Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.39
edited by Xiaoling
on 2022/06/11 09:14
Change comment: There is no comment for this version
To version 173.6
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,9 +12,11 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
... ... @@ -21,7 +21,8 @@
21 21  
22 22  (((
23 23  (((
24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
25 25  )))
26 26  
27 27  (((
... ... @@ -29,7 +29,7 @@
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
41 41  )))
42 42  
43 43  (((
... ... @@ -45,7 +45,7 @@
45 45  )))
46 46  
47 47  (((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 49  )))
50 50  
51 51  (((
... ... @@ -53,7 +53,7 @@
53 53  )))
54 54  
55 55  (((
56 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
57 57  )))
58 58  
59 59  (((
... ... @@ -61,13 +61,24 @@
61 61  )))
62 62  
63 63  (((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
64 64  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 65  )))
66 66  )))
67 67  )))
80 +)))
68 68  
69 69  
70 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
71 71  
72 72  
73 73  
... ... @@ -75,9 +75,10 @@
75 75  
76 76  * LoRaWAN 1.0.3 Class A
77 77  * Ultra low power consumption
78 -* Distance Detection by Ultrasonic technology
79 -* Flat object range 280mm - 7500mm
80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
81 81  * Cable Length : 25cm
82 82  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
83 83  * AT Commands to change parameters
... ... @@ -84,71 +84,130 @@
84 84  * Uplink on periodically
85 85  * Downlink to change configure
86 86  * IP66 Waterproof Enclosure
87 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
88 88  
103 +== 1.3  Suitable Container & Liquid ==
89 89  
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
90 90  
91 -== 1.3  Specification ==
112 +== 1.4  Mechanical ==
92 92  
93 -=== 1.3.1  Rated environmental conditions ===
114 +[[image:image-20220615090910-1.png]]
94 94  
95 -[[image:image-20220610154839-1.png]]
96 96  
97 -(((
98 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
99 -)))
117 +[[image:image-20220615090910-2.png]]
100 100  
101 101  
102 102  
103 -=== 1.3.2  Effective measurement range Reference beam pattern ===
121 +== 1.5  Install LDDS20 ==
104 104  
105 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
106 106  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
107 107  
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 108  
109 -[[image:1654852253176-749.png]]
128 +[[image:image-20220615091045-3.png]]
110 110  
111 111  
112 112  
113 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
114 114  
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
115 115  
116 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
136 +[[image:image-20220615092010-11.png]]
117 117  
118 118  
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
119 119  
120 -== 1.5 ​ Applications ==
141 +[[image:image-20220615092044-12.png]]
121 121  
122 -* Horizontal distance measurement
123 -* Liquid level measurement
124 -* Parking management system
125 -* Object proximity and presence detection
126 -* Intelligent trash can management system
127 -* Robot obstacle avoidance
128 -* Automatic control
129 -* Sewer
130 -* Bottom water level monitoring
131 131  
132 132  
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
133 133  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 134  
135 -== 1.6  Pin mapping and power on ==
136 136  
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
137 137  
138 -[[image:1654847583902-256.png]]
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
139 139  
140 140  
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
141 141  
142 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
143 143  
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
144 144  == 2.1  How it works ==
145 145  
146 146  (((
147 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
148 148  )))
149 149  
150 150  (((
151 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
152 152  )))
153 153  
154 154  
... ... @@ -160,7 +160,7 @@
160 160  )))
161 161  
162 162  (((
163 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
164 164  )))
165 165  
166 166  (((
... ... @@ -168,21 +168,31 @@
168 168  )))
169 169  
170 170  (((
171 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
244 +
245 +
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
172 172  )))
173 173  
174 174  (((
175 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
176 176  )))
177 177  
178 178  [[image:image-20220607170145-1.jpeg]]
179 179  
180 180  
256 +(((
181 181  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
258 +)))
182 182  
260 +(((
183 183  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
262 +)))
184 184  
264 +(((
265 +
266 +
185 185  **Add APP EUI in the application**
268 +)))
186 186  
187 187  [[image:image-20220610161353-4.png]]
188 188  
... ... @@ -194,6 +194,7 @@
194 194  [[image:image-20220610161353-7.png]]
195 195  
196 196  
280 +
197 197  You can also choose to create the device manually.
198 198  
199 199   [[image:image-20220610161538-8.png]]
... ... @@ -206,16 +206,17 @@
206 206  
207 207  
208 208  
209 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
210 210  
211 211  
212 212  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
213 213  
214 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
215 215  
216 216  
301 +
217 217  (((
218 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
219 219  )))
220 220  
221 221  [[image:1654849068701-275.png]]
... ... @@ -225,11 +225,13 @@
225 225  == 2.3  ​Uplink Payload ==
226 226  
227 227  (((
228 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
313 +(((
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
229 229  
230 -Uplink payload includes in total 4 bytes.
231 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
232 232  )))
319 +)))
233 233  
234 234  (((
235 235  
... ... @@ -254,7 +254,7 @@
254 254  === 2.3.1  Battery Info ===
255 255  
256 256  
257 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
258 258  
259 259  Ex1: 0x0B45 = 2885mV
260 260  
... ... @@ -264,17 +264,20 @@
264 264  
265 265  === 2.3.2  Distance ===
266 266  
267 -Get the distance. Flat object range 280mm - 7500mm.
354 +(((
355 +Get the distance. Flat object range 20mm - 2000mm.
356 +)))
268 268  
269 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
358 +(((
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 +)))
270 270  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
271 271  
272 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
273 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
274 -
275 275  === 2.3.3  Interrupt Pin ===
276 276  
277 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
278 278  
279 279  **Example:**
280 280  
... ... @@ -300,9 +300,13 @@
300 300  
301 301  === 2.3.5  Sensor Flag ===
302 302  
393 +(((
303 303  0x01: Detect Ultrasonic Sensor
395 +)))
304 304  
397 +(((
305 305  0x00: No Ultrasonic Sensor
399 +)))
306 306  
307 307  
308 308  
... ... @@ -315,542 +315,109 @@
315 315  
316 316  The payload decoder function for TTN V3 is here:
317 317  
318 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
319 -
320 -
321 -
322 -== 2.4  Uplink Interval ==
323 -
324 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
325 -
326 -
327 -
328 -== 2.5  ​Show Data in DataCake IoT Server ==
329 -
330 330  (((
331 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
332 332  )))
333 333  
334 -(((
335 -
336 -)))
337 337  
338 -(((
339 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
340 -)))
341 341  
342 -(((
343 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
344 -)))
418 +== 2.4  Downlink Payload ==
345 345  
420 +By default, LDDS20 prints the downlink payload to console port.
346 346  
347 -[[image:1654592790040-760.png]]
422 +[[image:image-20220615100930-15.png]]
348 348  
349 349  
350 -[[image:1654592800389-571.png]]
425 +**Examples:**
351 351  
352 352  
353 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
428 +* (% style="color:blue" %)**Set TDC**
354 354  
355 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
356 356  
357 -[[image:1654851029373-510.png]]
432 +Payload:    01 00 00 1E    TDC=30S
358 358  
434 +Payload:    01 00 00 3C    TDC=60S
359 359  
360 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
361 361  
362 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
437 +* (% style="color:blue" %)**Reset**
363 363  
439 +If payload = 0x04FF, it will reset the LDDS20
364 364  
365 365  
366 -== 2.6  Frequency Plans ==
442 +* (% style="color:blue" %)**CFM**
367 367  
368 -(((
369 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
370 -)))
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
371 371  
372 372  
373 373  
374 -=== 2.6.1  EU863-870 (EU868) ===
448 +== 2.5  ​Show Data in DataCake IoT Server ==
375 375  
376 376  (((
377 -(% style="color:blue" %)**Uplink:**
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
378 378  )))
379 379  
380 380  (((
381 -868.1 - SF7BW125 to SF12BW125
382 -)))
383 -
384 -(((
385 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
386 -)))
387 -
388 -(((
389 -868.5 - SF7BW125 to SF12BW125
390 -)))
391 -
392 -(((
393 -867.1 - SF7BW125 to SF12BW125
394 -)))
395 -
396 -(((
397 -867.3 - SF7BW125 to SF12BW125
398 -)))
399 -
400 -(((
401 -867.5 - SF7BW125 to SF12BW125
402 -)))
403 -
404 -(((
405 -867.7 - SF7BW125 to SF12BW125
406 -)))
407 -
408 -(((
409 -867.9 - SF7BW125 to SF12BW125
410 -)))
411 -
412 -(((
413 -868.8 - FSK
414 -)))
415 -
416 -(((
417 417  
418 418  )))
419 419  
420 420  (((
421 -(% style="color:blue" %)**Downlink:**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
422 422  )))
423 423  
424 424  (((
425 -Uplink channels 1-9 (RX1)
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
426 426  )))
427 427  
428 -(((
429 -869.525 - SF9BW125 (RX2 downlink only)
430 -)))
431 431  
467 +[[image:1654592790040-760.png]]
432 432  
433 433  
434 -=== 2.6.2  US902-928(US915) ===
470 +[[image:1654592800389-571.png]]
435 435  
436 -(((
437 -Used in USA, Canada and South America. Default use CHE=2
438 438  
439 -(% style="color:blue" %)**Uplink:**
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
440 440  
441 -903.9 - SF7BW125 to SF10BW125
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
442 442  
443 -904.1 - SF7BW125 to SF10BW125
477 +[[image:1654851029373-510.png]]
444 444  
445 -904.3 - SF7BW125 to SF10BW125
446 446  
447 -904.5 - SF7BW125 to SF10BW125
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
448 448  
449 -904.7 - SF7BW125 to SF10BW125
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
450 450  
451 -904.9 - SF7BW125 to SF10BW125
452 452  
453 -905.1 - SF7BW125 to SF10BW125
454 454  
455 -905.3 - SF7BW125 to SF10BW125
486 +== 2.6  LED Indicator ==
456 456  
488 +The LDDS20 has an internal LED which is to show the status of different state.
457 457  
458 -(% style="color:blue" %)**Downlink:**
459 459  
460 -923.3 - SF7BW500 to SF12BW500
491 +* Blink once when device power on.
492 +* The device detects the sensor and flashes 5 times.
493 +* Solid ON for 5 seconds once device successful Join the network.
494 +* Blink once when device transmit a packet.
461 461  
462 -923.9 - SF7BW500 to SF12BW500
463 463  
464 -924.5 - SF7BW500 to SF12BW500
465 465  
466 -925.1 - SF7BW500 to SF12BW500
498 +== 2. Firmware Change Log ==
467 467  
468 -925.7 - SF7BW500 to SF12BW500
469 469  
470 -926.3 - SF7BW500 to SF12BW500
471 -
472 -926.9 - SF7BW500 to SF12BW500
473 -
474 -927.5 - SF7BW500 to SF12BW500
475 -
476 -923.3 - SF12BW500(RX2 downlink only)
477 -
478 -
479 -
480 -)))
481 -
482 -=== 2.6.3  CN470-510 (CN470) ===
483 -
484 484  (((
485 -Used in China, Default use CHE=1
502 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
486 486  )))
487 487  
488 488  (((
489 -(% style="color:blue" %)**Uplink:**
490 -)))
491 -
492 -(((
493 -486.3 - SF7BW125 to SF12BW125
494 -)))
495 -
496 -(((
497 -486.5 - SF7BW125 to SF12BW125
498 -)))
499 -
500 -(((
501 -486.7 - SF7BW125 to SF12BW125
502 -)))
503 -
504 -(((
505 -486.9 - SF7BW125 to SF12BW125
506 -)))
507 -
508 -(((
509 -487.1 - SF7BW125 to SF12BW125
510 -)))
511 -
512 -(((
513 -487.3 - SF7BW125 to SF12BW125
514 -)))
515 -
516 -(((
517 -487.5 - SF7BW125 to SF12BW125
518 -)))
519 -
520 -(((
521 -487.7 - SF7BW125 to SF12BW125
522 -)))
523 -
524 -(((
525 525  
526 526  )))
527 527  
528 528  (((
529 -(% style="color:blue" %)**Downlink:**
510 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
530 530  )))
531 531  
532 -(((
533 -506.7 - SF7BW125 to SF12BW125
534 -)))
535 535  
536 -(((
537 -506.9 - SF7BW125 to SF12BW125
538 -)))
539 539  
540 -(((
541 -507.1 - SF7BW125 to SF12BW125
542 -)))
543 -
544 -(((
545 -507.3 - SF7BW125 to SF12BW125
546 -)))
547 -
548 -(((
549 -507.5 - SF7BW125 to SF12BW125
550 -)))
551 -
552 -(((
553 -507.7 - SF7BW125 to SF12BW125
554 -)))
555 -
556 -(((
557 -507.9 - SF7BW125 to SF12BW125
558 -)))
559 -
560 -(((
561 -508.1 - SF7BW125 to SF12BW125
562 -)))
563 -
564 -(((
565 -505.3 - SF12BW125 (RX2 downlink only)
566 -)))
567 -
568 -
569 -
570 -=== 2.6.4  AU915-928(AU915) ===
571 -
572 -(((
573 -Default use CHE=2
574 -
575 -(% style="color:blue" %)**Uplink:**
576 -
577 -916.8 - SF7BW125 to SF12BW125
578 -
579 -917.0 - SF7BW125 to SF12BW125
580 -
581 -917.2 - SF7BW125 to SF12BW125
582 -
583 -917.4 - SF7BW125 to SF12BW125
584 -
585 -917.6 - SF7BW125 to SF12BW125
586 -
587 -917.8 - SF7BW125 to SF12BW125
588 -
589 -918.0 - SF7BW125 to SF12BW125
590 -
591 -918.2 - SF7BW125 to SF12BW125
592 -
593 -
594 -(% style="color:blue" %)**Downlink:**
595 -
596 -923.3 - SF7BW500 to SF12BW500
597 -
598 -923.9 - SF7BW500 to SF12BW500
599 -
600 -924.5 - SF7BW500 to SF12BW500
601 -
602 -925.1 - SF7BW500 to SF12BW500
603 -
604 -925.7 - SF7BW500 to SF12BW500
605 -
606 -926.3 - SF7BW500 to SF12BW500
607 -
608 -926.9 - SF7BW500 to SF12BW500
609 -
610 -927.5 - SF7BW500 to SF12BW500
611 -
612 -923.3 - SF12BW500(RX2 downlink only)
613 -
614 -
615 -
616 -)))
617 -
618 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
619 -
620 -(((
621 -(% style="color:blue" %)**Default Uplink channel:**
622 -)))
623 -
624 -(((
625 -923.2 - SF7BW125 to SF10BW125
626 -)))
627 -
628 -(((
629 -923.4 - SF7BW125 to SF10BW125
630 -)))
631 -
632 -(((
633 -
634 -)))
635 -
636 -(((
637 -(% style="color:blue" %)**Additional Uplink Channel**:
638 -)))
639 -
640 -(((
641 -(OTAA mode, channel added by JoinAccept message)
642 -)))
643 -
644 -(((
645 -
646 -)))
647 -
648 -(((
649 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
650 -)))
651 -
652 -(((
653 -922.2 - SF7BW125 to SF10BW125
654 -)))
655 -
656 -(((
657 -922.4 - SF7BW125 to SF10BW125
658 -)))
659 -
660 -(((
661 -922.6 - SF7BW125 to SF10BW125
662 -)))
663 -
664 -(((
665 -922.8 - SF7BW125 to SF10BW125
666 -)))
667 -
668 -(((
669 -923.0 - SF7BW125 to SF10BW125
670 -)))
671 -
672 -(((
673 -922.0 - SF7BW125 to SF10BW125
674 -)))
675 -
676 -(((
677 -
678 -)))
679 -
680 -(((
681 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
682 -)))
683 -
684 -(((
685 -923.6 - SF7BW125 to SF10BW125
686 -)))
687 -
688 -(((
689 -923.8 - SF7BW125 to SF10BW125
690 -)))
691 -
692 -(((
693 -924.0 - SF7BW125 to SF10BW125
694 -)))
695 -
696 -(((
697 -924.2 - SF7BW125 to SF10BW125
698 -)))
699 -
700 -(((
701 -924.4 - SF7BW125 to SF10BW125
702 -)))
703 -
704 -(((
705 -924.6 - SF7BW125 to SF10BW125
706 -)))
707 -
708 -(((
709 -
710 -)))
711 -
712 -(((
713 -(% style="color:blue" %)**Downlink:**
714 -)))
715 -
716 -(((
717 -Uplink channels 1-8 (RX1)
718 -)))
719 -
720 -(((
721 -923.2 - SF10BW125 (RX2)
722 -)))
723 -
724 -
725 -
726 -=== 2.6.6  KR920-923 (KR920) ===
727 -
728 -(((
729 -(% style="color:blue" %)**Default channel:**
730 -)))
731 -
732 -(((
733 -922.1 - SF7BW125 to SF12BW125
734 -)))
735 -
736 -(((
737 -922.3 - SF7BW125 to SF12BW125
738 -)))
739 -
740 -(((
741 -922.5 - SF7BW125 to SF12BW125
742 -)))
743 -
744 -(((
745 -
746 -)))
747 -
748 -(((
749 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
750 -)))
751 -
752 -(((
753 -922.1 - SF7BW125 to SF12BW125
754 -)))
755 -
756 -(((
757 -922.3 - SF7BW125 to SF12BW125
758 -)))
759 -
760 -(((
761 -922.5 - SF7BW125 to SF12BW125
762 -)))
763 -
764 -(((
765 -922.7 - SF7BW125 to SF12BW125
766 -)))
767 -
768 -(((
769 -922.9 - SF7BW125 to SF12BW125
770 -)))
771 -
772 -(((
773 -923.1 - SF7BW125 to SF12BW125
774 -)))
775 -
776 -(((
777 -923.3 - SF7BW125 to SF12BW125
778 -)))
779 -
780 -(((
781 -
782 -)))
783 -
784 -(((
785 -(% style="color:blue" %)**Downlink:**
786 -)))
787 -
788 -(((
789 -Uplink channels 1-7(RX1)
790 -)))
791 -
792 -(((
793 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
794 -)))
795 -
796 -
797 -
798 -=== 2.6.7  IN865-867 (IN865) ===
799 -
800 -(((
801 -(% style="color:blue" %)**Uplink:**
802 -)))
803 -
804 -(((
805 -865.0625 - SF7BW125 to SF12BW125
806 -)))
807 -
808 -(((
809 -865.4025 - SF7BW125 to SF12BW125
810 -)))
811 -
812 -(((
813 -865.9850 - SF7BW125 to SF12BW125
814 -)))
815 -
816 -(((
817 -
818 -)))
819 -
820 -(((
821 -(% style="color:blue" %)**Downlink:**
822 -)))
823 -
824 -(((
825 -Uplink channels 1-3 (RX1)
826 -)))
827 -
828 -(((
829 -866.550 - SF10BW125 (RX2)
830 -)))
831 -
832 -
833 -
834 -== 2.7  LED Indicator ==
835 -
836 -The LDDS75 has an internal LED which is to show the status of different state.
837 -
838 -
839 -* Blink once when device power on.
840 -* The device detects the sensor and flashes 5 times.
841 -* Solid ON for 5 seconds once device successful Join the network.
842 -* Blink once when device transmit a packet.
843 -
844 -== 2.8  ​Firmware Change Log ==
845 -
846 -
847 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
848 -
849 -
850 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
851 -
852 -
853 -
854 854  == 2.9  Mechanical ==
855 855  
856 856  
... ... @@ -991,7 +991,9 @@
991 991  [[image:image-20220610172924-5.png]]
992 992  
993 993  
655 +(((
994 994  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
657 +)))
995 995  
996 996  
997 997   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -1015,16 +1015,19 @@
1015 1015  (((
1016 1016  Format: Command Code (0x01) followed by 3 bytes time value.
1017 1017  
681 +(((
1018 1018  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
683 +)))
1019 1019  
1020 1020  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1021 1021  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1022 1022  )))
688 +)))
1023 1023  
1024 1024  
1025 -
1026 -)))
1027 1027  
692 +
693 +
1028 1028  == 3.3  Set Interrupt Mode ==
1029 1029  
1030 1030  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1038,12 +1038,13 @@
1038 1038  
1039 1039  Format: Command Code (0x06) followed by 3 bytes.
1040 1040  
707 +(((
1041 1041  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
709 +)))
1042 1042  
1043 1043  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1044 1044  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1045 1045  
1046 -
1047 1047  = 4.  FAQ =
1048 1048  
1049 1049  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1103,7 +1103,6 @@
1103 1103  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1104 1104  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1105 1105  
1106 -
1107 1107  = 7. ​ Packing Info =
1108 1108  
1109 1109  
... ... @@ -1118,7 +1118,6 @@
1118 1118  * Package Size / pcs : cm
1119 1119  * Weight / pcs : g
1120 1120  
1121 -
1122 1122  = 8.  ​Support =
1123 1123  
1124 1124  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content