue" %)**Uplink:**
822 -)))
605 +AT+<CMD>?  :  Help on <CMD>
823 823  
824 -(((
825 -865.0625 - SF7BW125 to SF12BW125
826 -)))
607 +AT+<CMD>  :  Run <CMD>
827 827  
828 -(((
829 -865.4025 - SF7BW125 to SF12BW125
830 -)))
609 +AT+<CMD>=<value>  :  Set the value
831 831  
832 -(((
833 -865.9850 - SF7BW125 to SF12BW125
834 -)))
611 +AT+<CMD>=?  :  Get the value
835 835  
836 -(((
837 -
838 -)))
839 839  
840 -(((
841 -(% style="color:blue" %)**Downlink:**
842 -)))
614 +**General Commands** : 
843 843  
844 -(((
845 -Uplink channels 1-3 (RX1)
846 -)))
616 +AT                    : Attention       
847 847  
848 -(((
849 -866.550 - SF10BW125 (RX2)
850 -)))
618 +AT?                            : Short Help     
851 851  
620 +ATZ                            : MCU Reset    
852 852  
622 +AT+TDC           : Application Data Transmission Interval 
853 853  
854 -== 2.7  LED Indicator ==
855 855  
856 -The LDDS75 has an internal LED which is to show the status of different state.
625 +**Keys, IDs and EUIs management:**
857 857  
627 +AT+APPEUI              : Application EUI      
858 858  
859 -* Blink once when device power on.
860 -* The device detects the sensor and flashes 5 times.
861 -* Solid ON for 5 seconds once device successful Join the network.
862 -* Blink once when device transmit a packet.
629 +AT+APPKEY              : Application Key     
863 863  
864 -== 2.8  ​Firmware Change Log ==
631 +AT+APPSKEY            : Application Session Key
865 865  
633 +AT+DADDR              : Device Address     
866 866  
867 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
635 +AT+DEUI                   : Device EUI     
868 868  
637 +AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
869 869  
870 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
639 +AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
871 871  
641 +AT+CFM          : Confirm Mode       
872 872  
643 +AT+CFS                     : Confirm Status       
873 873  
874 -== 2.9  Mechanical ==
645 +AT+JOIN          : Join LoRa? Network       
875 875  
647 +AT+NJM          : LoRa? Network Join Mode    
876 876  
877 -[[image:image-20220610172003-1.png]]
649 +AT+NJS                     : LoRa? Network Join Status    
878 878  
651 +AT+RECV                  : Print Last Received Data in Raw Format
879 879  
880 -[[image:image-20220610172003-2.png]]
653 +AT+RECVB                : Print Last Received Data in Binary Format      
881 881  
655 +AT+SEND                  : Send Text Data      
882 882  
657 +AT+SENB                  : Send Hexadecimal Data
883 883  
884 -== 2.10  Battery Analysis ==
885 885  
886 -=== 2.10.1  Battery Type ===
660 +**LoRa Network Management :**
887 887  
888 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
662 +AT+ADR          : Adaptive Rate
889 889  
664 +AT+CLASS                : LoRa Class(Currently only support class A
890 890  
891 -The battery related documents as below:
666 +AT+DCS           : Duty Cycle Setting 
892 892  
893 -* (((
894 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
895 -)))
896 -* (((
897 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
898 -)))
899 -* (((
900 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
901 -)))
668 +AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
902 902  
903 - [[image:image-20220610172400-3.png]]
670 +AT+FCD           : Frame Counter Downlink       
904 904  
672 +AT+FCU           : Frame Counter Uplink   
905 905  
674 +AT+JN1DL                : Join Accept Delay1
906 906  
907 -=== 2.10.2  Replace the battery ===
676 +AT+JN2DL                : Join Accept Delay2
908 908  
909 -(((
910 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
911 -)))
678 +AT+PNM                   : Public Network Mode   
912 912  
913 -(((
914 -
915 -)))
680 +AT+RX1DL                : Receive Delay1      
916 916  
917 -(((
918 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
919 -)))
682 +AT+RX2DL                : Receive Delay2      
920 920  
684 +AT+RX2DR               : Rx2 Window Data Rate 
921 921  
686 +AT+RX2FQ               : Rx2 Window Frequency
922 922  
923 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
688 +AT+TXP           : Transmit Power
924 924  
925 -(((
926 -(((
927 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
928 -)))
929 -)))
930 930  
931 -* (((
932 -(((
933 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
934 -)))
935 -)))
936 -* (((
937 -(((
938 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
939 -)))
940 -)))
691 +**Information :**
941 941  
942 -(((
943 -(((
944 -
945 -)))
693 +AT+RSSI           : RSSI of the Last Received Packet   
946 946  
947 -(((
948 -There are two kinds of commands to configure LDDS75, they are:
949 -)))
950 -)))
695 +AT+SNR           : SNR of the Last Received Packet   
951 951  
952 -* (((
953 -(((
954 -(% style="color:#4f81bd" %)** General Commands**.
955 -)))
956 -)))
697 +AT+VER           : Image Version and Frequency Band       
957 957  
958 -(((
959 -(((
960 -These commands are to configure:
961 -)))
962 -)))
699 +AT+FDR           : Factory Data Reset
963 963  
964 -* (((
965 -(((
966 -General system settings like: uplink interval.
967 -)))
968 -)))
969 -* (((
970 -(((
971 -LoRaWAN protocol & radio related command.
972 -)))
973 -)))
701 +AT+PORT                  : Application Port    
974 974  
975 -(((
976 -(((
977 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
978 -)))
979 -)))
703 +AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
980 980  
981 -(((
982 -(((
983 -
984 -)))
985 -)))
705 + AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
986 986  
987 -* (((
988 -(((
989 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
990 -)))
991 -)))
992 992  
993 -(((
994 -(((
995 -These commands only valid for LDDS75, as below:
996 -)))
997 -)))
998 998  
999 -
1000 -
1001 -== 3.1  Access AT Commands ==
1002 -
1003 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
1004 -
1005 -[[image:image-20220610172924-4.png||height="483" width="988"]]
1006 -
1007 -
1008 -Or if you have below board, use below connection:
1009 -
1010 -
1011 -[[image:image-20220610172924-5.png]]
1012 -
1013 -
1014 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1015 -
1016 -
1017 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1018 -
1019 -
1020 -
1021 1021  == 3.2  Set Transmit Interval Time ==
1022 1022  
1023 1023  Feature: Change LoRaWAN End Node Transmit Interval.
... ... @@ -1035,16 +1035,19 @@
1035 1035  (((
1036 1036  Format: Command Code (0x01) followed by 3 bytes time value.
1037 1037  
726 +(((
1038 1038  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
728 +)))
1039 1039  
1040 1040  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1041 1041  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1042 1042  )))
733 +)))
1043 1043  
1044 1044  
1045 -
1046 -)))
1047 1047  
737 +
738 +
1048 1048  == 3.3  Set Interrupt Mode ==
1049 1049  
1050 1050  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1058,7 +1058,9 @@
1058 1058  
1059 1059  Format: Command Code (0x06) followed by 3 bytes.
1060 1060  
752 +(((
1061 1061  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
754 +)))
1062 1062  
1063 1063  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1064 1064  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +182.9 KB
Content