Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.42
edited by Xiaoling
on 2022/06/11 09:14
Change comment: There is no comment for this version
To version 173.6
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,9 +12,11 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
... ... @@ -21,7 +21,8 @@
21 21  
22 22  (((
23 23  (((
24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
25 25  )))
26 26  
27 27  (((
... ... @@ -29,7 +29,7 @@
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
41 41  )))
42 42  
43 43  (((
... ... @@ -45,7 +45,7 @@
45 45  )))
46 46  
47 47  (((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 49  )))
50 50  
51 51  (((
... ... @@ -53,7 +53,7 @@
53 53  )))
54 54  
55 55  (((
56 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
57 57  )))
58 58  
59 59  (((
... ... @@ -61,13 +61,24 @@
61 61  )))
62 62  
63 63  (((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
64 64  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 65  )))
66 66  )))
67 67  )))
80 +)))
68 68  
69 69  
70 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
71 71  
72 72  
73 73  
... ... @@ -75,9 +75,10 @@
75 75  
76 76  * LoRaWAN 1.0.3 Class A
77 77  * Ultra low power consumption
78 -* Distance Detection by Ultrasonic technology
79 -* Flat object range 280mm - 7500mm
80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
81 81  * Cable Length : 25cm
82 82  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
83 83  * AT Commands to change parameters
... ... @@ -84,69 +84,130 @@
84 84  * Uplink on periodically
85 85  * Downlink to change configure
86 86  * IP66 Waterproof Enclosure
87 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
88 88  
103 +== 1.3  Suitable Container & Liquid ==
89 89  
90 -== 1.3  Specification ==
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
91 91  
92 -=== 1.3.1  Rated environmental conditions ===
112 +== 1.4  Mechanical ==
93 93  
94 -[[image:image-20220610154839-1.png]]
114 +[[image:image-20220615090910-1.png]]
95 95  
96 -(((
97 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
98 -)))
99 99  
117 +[[image:image-20220615090910-2.png]]
100 100  
101 101  
102 -=== 1.3.2  Effective measurement range Reference beam pattern ===
103 103  
104 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
121 +== 1.5  Install LDDS20 ==
105 105  
106 106  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
107 107  
108 -[[image:1654852253176-749.png]]
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
109 109  
128 +[[image:image-20220615091045-3.png]]
110 110  
111 111  
112 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
113 113  
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
114 114  
115 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
116 116  
136 +[[image:image-20220615092010-11.png]]
117 117  
118 118  
119 -== 1.5 ​ Applications ==
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
120 120  
121 -* Horizontal distance measurement
122 -* Liquid level measurement
123 -* Parking management system
124 -* Object proximity and presence detection
125 -* Intelligent trash can management system
126 -* Robot obstacle avoidance
127 -* Automatic control
128 -* Sewer
129 -* Bottom water level monitoring
141 +[[image:image-20220615092044-12.png]]
130 130  
131 131  
132 132  
133 -== 1.6  Pin mapping and power on ==
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
134 134  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
135 135  
136 -[[image:1654847583902-256.png]]
137 137  
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
138 138  
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
139 139  
140 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
141 141  
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 +
157 +
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
142 142  == 2.1  How it works ==
143 143  
144 144  (((
145 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
146 146  )))
147 147  
148 148  (((
149 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
150 150  )))
151 151  
152 152  
... ... @@ -158,7 +158,7 @@
158 158  )))
159 159  
160 160  (((
161 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
162 162  )))
163 163  
164 164  (((
... ... @@ -166,21 +166,31 @@
166 166  )))
167 167  
168 168  (((
169 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
244 +
245 +
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
170 170  )))
171 171  
172 172  (((
173 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
174 174  )))
175 175  
176 176  [[image:image-20220607170145-1.jpeg]]
177 177  
178 178  
256 +(((
179 179  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
258 +)))
180 180  
260 +(((
181 181  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
262 +)))
182 182  
264 +(((
265 +
266 +
183 183  **Add APP EUI in the application**
268 +)))
184 184  
185 185  [[image:image-20220610161353-4.png]]
186 186  
... ... @@ -192,6 +192,7 @@
192 192  [[image:image-20220610161353-7.png]]
193 193  
194 194  
280 +
195 195  You can also choose to create the device manually.
196 196  
197 197   [[image:image-20220610161538-8.png]]
... ... @@ -204,16 +204,17 @@
204 204  
205 205  
206 206  
207 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
208 208  
209 209  
210 210  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
211 211  
212 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
213 213  
214 214  
301 +
215 215  (((
216 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
217 217  )))
218 218  
219 219  [[image:1654849068701-275.png]]
... ... @@ -223,11 +223,13 @@
223 223  == 2.3  ​Uplink Payload ==
224 224  
225 225  (((
226 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
313 +(((
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
227 227  
228 -Uplink payload includes in total 4 bytes.
229 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
230 230  )))
319 +)))
231 231  
232 232  (((
233 233  
... ... @@ -252,7 +252,7 @@
252 252  === 2.3.1  Battery Info ===
253 253  
254 254  
255 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
256 256  
257 257  Ex1: 0x0B45 = 2885mV
258 258  
... ... @@ -262,17 +262,20 @@
262 262  
263 263  === 2.3.2  Distance ===
264 264  
265 -Get the distance. Flat object range 280mm - 7500mm.
354 +(((
355 +Get the distance. Flat object range 20mm - 2000mm.
356 +)))
266 266  
267 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
358 +(((
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 +)))
268 268  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
269 269  
270 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
271 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
272 -
273 273  === 2.3.3  Interrupt Pin ===
274 274  
275 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
276 276  
277 277  **Example:**
278 278  
... ... @@ -298,9 +298,13 @@
298 298  
299 299  === 2.3.5  Sensor Flag ===
300 300  
393 +(((
301 301  0x01: Detect Ultrasonic Sensor
395 +)))
302 302  
397 +(((
303 303  0x00: No Ultrasonic Sensor
399 +)))
304 304  
305 305  
306 306  
... ... @@ -313,542 +313,109 @@
313 313  
314 314  The payload decoder function for TTN V3 is here:
315 315  
316 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
317 -
318 -
319 -
320 -== 2.4  Uplink Interval ==
321 -
322 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
323 -
324 -
325 -
326 -== 2.5  ​Show Data in DataCake IoT Server ==
327 -
328 328  (((
329 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
330 330  )))
331 331  
332 -(((
333 -
334 -)))
335 335  
336 -(((
337 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
338 -)))
339 339  
340 -(((
341 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
342 -)))
418 +== 2.4  Downlink Payload ==
343 343  
420 +By default, LDDS20 prints the downlink payload to console port.
344 344  
345 -[[image:1654592790040-760.png]]
422 +[[image:image-20220615100930-15.png]]
346 346  
347 347  
348 -[[image:1654592800389-571.png]]
425 +**Examples:**
349 349  
350 350  
351 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
428 +* (% style="color:blue" %)**Set TDC**
352 352  
353 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
354 354  
355 -[[image:1654851029373-510.png]]
432 +Payload:    01 00 00 1E    TDC=30S
356 356  
434 +Payload:    01 00 00 3C    TDC=60S
357 357  
358 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
359 359  
360 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
437 +* (% style="color:blue" %)**Reset**
361 361  
439 +If payload = 0x04FF, it will reset the LDDS20
362 362  
363 363  
364 -== 2.6  Frequency Plans ==
442 +* (% style="color:blue" %)**CFM**
365 365  
366 -(((
367 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
368 -)))
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
369 369  
370 370  
371 371  
372 -=== 2.6.1  EU863-870 (EU868) ===
448 +== 2.5  ​Show Data in DataCake IoT Server ==
373 373  
374 374  (((
375 -(% style="color:blue" %)**Uplink:**
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
376 376  )))
377 377  
378 378  (((
379 -868.1 - SF7BW125 to SF12BW125
380 -)))
381 -
382 -(((
383 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
384 -)))
385 -
386 -(((
387 -868.5 - SF7BW125 to SF12BW125
388 -)))
389 -
390 -(((
391 -867.1 - SF7BW125 to SF12BW125
392 -)))
393 -
394 -(((
395 -867.3 - SF7BW125 to SF12BW125
396 -)))
397 -
398 -(((
399 -867.5 - SF7BW125 to SF12BW125
400 -)))
401 -
402 -(((
403 -867.7 - SF7BW125 to SF12BW125
404 -)))
405 -
406 -(((
407 -867.9 - SF7BW125 to SF12BW125
408 -)))
409 -
410 -(((
411 -868.8 - FSK
412 -)))
413 -
414 -(((
415 415  
416 416  )))
417 417  
418 418  (((
419 -(% style="color:blue" %)**Downlink:**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
420 420  )))
421 421  
422 422  (((
423 -Uplink channels 1-9 (RX1)
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
424 424  )))
425 425  
426 -(((
427 -869.525 - SF9BW125 (RX2 downlink only)
428 -)))
429 429  
467 +[[image:1654592790040-760.png]]
430 430  
431 431  
432 -=== 2.6.2  US902-928(US915) ===
470 +[[image:1654592800389-571.png]]
433 433  
434 -(((
435 -Used in USA, Canada and South America. Default use CHE=2
436 436  
437 -(% style="color:blue" %)**Uplink:**
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
438 438  
439 -903.9 - SF7BW125 to SF10BW125
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
440 440  
441 -904.1 - SF7BW125 to SF10BW125
477 +[[image:1654851029373-510.png]]
442 442  
443 -904.3 - SF7BW125 to SF10BW125
444 444  
445 -904.5 - SF7BW125 to SF10BW125
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
446 446  
447 -904.7 - SF7BW125 to SF10BW125
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
448 448  
449 -904.9 - SF7BW125 to SF10BW125
450 450  
451 -905.1 - SF7BW125 to SF10BW125
452 452  
453 -905.3 - SF7BW125 to SF10BW125
486 +== 2.6  LED Indicator ==
454 454  
488 +The LDDS20 has an internal LED which is to show the status of different state.
455 455  
456 -(% style="color:blue" %)**Downlink:**
457 457  
458 -923.3 - SF7BW500 to SF12BW500
491 +* Blink once when device power on.
492 +* The device detects the sensor and flashes 5 times.
493 +* Solid ON for 5 seconds once device successful Join the network.
494 +* Blink once when device transmit a packet.
459 459  
460 -923.9 - SF7BW500 to SF12BW500
461 461  
462 -924.5 - SF7BW500 to SF12BW500
463 463  
464 -925.1 - SF7BW500 to SF12BW500
498 +== 2. Firmware Change Log ==
465 465  
466 -925.7 - SF7BW500 to SF12BW500
467 467  
468 -926.3 - SF7BW500 to SF12BW500
469 -
470 -926.9 - SF7BW500 to SF12BW500
471 -
472 -927.5 - SF7BW500 to SF12BW500
473 -
474 -923.3 - SF12BW500(RX2 downlink only)
475 -
476 -
477 -
478 -)))
479 -
480 -=== 2.6.3  CN470-510 (CN470) ===
481 -
482 482  (((
483 -Used in China, Default use CHE=1
502 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
484 484  )))
485 485  
486 486  (((
487 -(% style="color:blue" %)**Uplink:**
488 -)))
489 -
490 -(((
491 -486.3 - SF7BW125 to SF12BW125
492 -)))
493 -
494 -(((
495 -486.5 - SF7BW125 to SF12BW125
496 -)))
497 -
498 -(((
499 -486.7 - SF7BW125 to SF12BW125
500 -)))
501 -
502 -(((
503 -486.9 - SF7BW125 to SF12BW125
504 -)))
505 -
506 -(((
507 -487.1 - SF7BW125 to SF12BW125
508 -)))
509 -
510 -(((
511 -487.3 - SF7BW125 to SF12BW125
512 -)))
513 -
514 -(((
515 -487.5 - SF7BW125 to SF12BW125
516 -)))
517 -
518 -(((
519 -487.7 - SF7BW125 to SF12BW125
520 -)))
521 -
522 -(((
523 523  
524 524  )))
525 525  
526 526  (((
527 -(% style="color:blue" %)**Downlink:**
510 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
528 528  )))
529 529  
530 -(((
531 -506.7 - SF7BW125 to SF12BW125
532 -)))
533 533  
534 -(((
535 -506.9 - SF7BW125 to SF12BW125
536 -)))
537 537  
538 -(((
539 -507.1 - SF7BW125 to SF12BW125
540 -)))
541 -
542 -(((
543 -507.3 - SF7BW125 to SF12BW125
544 -)))
545 -
546 -(((
547 -507.5 - SF7BW125 to SF12BW125
548 -)))
549 -
550 -(((
551 -507.7 - SF7BW125 to SF12BW125
552 -)))
553 -
554 -(((
555 -507.9 - SF7BW125 to SF12BW125
556 -)))
557 -
558 -(((
559 -508.1 - SF7BW125 to SF12BW125
560 -)))
561 -
562 -(((
563 -505.3 - SF12BW125 (RX2 downlink only)
564 -)))
565 -
566 -
567 -
568 -=== 2.6.4  AU915-928(AU915) ===
569 -
570 -(((
571 -Default use CHE=2
572 -
573 -(% style="color:blue" %)**Uplink:**
574 -
575 -916.8 - SF7BW125 to SF12BW125
576 -
577 -917.0 - SF7BW125 to SF12BW125
578 -
579 -917.2 - SF7BW125 to SF12BW125
580 -
581 -917.4 - SF7BW125 to SF12BW125
582 -
583 -917.6 - SF7BW125 to SF12BW125
584 -
585 -917.8 - SF7BW125 to SF12BW125
586 -
587 -918.0 - SF7BW125 to SF12BW125
588 -
589 -918.2 - SF7BW125 to SF12BW125
590 -
591 -
592 -(% style="color:blue" %)**Downlink:**
593 -
594 -923.3 - SF7BW500 to SF12BW500
595 -
596 -923.9 - SF7BW500 to SF12BW500
597 -
598 -924.5 - SF7BW500 to SF12BW500
599 -
600 -925.1 - SF7BW500 to SF12BW500
601 -
602 -925.7 - SF7BW500 to SF12BW500
603 -
604 -926.3 - SF7BW500 to SF12BW500
605 -
606 -926.9 - SF7BW500 to SF12BW500
607 -
608 -927.5 - SF7BW500 to SF12BW500
609 -
610 -923.3 - SF12BW500(RX2 downlink only)
611 -
612 -
613 -
614 -)))
615 -
616 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
617 -
618 -(((
619 -(% style="color:blue" %)**Default Uplink channel:**
620 -)))
621 -
622 -(((
623 -923.2 - SF7BW125 to SF10BW125
624 -)))
625 -
626 -(((
627 -923.4 - SF7BW125 to SF10BW125
628 -)))
629 -
630 -(((
631 -
632 -)))
633 -
634 -(((
635 -(% style="color:blue" %)**Additional Uplink Channel**:
636 -)))
637 -
638 -(((
639 -(OTAA mode, channel added by JoinAccept message)
640 -)))
641 -
642 -(((
643 -
644 -)))
645 -
646 -(((
647 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
648 -)))
649 -
650 -(((
651 -922.2 - SF7BW125 to SF10BW125
652 -)))
653 -
654 -(((
655 -922.4 - SF7BW125 to SF10BW125
656 -)))
657 -
658 -(((
659 -922.6 - SF7BW125 to SF10BW125
660 -)))
661 -
662 -(((
663 -922.8 - SF7BW125 to SF10BW125
664 -)))
665 -
666 -(((
667 -923.0 - SF7BW125 to SF10BW125
668 -)))
669 -
670 -(((
671 -922.0 - SF7BW125 to SF10BW125
672 -)))
673 -
674 -(((
675 -
676 -)))
677 -
678 -(((
679 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
680 -)))
681 -
682 -(((
683 -923.6 - SF7BW125 to SF10BW125
684 -)))
685 -
686 -(((
687 -923.8 - SF7BW125 to SF10BW125
688 -)))
689 -
690 -(((
691 -924.0 - SF7BW125 to SF10BW125
692 -)))
693 -
694 -(((
695 -924.2 - SF7BW125 to SF10BW125
696 -)))
697 -
698 -(((
699 -924.4 - SF7BW125 to SF10BW125
700 -)))
701 -
702 -(((
703 -924.6 - SF7BW125 to SF10BW125
704 -)))
705 -
706 -(((
707 -
708 -)))
709 -
710 -(((
711 -(% style="color:blue" %)**Downlink:**
712 -)))
713 -
714 -(((
715 -Uplink channels 1-8 (RX1)
716 -)))
717 -
718 -(((
719 -923.2 - SF10BW125 (RX2)
720 -)))
721 -
722 -
723 -
724 -=== 2.6.6  KR920-923 (KR920) ===
725 -
726 -(((
727 -(% style="color:blue" %)**Default channel:**
728 -)))
729 -
730 -(((
731 -922.1 - SF7BW125 to SF12BW125
732 -)))
733 -
734 -(((
735 -922.3 - SF7BW125 to SF12BW125
736 -)))
737 -
738 -(((
739 -922.5 - SF7BW125 to SF12BW125
740 -)))
741 -
742 -(((
743 -
744 -)))
745 -
746 -(((
747 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
748 -)))
749 -
750 -(((
751 -922.1 - SF7BW125 to SF12BW125
752 -)))
753 -
754 -(((
755 -922.3 - SF7BW125 to SF12BW125
756 -)))
757 -
758 -(((
759 -922.5 - SF7BW125 to SF12BW125
760 -)))
761 -
762 -(((
763 -922.7 - SF7BW125 to SF12BW125
764 -)))
765 -
766 -(((
767 -922.9 - SF7BW125 to SF12BW125
768 -)))
769 -
770 -(((
771 -923.1 - SF7BW125 to SF12BW125
772 -)))
773 -
774 -(((
775 -923.3 - SF7BW125 to SF12BW125
776 -)))
777 -
778 -(((
779 -
780 -)))
781 -
782 -(((
783 -(% style="color:blue" %)**Downlink:**
784 -)))
785 -
786 -(((
787 -Uplink channels 1-7(RX1)
788 -)))
789 -
790 -(((
791 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
792 -)))
793 -
794 -
795 -
796 -=== 2.6.7  IN865-867 (IN865) ===
797 -
798 -(((
799 -(% style="color:blue" %)**Uplink:**
800 -)))
801 -
802 -(((
803 -865.0625 - SF7BW125 to SF12BW125
804 -)))
805 -
806 -(((
807 -865.4025 - SF7BW125 to SF12BW125
808 -)))
809 -
810 -(((
811 -865.9850 - SF7BW125 to SF12BW125
812 -)))
813 -
814 -(((
815 -
816 -)))
817 -
818 -(((
819 -(% style="color:blue" %)**Downlink:**
820 -)))
821 -
822 -(((
823 -Uplink channels 1-3 (RX1)
824 -)))
825 -
826 -(((
827 -866.550 - SF10BW125 (RX2)
828 -)))
829 -
830 -
831 -
832 -== 2.7  LED Indicator ==
833 -
834 -The LDDS75 has an internal LED which is to show the status of different state.
835 -
836 -
837 -* Blink once when device power on.
838 -* The device detects the sensor and flashes 5 times.
839 -* Solid ON for 5 seconds once device successful Join the network.
840 -* Blink once when device transmit a packet.
841 -
842 -== 2.8  ​Firmware Change Log ==
843 -
844 -
845 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
846 -
847 -
848 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
849 -
850 -
851 -
852 852  == 2.9  Mechanical ==
853 853  
854 854  
... ... @@ -989,7 +989,9 @@
989 989  [[image:image-20220610172924-5.png]]
990 990  
991 991  
655 +(((
992 992  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
657 +)))
993 993  
994 994  
995 995   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -1013,16 +1013,19 @@
1013 1013  (((
1014 1014  Format: Command Code (0x01) followed by 3 bytes time value.
1015 1015  
681 +(((
1016 1016  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
683 +)))
1017 1017  
1018 1018  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1019 1019  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1020 1020  )))
688 +)))
1021 1021  
1022 1022  
1023 -
1024 -)))
1025 1025  
692 +
693 +
1026 1026  == 3.3  Set Interrupt Mode ==
1027 1027  
1028 1028  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1036,7 +1036,9 @@
1036 1036  
1037 1037  Format: Command Code (0x06) followed by 3 bytes.
1038 1038  
707 +(((
1039 1039  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
709 +)))
1040 1040  
1041 1041  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1042 1042  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content