Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.49
edited by Xiaoling
on 2022/06/11 09:18
Change comment: There is no comment for this version
To version 173.5
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,9 +12,11 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
... ... @@ -21,7 +21,8 @@
21 21  
22 22  (((
23 23  (((
24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
25 25  )))
26 26  
27 27  (((
... ... @@ -29,7 +29,7 @@
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
41 41  )))
42 42  
43 43  (((
... ... @@ -45,7 +45,7 @@
45 45  )))
46 46  
47 47  (((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 49  )))
50 50  
51 51  (((
... ... @@ -53,7 +53,7 @@
53 53  )))
54 54  
55 55  (((
56 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
57 57  )))
58 58  
59 59  (((
... ... @@ -61,13 +61,24 @@
61 61  )))
62 62  
63 63  (((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
64 64  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 65  )))
66 66  )))
67 67  )))
80 +)))
68 68  
69 69  
70 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
71 71  
72 72  
73 73  
... ... @@ -75,9 +75,10 @@
75 75  
76 76  * LoRaWAN 1.0.3 Class A
77 77  * Ultra low power consumption
78 -* Distance Detection by Ultrasonic technology
79 -* Flat object range 280mm - 7500mm
80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
81 81  * Cable Length : 25cm
82 82  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
83 83  * AT Commands to change parameters
... ... @@ -84,71 +84,130 @@
84 84  * Uplink on periodically
85 85  * Downlink to change configure
86 86  * IP66 Waterproof Enclosure
87 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
88 88  
103 +== 1.3  Suitable Container & Liquid ==
89 89  
90 -== 1.3  Specification ==
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
91 91  
92 -=== 1.3.1  Rated environmental conditions ===
112 +== 1.4  Mechanical ==
93 93  
94 -[[image:image-20220610154839-1.png]]
114 +[[image:image-20220615090910-1.png]]
95 95  
96 -(((
97 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
98 -)))
99 99  
117 +[[image:image-20220615090910-2.png]]
100 100  
101 101  
102 -=== 1.3.2  Effective measurement range Reference beam pattern ===
103 103  
104 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
121 +== 1.5  Install LDDS20 ==
105 105  
106 106  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
107 107  
108 -[[image:1654852253176-749.png]]
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
109 109  
128 +[[image:image-20220615091045-3.png]]
110 110  
111 111  
112 -(((
113 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
114 -)))
115 115  
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
116 116  
117 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
118 118  
136 +[[image:image-20220615092010-11.png]]
119 119  
120 120  
121 -== 1.5 ​ Applications ==
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
122 122  
123 -* Horizontal distance measurement
124 -* Liquid level measurement
125 -* Parking management system
126 -* Object proximity and presence detection
127 -* Intelligent trash can management system
128 -* Robot obstacle avoidance
129 -* Automatic control
130 -* Sewer
131 -* Bottom water level monitoring
141 +[[image:image-20220615092044-12.png]]
132 132  
133 133  
134 134  
135 -== 1.6  Pin mapping and power on ==
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
136 136  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
137 137  
138 -[[image:1654847583902-256.png]]
139 139  
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
140 140  
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
141 141  
142 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
143 143  
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 +
157 +
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
144 144  == 2.1  How it works ==
145 145  
146 146  (((
147 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
148 148  )))
149 149  
150 150  (((
151 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
152 152  )))
153 153  
154 154  
... ... @@ -160,7 +160,7 @@
160 160  )))
161 161  
162 162  (((
163 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
164 164  )))
165 165  
166 166  (((
... ... @@ -168,11 +168,13 @@
168 168  )))
169 169  
170 170  (((
171 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
244 +
245 +
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
172 172  )))
173 173  
174 174  (((
175 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
176 176  )))
177 177  
178 178  [[image:image-20220607170145-1.jpeg]]
... ... @@ -187,6 +187,8 @@
187 187  )))
188 188  
189 189  (((
265 +
266 +
190 190  **Add APP EUI in the application**
191 191  )))
192 192  
... ... @@ -200,6 +200,7 @@
200 200  [[image:image-20220610161353-7.png]]
201 201  
202 202  
280 +
203 203  You can also choose to create the device manually.
204 204  
205 205   [[image:image-20220610161538-8.png]]
... ... @@ -212,16 +212,17 @@
212 212  
213 213  
214 214  
215 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
216 216  
217 217  
218 218  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
219 219  
220 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
221 221  
222 222  
301 +
223 223  (((
224 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
225 225  )))
226 226  
227 227  [[image:1654849068701-275.png]]
... ... @@ -232,12 +232,10 @@
232 232  
233 233  (((
234 234  (((
235 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
236 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
237 237  
238 -(((
239 -Uplink payload includes in total 4 bytes.
240 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
241 241  )))
242 242  )))
243 243  
... ... @@ -264,7 +264,7 @@
264 264  === 2.3.1  Battery Info ===
265 265  
266 266  
267 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
268 268  
269 269  Ex1: 0x0B45 = 2885mV
270 270  
... ... @@ -275,23 +275,19 @@
275 275  === 2.3.2  Distance ===
276 276  
277 277  (((
278 -Get the distance. Flat object range 280mm - 7500mm.
355 +Get the distance. Flat object range 20mm - 2000mm.
279 279  )))
280 280  
281 281  (((
282 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
283 283  )))
284 284  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
285 285  
286 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
287 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
288 -
289 -
290 -
291 -
292 292  === 2.3.3  Interrupt Pin ===
293 293  
294 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
295 295  
296 296  **Example:**
297 297  
... ... @@ -317,9 +317,13 @@
317 317  
318 318  === 2.3.5  Sensor Flag ===
319 319  
393 +(((
320 320  0x01: Detect Ultrasonic Sensor
395 +)))
321 321  
397 +(((
322 322  0x00: No Ultrasonic Sensor
399 +)))
323 323  
324 324  
325 325  
... ... @@ -332,542 +332,110 @@
332 332  
333 333  The payload decoder function for TTN V3 is here:
334 334  
335 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
336 -
337 -
338 -
339 -== 2.4  Uplink Interval ==
340 -
341 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
342 -
343 -
344 -
345 -== 2.5  ​Show Data in DataCake IoT Server ==
346 -
347 347  (((
348 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
349 349  )))
350 350  
351 -(((
352 -
353 -)))
354 354  
355 -(((
356 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
357 -)))
358 358  
359 -(((
360 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
361 -)))
418 +== 2.4  Downlink Payload ==
362 362  
420 +By default, LDDS20 prints the downlink payload to console port.
363 363  
364 -[[image:1654592790040-760.png]]
422 +[[image:image-20220615100930-15.png]]
365 365  
366 366  
367 -[[image:1654592800389-571.png]]
425 +**Examples:**
368 368  
369 369  
370 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
428 +* (% style="color:blue" %)**Set TDC**
371 371  
372 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
373 373  
374 -[[image:1654851029373-510.png]]
432 +Payload:    01 00 00 1E    TDC=30S
375 375  
434 +Payload:    01 00 00 3C    TDC=60S
376 376  
377 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
378 378  
379 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
437 +* (% style="color:blue" %)**Reset**
380 380  
439 +If payload = 0x04FF, it will reset the LDDS20
381 381  
382 382  
383 -== 2.6  Frequency Plans ==
442 +* (% style="color:blue" %)**CFM**
384 384  
385 -(((
386 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
387 -)))
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
388 388  
389 389  
390 390  
391 -=== 2.6.1  EU863-870 (EU868) ===
448 +== 2.5  ​Show Data in DataCake IoT Server ==
392 392  
393 393  (((
394 -(% style="color:blue" %)**Uplink:**
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
395 395  )))
396 396  
397 397  (((
398 -868.1 - SF7BW125 to SF12BW125
399 -)))
400 -
401 -(((
402 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
403 -)))
404 -
405 -(((
406 -868.5 - SF7BW125 to SF12BW125
407 -)))
408 -
409 -(((
410 -867.1 - SF7BW125 to SF12BW125
411 -)))
412 -
413 -(((
414 -867.3 - SF7BW125 to SF12BW125
415 -)))
416 -
417 -(((
418 -867.5 - SF7BW125 to SF12BW125
419 -)))
420 -
421 -(((
422 -867.7 - SF7BW125 to SF12BW125
423 -)))
424 -
425 -(((
426 -867.9 - SF7BW125 to SF12BW125
427 -)))
428 -
429 -(((
430 -868.8 - FSK
431 -)))
432 -
433 -(((
434 434  
435 435  )))
436 436  
437 437  (((
438 -(% style="color:blue" %)**Downlink:**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
439 439  )))
440 440  
441 441  (((
442 -Uplink channels 1-9 (RX1)
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
443 443  )))
444 444  
445 -(((
446 -869.525 - SF9BW125 (RX2 downlink only)
447 -)))
448 448  
467 +[[image:1654592790040-760.png]]
449 449  
450 450  
451 -=== 2.6.2  US902-928(US915) ===
470 +[[image:1654592800389-571.png]]
452 452  
453 -(((
454 -Used in USA, Canada and South America. Default use CHE=2
455 455  
456 -(% style="color:blue" %)**Uplink:**
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
457 457  
458 -903.9 - SF7BW125 to SF10BW125
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
459 459  
460 -904.1 - SF7BW125 to SF10BW125
477 +[[image:1654851029373-510.png]]
461 461  
462 -904.3 - SF7BW125 to SF10BW125
463 463  
464 -904.5 - SF7BW125 to SF10BW125
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
465 465  
466 -904.7 - SF7BW125 to SF10BW125
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
467 467  
468 -904.9 - SF7BW125 to SF10BW125
469 469  
470 -905.1 - SF7BW125 to SF10BW125
471 471  
472 -905.3 - SF7BW125 to SF10BW125
486 +== 2.6  LED Indicator ==
473 473  
488 +The LDDS20 has an internal LED which is to show the status of different state.
474 474  
475 -(% style="color:blue" %)**Downlink:**
476 476  
477 -923.3 - SF7BW500 to SF12BW500
491 +* Blink once when device power on.
492 +* The device detects the sensor and flashes 5 times.
493 +* Solid ON for 5 seconds once device successful Join the network.
478 478  
479 -923.9 - SF7BW500 to SF12BW500
495 +Blink once when device transmit a packet.
480 480  
481 -924.5 - SF7BW500 to SF12BW500
482 482  
483 -925.1 - SF7BW500 to SF12BW500
484 484  
485 -925.7 - SF7BW500 to SF12BW500
499 +== 2. Firmware Change Log ==
486 486  
487 -926.3 - SF7BW500 to SF12BW500
488 488  
489 -926.9 - SF7BW500 to SF12BW500
490 -
491 -927.5 - SF7BW500 to SF12BW500
492 -
493 -923.3 - SF12BW500(RX2 downlink only)
494 -
495 -
496 -
497 -)))
498 -
499 -=== 2.6.3  CN470-510 (CN470) ===
500 -
501 501  (((
502 -Used in China, Default use CHE=1
503 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
503 503  )))
504 504  
505 505  (((
506 -(% style="color:blue" %)**Uplink:**
507 -)))
508 -
509 -(((
510 -486.3 - SF7BW125 to SF12BW125
511 -)))
512 -
513 -(((
514 -486.5 - SF7BW125 to SF12BW125
515 -)))
516 -
517 -(((
518 -486.7 - SF7BW125 to SF12BW125
519 -)))
520 -
521 -(((
522 -486.9 - SF7BW125 to SF12BW125
523 -)))
524 -
525 -(((
526 -487.1 - SF7BW125 to SF12BW125
527 -)))
528 -
529 -(((
530 -487.3 - SF7BW125 to SF12BW125
531 -)))
532 -
533 -(((
534 -487.5 - SF7BW125 to SF12BW125
535 -)))
536 -
537 -(((
538 -487.7 - SF7BW125 to SF12BW125
539 -)))
540 -
541 -(((
542 542  
543 543  )))
544 544  
545 545  (((
546 -(% style="color:blue" %)**Downlink:**
511 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
547 547  )))
548 548  
549 -(((
550 -506.7 - SF7BW125 to SF12BW125
551 -)))
552 552  
553 -(((
554 -506.9 - SF7BW125 to SF12BW125
555 -)))
556 556  
557 -(((
558 -507.1 - SF7BW125 to SF12BW125
559 -)))
560 -
561 -(((
562 -507.3 - SF7BW125 to SF12BW125
563 -)))
564 -
565 -(((
566 -507.5 - SF7BW125 to SF12BW125
567 -)))
568 -
569 -(((
570 -507.7 - SF7BW125 to SF12BW125
571 -)))
572 -
573 -(((
574 -507.9 - SF7BW125 to SF12BW125
575 -)))
576 -
577 -(((
578 -508.1 - SF7BW125 to SF12BW125
579 -)))
580 -
581 -(((
582 -505.3 - SF12BW125 (RX2 downlink only)
583 -)))
584 -
585 -
586 -
587 -=== 2.6.4  AU915-928(AU915) ===
588 -
589 -(((
590 -Default use CHE=2
591 -
592 -(% style="color:blue" %)**Uplink:**
593 -
594 -916.8 - SF7BW125 to SF12BW125
595 -
596 -917.0 - SF7BW125 to SF12BW125
597 -
598 -917.2 - SF7BW125 to SF12BW125
599 -
600 -917.4 - SF7BW125 to SF12BW125
601 -
602 -917.6 - SF7BW125 to SF12BW125
603 -
604 -917.8 - SF7BW125 to SF12BW125
605 -
606 -918.0 - SF7BW125 to SF12BW125
607 -
608 -918.2 - SF7BW125 to SF12BW125
609 -
610 -
611 -(% style="color:blue" %)**Downlink:**
612 -
613 -923.3 - SF7BW500 to SF12BW500
614 -
615 -923.9 - SF7BW500 to SF12BW500
616 -
617 -924.5 - SF7BW500 to SF12BW500
618 -
619 -925.1 - SF7BW500 to SF12BW500
620 -
621 -925.7 - SF7BW500 to SF12BW500
622 -
623 -926.3 - SF7BW500 to SF12BW500
624 -
625 -926.9 - SF7BW500 to SF12BW500
626 -
627 -927.5 - SF7BW500 to SF12BW500
628 -
629 -923.3 - SF12BW500(RX2 downlink only)
630 -
631 -
632 -
633 -)))
634 -
635 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
636 -
637 -(((
638 -(% style="color:blue" %)**Default Uplink channel:**
639 -)))
640 -
641 -(((
642 -923.2 - SF7BW125 to SF10BW125
643 -)))
644 -
645 -(((
646 -923.4 - SF7BW125 to SF10BW125
647 -)))
648 -
649 -(((
650 -
651 -)))
652 -
653 -(((
654 -(% style="color:blue" %)**Additional Uplink Channel**:
655 -)))
656 -
657 -(((
658 -(OTAA mode, channel added by JoinAccept message)
659 -)))
660 -
661 -(((
662 -
663 -)))
664 -
665 -(((
666 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
667 -)))
668 -
669 -(((
670 -922.2 - SF7BW125 to SF10BW125
671 -)))
672 -
673 -(((
674 -922.4 - SF7BW125 to SF10BW125
675 -)))
676 -
677 -(((
678 -922.6 - SF7BW125 to SF10BW125
679 -)))
680 -
681 -(((
682 -922.8 - SF7BW125 to SF10BW125
683 -)))
684 -
685 -(((
686 -923.0 - SF7BW125 to SF10BW125
687 -)))
688 -
689 -(((
690 -922.0 - SF7BW125 to SF10BW125
691 -)))
692 -
693 -(((
694 -
695 -)))
696 -
697 -(((
698 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
699 -)))
700 -
701 -(((
702 -923.6 - SF7BW125 to SF10BW125
703 -)))
704 -
705 -(((
706 -923.8 - SF7BW125 to SF10BW125
707 -)))
708 -
709 -(((
710 -924.0 - SF7BW125 to SF10BW125
711 -)))
712 -
713 -(((
714 -924.2 - SF7BW125 to SF10BW125
715 -)))
716 -
717 -(((
718 -924.4 - SF7BW125 to SF10BW125
719 -)))
720 -
721 -(((
722 -924.6 - SF7BW125 to SF10BW125
723 -)))
724 -
725 -(((
726 -
727 -)))
728 -
729 -(((
730 -(% style="color:blue" %)**Downlink:**
731 -)))
732 -
733 -(((
734 -Uplink channels 1-8 (RX1)
735 -)))
736 -
737 -(((
738 -923.2 - SF10BW125 (RX2)
739 -)))
740 -
741 -
742 -
743 -=== 2.6.6  KR920-923 (KR920) ===
744 -
745 -(((
746 -(% style="color:blue" %)**Default channel:**
747 -)))
748 -
749 -(((
750 -922.1 - SF7BW125 to SF12BW125
751 -)))
752 -
753 -(((
754 -922.3 - SF7BW125 to SF12BW125
755 -)))
756 -
757 -(((
758 -922.5 - SF7BW125 to SF12BW125
759 -)))
760 -
761 -(((
762 -
763 -)))
764 -
765 -(((
766 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
767 -)))
768 -
769 -(((
770 -922.1 - SF7BW125 to SF12BW125
771 -)))
772 -
773 -(((
774 -922.3 - SF7BW125 to SF12BW125
775 -)))
776 -
777 -(((
778 -922.5 - SF7BW125 to SF12BW125
779 -)))
780 -
781 -(((
782 -922.7 - SF7BW125 to SF12BW125
783 -)))
784 -
785 -(((
786 -922.9 - SF7BW125 to SF12BW125
787 -)))
788 -
789 -(((
790 -923.1 - SF7BW125 to SF12BW125
791 -)))
792 -
793 -(((
794 -923.3 - SF7BW125 to SF12BW125
795 -)))
796 -
797 -(((
798 -
799 -)))
800 -
801 -(((
802 -(% style="color:blue" %)**Downlink:**
803 -)))
804 -
805 -(((
806 -Uplink channels 1-7(RX1)
807 -)))
808 -
809 -(((
810 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
811 -)))
812 -
813 -
814 -
815 -=== 2.6.7  IN865-867 (IN865) ===
816 -
817 -(((
818 -(% style="color:blue" %)**Uplink:**
819 -)))
820 -
821 -(((
822 -865.0625 - SF7BW125 to SF12BW125
823 -)))
824 -
825 -(((
826 -865.4025 - SF7BW125 to SF12BW125
827 -)))
828 -
829 -(((
830 -865.9850 - SF7BW125 to SF12BW125
831 -)))
832 -
833 -(((
834 -
835 -)))
836 -
837 -(((
838 -(% style="color:blue" %)**Downlink:**
839 -)))
840 -
841 -(((
842 -Uplink channels 1-3 (RX1)
843 -)))
844 -
845 -(((
846 -866.550 - SF10BW125 (RX2)
847 -)))
848 -
849 -
850 -
851 -== 2.7  LED Indicator ==
852 -
853 -The LDDS75 has an internal LED which is to show the status of different state.
854 -
855 -
856 -* Blink once when device power on.
857 -* The device detects the sensor and flashes 5 times.
858 -* Solid ON for 5 seconds once device successful Join the network.
859 -* Blink once when device transmit a packet.
860 -
861 -== 2.8  ​Firmware Change Log ==
862 -
863 -
864 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
865 -
866 -
867 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
868 -
869 -
870 -
871 871  == 2.9  Mechanical ==
872 872  
873 873  
... ... @@ -1008,7 +1008,9 @@
1008 1008  [[image:image-20220610172924-5.png]]
1009 1009  
1010 1010  
656 +(((
1011 1011  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
658 +)))
1012 1012  
1013 1013  
1014 1014   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -1032,16 +1032,19 @@
1032 1032  (((
1033 1033  Format: Command Code (0x01) followed by 3 bytes time value.
1034 1034  
682 +(((
1035 1035  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
684 +)))
1036 1036  
1037 1037  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1038 1038  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1039 1039  )))
689 +)))
1040 1040  
1041 1041  
1042 -
1043 -)))
1044 1044  
693 +
694 +
1045 1045  == 3.3  Set Interrupt Mode ==
1046 1046  
1047 1047  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1055,7 +1055,9 @@
1055 1055  
1056 1056  Format: Command Code (0x06) followed by 3 bytes.
1057 1057  
708 +(((
1058 1058  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
710 +)))
1059 1059  
1060 1060  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1061 1061  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content