Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.48
edited by Xiaoling
on 2022/06/11 09:18
Change comment: There is no comment for this version
To version 173.5
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,9 +12,11 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
... ... @@ -21,7 +21,8 @@
21 21  
22 22  (((
23 23  (((
24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
25 25  )))
26 26  
27 27  (((
... ... @@ -29,7 +29,7 @@
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
41 41  )))
42 42  
43 43  (((
... ... @@ -45,7 +45,7 @@
45 45  )))
46 46  
47 47  (((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 49  )))
50 50  
51 51  (((
... ... @@ -53,7 +53,7 @@
53 53  )))
54 54  
55 55  (((
56 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
57 57  )))
58 58  
59 59  (((
... ... @@ -61,13 +61,24 @@
61 61  )))
62 62  
63 63  (((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
64 64  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 65  )))
66 66  )))
67 67  )))
80 +)))
68 68  
69 69  
70 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
71 71  
72 72  
73 73  
... ... @@ -75,9 +75,10 @@
75 75  
76 76  * LoRaWAN 1.0.3 Class A
77 77  * Ultra low power consumption
78 -* Distance Detection by Ultrasonic technology
79 -* Flat object range 280mm - 7500mm
80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
81 81  * Cable Length : 25cm
82 82  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
83 83  * AT Commands to change parameters
... ... @@ -84,71 +84,130 @@
84 84  * Uplink on periodically
85 85  * Downlink to change configure
86 86  * IP66 Waterproof Enclosure
87 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
88 88  
103 +== 1.3  Suitable Container & Liquid ==
89 89  
90 -== 1.3  Specification ==
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
91 91  
92 -=== 1.3.1  Rated environmental conditions ===
112 +== 1.4  Mechanical ==
93 93  
94 -[[image:image-20220610154839-1.png]]
114 +[[image:image-20220615090910-1.png]]
95 95  
96 -(((
97 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
98 -)))
99 99  
117 +[[image:image-20220615090910-2.png]]
100 100  
101 101  
102 -=== 1.3.2  Effective measurement range Reference beam pattern ===
103 103  
104 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
121 +== 1.5  Install LDDS20 ==
105 105  
106 106  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
107 107  
108 -[[image:1654852253176-749.png]]
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
109 109  
128 +[[image:image-20220615091045-3.png]]
110 110  
111 111  
112 -(((
113 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
114 -)))
115 115  
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
116 116  
117 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
118 118  
136 +[[image:image-20220615092010-11.png]]
119 119  
120 120  
121 -== 1.5 ​ Applications ==
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
122 122  
123 -* Horizontal distance measurement
124 -* Liquid level measurement
125 -* Parking management system
126 -* Object proximity and presence detection
127 -* Intelligent trash can management system
128 -* Robot obstacle avoidance
129 -* Automatic control
130 -* Sewer
131 -* Bottom water level monitoring
141 +[[image:image-20220615092044-12.png]]
132 132  
133 133  
134 134  
135 -== 1.6  Pin mapping and power on ==
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
136 136  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
137 137  
138 -[[image:1654847583902-256.png]]
139 139  
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
140 140  
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
141 141  
142 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
143 143  
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 +
157 +
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
144 144  == 2.1  How it works ==
145 145  
146 146  (((
147 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
148 148  )))
149 149  
150 150  (((
151 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
152 152  )))
153 153  
154 154  
... ... @@ -160,7 +160,7 @@
160 160  )))
161 161  
162 162  (((
163 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
164 164  )))
165 165  
166 166  (((
... ... @@ -168,11 +168,13 @@
168 168  )))
169 169  
170 170  (((
171 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
244 +
245 +
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
172 172  )))
173 173  
174 174  (((
175 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
176 176  )))
177 177  
178 178  [[image:image-20220607170145-1.jpeg]]
... ... @@ -187,6 +187,8 @@
187 187  )))
188 188  
189 189  (((
265 +
266 +
190 190  **Add APP EUI in the application**
191 191  )))
192 192  
... ... @@ -200,6 +200,7 @@
200 200  [[image:image-20220610161353-7.png]]
201 201  
202 202  
280 +
203 203  You can also choose to create the device manually.
204 204  
205 205   [[image:image-20220610161538-8.png]]
... ... @@ -212,16 +212,17 @@
212 212  
213 213  
214 214  
215 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
216 216  
217 217  
218 218  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
219 219  
220 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
221 221  
222 222  
301 +
223 223  (((
224 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
225 225  )))
226 226  
227 227  [[image:1654849068701-275.png]]
... ... @@ -232,12 +232,10 @@
232 232  
233 233  (((
234 234  (((
235 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
236 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
237 237  
238 -(((
239 -Uplink payload includes in total 4 bytes.
240 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
241 241  )))
242 242  )))
243 243  
... ... @@ -264,7 +264,7 @@
264 264  === 2.3.1  Battery Info ===
265 265  
266 266  
267 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
268 268  
269 269  Ex1: 0x0B45 = 2885mV
270 270  
... ... @@ -275,20 +275,19 @@
275 275  === 2.3.2  Distance ===
276 276  
277 277  (((
278 -Get the distance. Flat object range 280mm - 7500mm.
355 +Get the distance. Flat object range 20mm - 2000mm.
279 279  )))
280 280  
281 281  (((
282 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
283 283  )))
284 284  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
285 285  
286 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
287 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
288 -
289 289  === 2.3.3  Interrupt Pin ===
290 290  
291 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
292 292  
293 293  **Example:**
294 294  
... ... @@ -314,9 +314,13 @@
314 314  
315 315  === 2.3.5  Sensor Flag ===
316 316  
393 +(((
317 317  0x01: Detect Ultrasonic Sensor
395 +)))
318 318  
397 +(((
319 319  0x00: No Ultrasonic Sensor
399 +)))
320 320  
321 321  
322 322  
... ... @@ -329,542 +329,110 @@
329 329  
330 330  The payload decoder function for TTN V3 is here:
331 331  
332 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
333 -
334 -
335 -
336 -== 2.4  Uplink Interval ==
337 -
338 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
339 -
340 -
341 -
342 -== 2.5  ​Show Data in DataCake IoT Server ==
343 -
344 344  (((
345 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
346 346  )))
347 347  
348 -(((
349 -
350 -)))
351 351  
352 -(((
353 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
354 -)))
355 355  
356 -(((
357 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
358 -)))
418 +== 2.4  Downlink Payload ==
359 359  
420 +By default, LDDS20 prints the downlink payload to console port.
360 360  
361 -[[image:1654592790040-760.png]]
422 +[[image:image-20220615100930-15.png]]
362 362  
363 363  
364 -[[image:1654592800389-571.png]]
425 +**Examples:**
365 365  
366 366  
367 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
428 +* (% style="color:blue" %)**Set TDC**
368 368  
369 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
370 370  
371 -[[image:1654851029373-510.png]]
432 +Payload:    01 00 00 1E    TDC=30S
372 372  
434 +Payload:    01 00 00 3C    TDC=60S
373 373  
374 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
375 375  
376 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
437 +* (% style="color:blue" %)**Reset**
377 377  
439 +If payload = 0x04FF, it will reset the LDDS20
378 378  
379 379  
380 -== 2.6  Frequency Plans ==
442 +* (% style="color:blue" %)**CFM**
381 381  
382 -(((
383 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
384 -)))
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
385 385  
386 386  
387 387  
388 -=== 2.6.1  EU863-870 (EU868) ===
448 +== 2.5  ​Show Data in DataCake IoT Server ==
389 389  
390 390  (((
391 -(% style="color:blue" %)**Uplink:**
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
392 392  )))
393 393  
394 394  (((
395 -868.1 - SF7BW125 to SF12BW125
396 -)))
397 -
398 -(((
399 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
400 -)))
401 -
402 -(((
403 -868.5 - SF7BW125 to SF12BW125
404 -)))
405 -
406 -(((
407 -867.1 - SF7BW125 to SF12BW125
408 -)))
409 -
410 -(((
411 -867.3 - SF7BW125 to SF12BW125
412 -)))
413 -
414 -(((
415 -867.5 - SF7BW125 to SF12BW125
416 -)))
417 -
418 -(((
419 -867.7 - SF7BW125 to SF12BW125
420 -)))
421 -
422 -(((
423 -867.9 - SF7BW125 to SF12BW125
424 -)))
425 -
426 -(((
427 -868.8 - FSK
428 -)))
429 -
430 -(((
431 431  
432 432  )))
433 433  
434 434  (((
435 -(% style="color:blue" %)**Downlink:**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
436 436  )))
437 437  
438 438  (((
439 -Uplink channels 1-9 (RX1)
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
440 440  )))
441 441  
442 -(((
443 -869.525 - SF9BW125 (RX2 downlink only)
444 -)))
445 445  
467 +[[image:1654592790040-760.png]]
446 446  
447 447  
448 -=== 2.6.2  US902-928(US915) ===
470 +[[image:1654592800389-571.png]]
449 449  
450 -(((
451 -Used in USA, Canada and South America. Default use CHE=2
452 452  
453 -(% style="color:blue" %)**Uplink:**
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
454 454  
455 -903.9 - SF7BW125 to SF10BW125
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
456 456  
457 -904.1 - SF7BW125 to SF10BW125
477 +[[image:1654851029373-510.png]]
458 458  
459 -904.3 - SF7BW125 to SF10BW125
460 460  
461 -904.5 - SF7BW125 to SF10BW125
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
462 462  
463 -904.7 - SF7BW125 to SF10BW125
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
464 464  
465 -904.9 - SF7BW125 to SF10BW125
466 466  
467 -905.1 - SF7BW125 to SF10BW125
468 468  
469 -905.3 - SF7BW125 to SF10BW125
486 +== 2.6  LED Indicator ==
470 470  
488 +The LDDS20 has an internal LED which is to show the status of different state.
471 471  
472 -(% style="color:blue" %)**Downlink:**
473 473  
474 -923.3 - SF7BW500 to SF12BW500
491 +* Blink once when device power on.
492 +* The device detects the sensor and flashes 5 times.
493 +* Solid ON for 5 seconds once device successful Join the network.
475 475  
476 -923.9 - SF7BW500 to SF12BW500
495 +Blink once when device transmit a packet.
477 477  
478 -924.5 - SF7BW500 to SF12BW500
479 479  
480 -925.1 - SF7BW500 to SF12BW500
481 481  
482 -925.7 - SF7BW500 to SF12BW500
499 +== 2. Firmware Change Log ==
483 483  
484 -926.3 - SF7BW500 to SF12BW500
485 485  
486 -926.9 - SF7BW500 to SF12BW500
487 -
488 -927.5 - SF7BW500 to SF12BW500
489 -
490 -923.3 - SF12BW500(RX2 downlink only)
491 -
492 -
493 -
494 -)))
495 -
496 -=== 2.6.3  CN470-510 (CN470) ===
497 -
498 498  (((
499 -Used in China, Default use CHE=1
503 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
500 500  )))
501 501  
502 502  (((
503 -(% style="color:blue" %)**Uplink:**
504 -)))
505 -
506 -(((
507 -486.3 - SF7BW125 to SF12BW125
508 -)))
509 -
510 -(((
511 -486.5 - SF7BW125 to SF12BW125
512 -)))
513 -
514 -(((
515 -486.7 - SF7BW125 to SF12BW125
516 -)))
517 -
518 -(((
519 -486.9 - SF7BW125 to SF12BW125
520 -)))
521 -
522 -(((
523 -487.1 - SF7BW125 to SF12BW125
524 -)))
525 -
526 -(((
527 -487.3 - SF7BW125 to SF12BW125
528 -)))
529 -
530 -(((
531 -487.5 - SF7BW125 to SF12BW125
532 -)))
533 -
534 -(((
535 -487.7 - SF7BW125 to SF12BW125
536 -)))
537 -
538 -(((
539 539  
540 540  )))
541 541  
542 542  (((
543 -(% style="color:blue" %)**Downlink:**
511 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
544 544  )))
545 545  
546 -(((
547 -506.7 - SF7BW125 to SF12BW125
548 -)))
549 549  
550 -(((
551 -506.9 - SF7BW125 to SF12BW125
552 -)))
553 553  
554 -(((
555 -507.1 - SF7BW125 to SF12BW125
556 -)))
557 -
558 -(((
559 -507.3 - SF7BW125 to SF12BW125
560 -)))
561 -
562 -(((
563 -507.5 - SF7BW125 to SF12BW125
564 -)))
565 -
566 -(((
567 -507.7 - SF7BW125 to SF12BW125
568 -)))
569 -
570 -(((
571 -507.9 - SF7BW125 to SF12BW125
572 -)))
573 -
574 -(((
575 -508.1 - SF7BW125 to SF12BW125
576 -)))
577 -
578 -(((
579 -505.3 - SF12BW125 (RX2 downlink only)
580 -)))
581 -
582 -
583 -
584 -=== 2.6.4  AU915-928(AU915) ===
585 -
586 -(((
587 -Default use CHE=2
588 -
589 -(% style="color:blue" %)**Uplink:**
590 -
591 -916.8 - SF7BW125 to SF12BW125
592 -
593 -917.0 - SF7BW125 to SF12BW125
594 -
595 -917.2 - SF7BW125 to SF12BW125
596 -
597 -917.4 - SF7BW125 to SF12BW125
598 -
599 -917.6 - SF7BW125 to SF12BW125
600 -
601 -917.8 - SF7BW125 to SF12BW125
602 -
603 -918.0 - SF7BW125 to SF12BW125
604 -
605 -918.2 - SF7BW125 to SF12BW125
606 -
607 -
608 -(% style="color:blue" %)**Downlink:**
609 -
610 -923.3 - SF7BW500 to SF12BW500
611 -
612 -923.9 - SF7BW500 to SF12BW500
613 -
614 -924.5 - SF7BW500 to SF12BW500
615 -
616 -925.1 - SF7BW500 to SF12BW500
617 -
618 -925.7 - SF7BW500 to SF12BW500
619 -
620 -926.3 - SF7BW500 to SF12BW500
621 -
622 -926.9 - SF7BW500 to SF12BW500
623 -
624 -927.5 - SF7BW500 to SF12BW500
625 -
626 -923.3 - SF12BW500(RX2 downlink only)
627 -
628 -
629 -
630 -)))
631 -
632 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
633 -
634 -(((
635 -(% style="color:blue" %)**Default Uplink channel:**
636 -)))
637 -
638 -(((
639 -923.2 - SF7BW125 to SF10BW125
640 -)))
641 -
642 -(((
643 -923.4 - SF7BW125 to SF10BW125
644 -)))
645 -
646 -(((
647 -
648 -)))
649 -
650 -(((
651 -(% style="color:blue" %)**Additional Uplink Channel**:
652 -)))
653 -
654 -(((
655 -(OTAA mode, channel added by JoinAccept message)
656 -)))
657 -
658 -(((
659 -
660 -)))
661 -
662 -(((
663 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
664 -)))
665 -
666 -(((
667 -922.2 - SF7BW125 to SF10BW125
668 -)))
669 -
670 -(((
671 -922.4 - SF7BW125 to SF10BW125
672 -)))
673 -
674 -(((
675 -922.6 - SF7BW125 to SF10BW125
676 -)))
677 -
678 -(((
679 -922.8 - SF7BW125 to SF10BW125
680 -)))
681 -
682 -(((
683 -923.0 - SF7BW125 to SF10BW125
684 -)))
685 -
686 -(((
687 -922.0 - SF7BW125 to SF10BW125
688 -)))
689 -
690 -(((
691 -
692 -)))
693 -
694 -(((
695 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
696 -)))
697 -
698 -(((
699 -923.6 - SF7BW125 to SF10BW125
700 -)))
701 -
702 -(((
703 -923.8 - SF7BW125 to SF10BW125
704 -)))
705 -
706 -(((
707 -924.0 - SF7BW125 to SF10BW125
708 -)))
709 -
710 -(((
711 -924.2 - SF7BW125 to SF10BW125
712 -)))
713 -
714 -(((
715 -924.4 - SF7BW125 to SF10BW125
716 -)))
717 -
718 -(((
719 -924.6 - SF7BW125 to SF10BW125
720 -)))
721 -
722 -(((
723 -
724 -)))
725 -
726 -(((
727 -(% style="color:blue" %)**Downlink:**
728 -)))
729 -
730 -(((
731 -Uplink channels 1-8 (RX1)
732 -)))
733 -
734 -(((
735 -923.2 - SF10BW125 (RX2)
736 -)))
737 -
738 -
739 -
740 -=== 2.6.6  KR920-923 (KR920) ===
741 -
742 -(((
743 -(% style="color:blue" %)**Default channel:**
744 -)))
745 -
746 -(((
747 -922.1 - SF7BW125 to SF12BW125
748 -)))
749 -
750 -(((
751 -922.3 - SF7BW125 to SF12BW125
752 -)))
753 -
754 -(((
755 -922.5 - SF7BW125 to SF12BW125
756 -)))
757 -
758 -(((
759 -
760 -)))
761 -
762 -(((
763 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
764 -)))
765 -
766 -(((
767 -922.1 - SF7BW125 to SF12BW125
768 -)))
769 -
770 -(((
771 -922.3 - SF7BW125 to SF12BW125
772 -)))
773 -
774 -(((
775 -922.5 - SF7BW125 to SF12BW125
776 -)))
777 -
778 -(((
779 -922.7 - SF7BW125 to SF12BW125
780 -)))
781 -
782 -(((
783 -922.9 - SF7BW125 to SF12BW125
784 -)))
785 -
786 -(((
787 -923.1 - SF7BW125 to SF12BW125
788 -)))
789 -
790 -(((
791 -923.3 - SF7BW125 to SF12BW125
792 -)))
793 -
794 -(((
795 -
796 -)))
797 -
798 -(((
799 -(% style="color:blue" %)**Downlink:**
800 -)))
801 -
802 -(((
803 -Uplink channels 1-7(RX1)
804 -)))
805 -
806 -(((
807 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
808 -)))
809 -
810 -
811 -
812 -=== 2.6.7  IN865-867 (IN865) ===
813 -
814 -(((
815 -(% style="color:blue" %)**Uplink:**
816 -)))
817 -
818 -(((
819 -865.0625 - SF7BW125 to SF12BW125
820 -)))
821 -
822 -(((
823 -865.4025 - SF7BW125 to SF12BW125
824 -)))
825 -
826 -(((
827 -865.9850 - SF7BW125 to SF12BW125
828 -)))
829 -
830 -(((
831 -
832 -)))
833 -
834 -(((
835 -(% style="color:blue" %)**Downlink:**
836 -)))
837 -
838 -(((
839 -Uplink channels 1-3 (RX1)
840 -)))
841 -
842 -(((
843 -866.550 - SF10BW125 (RX2)
844 -)))
845 -
846 -
847 -
848 -== 2.7  LED Indicator ==
849 -
850 -The LDDS75 has an internal LED which is to show the status of different state.
851 -
852 -
853 -* Blink once when device power on.
854 -* The device detects the sensor and flashes 5 times.
855 -* Solid ON for 5 seconds once device successful Join the network.
856 -* Blink once when device transmit a packet.
857 -
858 -== 2.8  ​Firmware Change Log ==
859 -
860 -
861 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
862 -
863 -
864 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
865 -
866 -
867 -
868 868  == 2.9  Mechanical ==
869 869  
870 870  
... ... @@ -1005,7 +1005,9 @@
1005 1005  [[image:image-20220610172924-5.png]]
1006 1006  
1007 1007  
656 +(((
1008 1008  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
658 +)))
1009 1009  
1010 1010  
1011 1011   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -1029,16 +1029,19 @@
1029 1029  (((
1030 1030  Format: Command Code (0x01) followed by 3 bytes time value.
1031 1031  
682 +(((
1032 1032  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
684 +)))
1033 1033  
1034 1034  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1035 1035  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1036 1036  )))
689 +)))
1037 1037  
1038 1038  
1039 -
1040 -)))
1041 1041  
693 +
694 +
1042 1042  == 3.3  Set Interrupt Mode ==
1043 1043  
1044 1044  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1052,7 +1052,9 @@
1052 1052  
1053 1053  Format: Command Code (0x06) followed by 3 bytes.
1054 1054  
708 +(((
1055 1055  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
710 +)))
1056 1056  
1057 1057  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1058 1058  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content