Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.38
edited by Xiaoling
on 2022/06/11 09:13
Change comment: There is no comment for this version
To version 173.6
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,9 +12,11 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
... ... @@ -21,7 +21,8 @@
21 21  
22 22  (((
23 23  (((
24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
25 25  )))
26 26  
27 27  (((
... ... @@ -29,7 +29,7 @@
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
41 41  )))
42 42  
43 43  (((
... ... @@ -45,7 +45,7 @@
45 45  )))
46 46  
47 47  (((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 49  )))
50 50  
51 51  (((
... ... @@ -53,7 +53,7 @@
53 53  )))
54 54  
55 55  (((
56 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
57 57  )))
58 58  
59 59  (((
... ... @@ -61,13 +61,24 @@
61 61  )))
62 62  
63 63  (((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
64 64  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 65  )))
66 66  )))
67 67  )))
80 +)))
68 68  
69 69  
70 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
71 71  
72 72  
73 73  
... ... @@ -75,9 +75,10 @@
75 75  
76 76  * LoRaWAN 1.0.3 Class A
77 77  * Ultra low power consumption
78 -* Distance Detection by Ultrasonic technology
79 -* Flat object range 280mm - 7500mm
80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
81 81  * Cable Length : 25cm
82 82  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
83 83  * AT Commands to change parameters
... ... @@ -84,767 +84,417 @@
84 84  * Uplink on periodically
85 85  * Downlink to change configure
86 86  * IP66 Waterproof Enclosure
87 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
88 88  
103 +== 1.3  Suitable Container & Liquid ==
89 89  
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
90 90  
91 -== 1.3  Specification ==
112 +== 1.4  Mechanical ==
92 92  
93 -=== 1.3.1  Rated environmental conditions ===
114 +[[image:image-20220615090910-1.png]]
94 94  
95 -[[image:image-20220610154839-1.png]]
96 96  
97 -(((
98 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
99 -)))
117 +[[image:image-20220615090910-2.png]]
100 100  
101 101  
102 102  
103 -=== 1.3.2  Effective measurement range Reference beam pattern ===
121 +== 1.5  Install LDDS20 ==
104 104  
105 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
106 106  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
107 107  
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 108  
109 -[[image:1654852253176-749.png]]
128 +[[image:image-20220615091045-3.png]]
110 110  
111 111  
112 112  
113 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
114 114  
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
115 115  
116 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
136 +[[image:image-20220615092010-11.png]]
117 117  
118 118  
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
119 119  
120 -== 1.5 ​ Applications ==
141 +[[image:image-20220615092044-12.png]]
121 121  
122 -* Horizontal distance measurement
123 -* Liquid level measurement
124 -* Parking management system
125 -* Object proximity and presence detection
126 -* Intelligent trash can management system
127 -* Robot obstacle avoidance
128 -* Automatic control
129 -* Sewer
130 -* Bottom water level monitoring
131 131  
132 -== 1.6  Pin mapping and power on ==
133 133  
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
134 134  
135 -[[image:1654847583902-256.png]]
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
136 136  
137 137  
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
138 138  
139 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
140 140  
141 -== 2.1  How it works ==
142 142  
143 -(((
144 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
145 -)))
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
146 146  
147 -(((
148 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
149 -)))
150 150  
158 +(% style="color:red" %)**LED Status:**
151 151  
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
152 152  
153 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
154 154  
155 -(((
156 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
157 -)))
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
158 158  
159 -(((
160 -[[image:1654848616367-242.png]]
161 -)))
162 162  
163 -(((
164 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
165 -)))
168 +(% style="color:red" %)**Note 2:**
166 166  
167 -(((
168 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
169 -)))
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
170 170  
171 -(((
172 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
173 -)))
174 174  
175 -[[image:image-20220607170145-1.jpeg]]
176 176  
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
177 177  
178 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
176 +Prepare Eproxy AB glue.
179 179  
180 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
181 181  
182 -**Add APP EUI in the application**
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
183 183  
184 -[[image:image-20220610161353-4.png]]
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
185 185  
186 -[[image:image-20220610161353-5.png]]
187 187  
188 -[[image:image-20220610161353-6.png]]
185 +(% style="color:red" %)**Note 1:**
189 189  
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
190 190  
191 -[[image:image-20220610161353-7.png]]
192 192  
190 +(% style="color:red" %)**Note 2:**
193 193  
194 -You can also choose to create the device manually.
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
195 195  
196 - [[image:image-20220610161538-8.png]]
197 197  
198 198  
196 +== 1.6 ​ Applications ==
199 199  
200 -**Add APP KEY and DEV EUI**
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
201 201  
202 -[[image:image-20220610161538-9.png]]
201 +== 1.7  Precautions ==
203 203  
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
204 204  
207 +== 1.8  Pin mapping and power on ==
205 205  
206 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
207 207  
210 +[[image:1655257026882-201.png]]
208 208  
209 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
210 210  
211 -[[image:image-20220610161724-10.png]]
212 212  
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
213 213  
214 -(((
215 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
216 -)))
217 217  
218 -[[image:1654849068701-275.png]]
217 +== 2.1  How it works ==
219 219  
220 -
221 -
222 -== 2.3  ​Uplink Payload ==
223 -
224 224  (((
225 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
226 -
227 -Uplink payload includes in total 4 bytes.
228 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
229 229  )))
230 230  
231 231  (((
232 -
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
233 233  )))
234 234  
235 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
236 -|=(% style="width: 62.5px;" %)(((
237 -**Size (bytes)**
238 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
239 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
240 -[[Distance>>||anchor="H2.3.2A0Distance"]]
241 241  
242 -(unit: mm)
243 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
244 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
245 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
246 246  
247 -[[image:1654850511545-399.png]]
229 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
248 248  
249 -
250 -
251 -=== 2.3.1  Battery Info ===
252 -
253 -
254 -Check the battery voltage for LDDS75.
255 -
256 -Ex1: 0x0B45 = 2885mV
257 -
258 -Ex2: 0x0B49 = 2889mV
259 -
260 -
261 -
262 -=== 2.3.2  Distance ===
263 -
264 -Get the distance. Flat object range 280mm - 7500mm.
265 -
266 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
267 -
268 -
269 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
270 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
271 -
272 -=== 2.3.3  Interrupt Pin ===
273 -
274 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
275 -
276 -**Example:**
277 -
278 -0x00: Normal uplink packet.
279 -
280 -0x01: Interrupt Uplink Packet.
281 -
282 -
283 -
284 -=== 2.3.4  DS18B20 Temperature sensor ===
285 -
286 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
287 -
288 -**Example**:
289 -
290 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
291 -
292 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
293 -
294 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
295 -
296 -
297 -
298 -=== 2.3.5  Sensor Flag ===
299 -
300 -0x01: Detect Ultrasonic Sensor
301 -
302 -0x00: No Ultrasonic Sensor
303 -
304 -
305 -
306 -=== 2.3.6  Decode payload in The Things Network ===
307 -
308 -While using TTN network, you can add the payload format to decode the payload.
309 -
310 -
311 -[[image:1654850829385-439.png]]
312 -
313 -The payload decoder function for TTN V3 is here:
314 -
315 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
316 -
317 -
318 -
319 -== 2.4  Uplink Interval ==
320 -
321 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
322 -
323 -
324 -
325 -== 2.5  ​Show Data in DataCake IoT Server ==
326 -
327 327  (((
328 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
329 329  )))
330 330  
331 331  (((
332 -
236 +[[image:1655257698953-697.png]]
333 333  )))
334 334  
335 335  (((
336 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
337 337  )))
338 338  
339 339  (((
340 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
341 -)))
244 +
342 342  
343 -
344 -[[image:1654592790040-760.png]]
345 -
346 -
347 -[[image:1654592800389-571.png]]
348 -
349 -
350 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
351 -
352 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
353 -
354 -[[image:1654851029373-510.png]]
355 -
356 -
357 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
358 -
359 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
360 -
361 -
362 -
363 -== 2.6  Frequency Plans ==
364 -
365 -(((
366 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
367 367  )))
368 368  
369 -
370 -
371 -=== 2.6.1  EU863-870 (EU868) ===
372 -
373 373  (((
374 -(% style="color:blue" %)**Uplink:**
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
375 375  )))
376 376  
377 -(((
378 -868.1 - SF7BW125 to SF12BW125
379 -)))
253 +[[image:image-20220607170145-1.jpeg]]
380 380  
381 -(((
382 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
383 -)))
384 384  
385 385  (((
386 -868.5 - SF7BW125 to SF12BW125
257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
387 387  )))
388 388  
389 389  (((
390 -867.1 - SF7BW125 to SF12BW125
261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
391 391  )))
392 392  
393 393  (((
394 -867.3 - SF7BW125 to SF12BW125
395 -)))
396 -
397 -(((
398 -867.5 - SF7BW125 to SF12BW125
399 -)))
400 -
401 -(((
402 -867.7 - SF7BW125 to SF12BW125
403 -)))
404 -
405 -(((
406 -867.9 - SF7BW125 to SF12BW125
407 -)))
408 -
409 -(((
410 -868.8 - FSK
411 -)))
412 -
413 -(((
414 414  
415 -)))
416 416  
417 -(((
418 -(% style="color:blue" %)**Downlink:**
267 +**Add APP EUI in the application**
419 419  )))
420 420  
421 -(((
422 -Uplink channels 1-9 (RX1)
423 -)))
270 +[[image:image-20220610161353-4.png]]
424 424  
425 -(((
426 -869.525 - SF9BW125 (RX2 downlink only)
427 -)))
272 +[[image:image-20220610161353-5.png]]
428 428  
274 +[[image:image-20220610161353-6.png]]
429 429  
430 430  
431 -=== 2.6.2  US902-928(US915) ===
277 +[[image:image-20220610161353-7.png]]
432 432  
433 -(((
434 -Used in USA, Canada and South America. Default use CHE=2
435 435  
436 -(% style="color:blue" %)**Uplink:**
437 437  
438 -903.9 - SF7BW125 to SF10BW125
281 +You can also choose to create the device manually.
439 439  
440 -904.1 - SF7BW125 to SF10BW125
283 + [[image:image-20220610161538-8.png]]
441 441  
442 -904.3 - SF7BW125 to SF10BW125
443 443  
444 -904.5 - SF7BW125 to SF10BW125
445 445  
446 -904.7 - SF7BW125 to SF10BW125
287 +**Add APP KEY and DEV EUI**
447 447  
448 -904.9 - SF7BW125 to SF10BW125
289 +[[image:image-20220610161538-9.png]]
449 449  
450 -905.1 - SF7BW125 to SF10BW125
451 451  
452 -905.3 - SF7BW125 to SF10BW125
453 453  
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
454 454  
455 -(% style="color:blue" %)**Downlink:**
456 456  
457 -923.3 - SF7BW500 to SF12BW500
296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
458 458  
459 -923.9 - SF7BW500 to SF12BW500
298 +[[image:image-20220615095102-14.png]]
460 460  
461 -924.5 - SF7BW500 to SF12BW500
462 462  
463 -925.1 - SF7BW500 to SF12BW500
464 464  
465 -925.7 - SF7BW500 to SF12BW500
302 +(((
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304 +)))
466 466  
467 -926.3 - SF7BW500 to SF12BW500
306 +[[image:1654849068701-275.png]]
468 468  
469 -926.9 - SF7BW500 to SF12BW500
470 470  
471 -927.5 - SF7BW500 to SF12BW500
472 472  
473 -923.3 - SF12BW500(RX2 downlink only)
310 +== 2.3  ​Uplink Payload ==
474 474  
475 -
476 -
477 -)))
478 -
479 -=== 2.6.3  CN470-510 (CN470) ===
480 -
481 481  (((
482 -Used in China, Default use CHE=1
483 -)))
484 -
485 485  (((
486 -(% style="color:blue" %)**Uplink:**
487 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
488 488  
489 -(((
490 -486.3 - SF7BW125 to SF12BW125
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
491 491  )))
492 -
493 -(((
494 -486.5 - SF7BW125 to SF12BW125
495 495  )))
496 496  
497 497  (((
498 -486.7 - SF7BW125 to SF12BW125
322 +
499 499  )))
500 500  
501 -(((
502 -486.9 - SF7BW125 to SF12BW125
503 -)))
325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 +|=(% style="width: 62.5px;" %)(((
327 +**Size (bytes)**
328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 +[[Distance>>||anchor="H2.3.2A0Distance"]]
504 504  
505 -(((
506 -487.1 - SF7BW125 to SF12BW125
507 -)))
332 +(unit: mm)
333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
508 508  
509 -(((
510 -487.3 - SF7BW125 to SF12BW125
511 -)))
337 +[[image:1654850511545-399.png]]
512 512  
513 -(((
514 -487.5 - SF7BW125 to SF12BW125
515 -)))
516 516  
517 -(((
518 -487.7 - SF7BW125 to SF12BW125
519 -)))
520 520  
521 -(((
522 -
523 -)))
341 +=== 2.3.1  Battery Info ===
524 524  
525 -(((
526 -(% style="color:blue" %)**Downlink:**
527 -)))
528 528  
529 -(((
530 -506.7 - SF7BW125 to SF12BW125
531 -)))
344 +Check the battery voltage for LDDS20.
532 532  
533 -(((
534 -506.9 - SF7BW125 to SF12BW125
535 -)))
346 +Ex1: 0x0B45 = 2885mV
536 536  
537 -(((
538 -507.1 - SF7BW125 to SF12BW125
539 -)))
348 +Ex2: 0x0B49 = 2889mV
540 540  
541 -(((
542 -507.3 - SF7BW125 to SF12BW125
543 -)))
544 544  
545 -(((
546 -507.5 - SF7BW125 to SF12BW125
547 -)))
548 548  
549 -(((
550 -507.7 - SF7BW125 to SF12BW125
551 -)))
352 +=== 2.3.2  Distance ===
552 552  
553 553  (((
554 -507.9 - SF7BW125 to SF12BW125
355 +Get the distance. Flat object range 20mm - 2000mm.
555 555  )))
556 556  
557 557  (((
558 -508.1 - SF7BW125 to SF12BW125
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
559 559  )))
560 560  
561 -(((
562 -505.3 - SF12BW125 (RX2 downlink only)
563 -)))
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
564 564  
365 +=== 2.3.3  Interrupt Pin ===
565 565  
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
566 566  
567 -=== 2.6.4  AU915-928(AU915) ===
369 +**Example:**
568 568  
569 -(((
570 -Default use CHE=2
371 +0x00: Normal uplink packet.
571 571  
572 -(% style="color:blue" %)**Uplink:**
373 +0x01: Interrupt Uplink Packet.
573 573  
574 -916.8 - SF7BW125 to SF12BW125
575 575  
576 -917.0 - SF7BW125 to SF12BW125
577 577  
578 -917.2 - SF7BW125 to SF12BW125
377 +=== 2.3.4  DS18B20 Temperature sensor ===
579 579  
580 -917.4 - SF7BW125 to SF12BW125
379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
581 581  
582 -917.6 - SF7BW125 to SF12BW125
381 +**Example**:
583 583  
584 -917.8 - SF7BW125 to SF12BW125
383 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
585 585  
586 -918.0 - SF7BW125 to SF12BW125
385 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
587 587  
588 -918.2 - SF7BW125 to SF12BW125
387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
589 589  
590 590  
591 -(% style="color:blue" %)**Downlink:**
592 592  
593 -923.3 - SF7BW500 to SF12BW500
391 +=== 2.3.5  Sensor Flag ===
594 594  
595 -923.9 - SF7BW500 to SF12BW500
596 -
597 -924.5 - SF7BW500 to SF12BW500
598 -
599 -925.1 - SF7BW500 to SF12BW500
600 -
601 -925.7 - SF7BW500 to SF12BW500
602 -
603 -926.3 - SF7BW500 to SF12BW500
604 -
605 -926.9 - SF7BW500 to SF12BW500
606 -
607 -927.5 - SF7BW500 to SF12BW500
608 -
609 -923.3 - SF12BW500(RX2 downlink only)
610 -
611 -
612 -
613 -)))
614 -
615 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
616 -
617 617  (((
618 -(% style="color:blue" %)**Default Uplink channel:**
394 +0x01: Detect Ultrasonic Sensor
619 619  )))
620 620  
621 621  (((
622 -923.2 - SF7BW125 to SF10BW125
398 +0x00: No Ultrasonic Sensor
623 623  )))
624 624  
625 -(((
626 -923.4 - SF7BW125 to SF10BW125
627 -)))
628 628  
629 -(((
630 -
631 -)))
632 632  
633 -(((
634 -(% style="color:blue" %)**Additional Uplink Channel**:
635 -)))
403 +=== 2.3.6  Decode payload in The Things Network ===
636 636  
637 -(((
638 -(OTAA mode, channel added by JoinAccept message)
639 -)))
405 +While using TTN network, you can add the payload format to decode the payload.
640 640  
641 -(((
642 -
643 -)))
644 644  
645 -(((
646 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
647 -)))
408 +[[image:1654850829385-439.png]]
648 648  
649 -(((
650 -922.2 - SF7BW125 to SF10BW125
651 -)))
410 +The payload decoder function for TTN V3 is here:
652 652  
653 653  (((
654 -922.4 - SF7BW125 to SF10BW125
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
655 655  )))
656 656  
657 -(((
658 -922.6 - SF7BW125 to SF10BW125
659 -)))
660 660  
661 -(((
662 -922.8 - SF7BW125 to SF10BW125
663 -)))
664 664  
665 -(((
666 -923.0 - SF7BW125 to SF10BW125
667 -)))
418 +== 2.4  Downlink Payload ==
668 668  
669 -(((
670 -922.0 - SF7BW125 to SF10BW125
671 -)))
420 +By default, LDDS20 prints the downlink payload to console port.
672 672  
673 -(((
674 -
675 -)))
422 +[[image:image-20220615100930-15.png]]
676 676  
677 -(((
678 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
679 -)))
680 680  
681 -(((
682 -923.6 - SF7BW125 to SF10BW125
683 -)))
425 +**Examples:**
684 684  
685 -(((
686 -923.8 - SF7BW125 to SF10BW125
687 -)))
688 688  
689 -(((
690 -924.0 - SF7BW125 to SF10BW125
691 -)))
428 +* (% style="color:blue" %)**Set TDC**
692 692  
693 -(((
694 -924.2 - SF7BW125 to SF10BW125
695 -)))
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
696 696  
697 -(((
698 -924.4 - SF7BW125 to SF10BW125
699 -)))
432 +Payload:    01 00 00 1E    TDC=30S
700 700  
701 -(((
702 -924.6 - SF7BW125 to SF10BW125
703 -)))
434 +Payload:    01 00 00 3C    TDC=60S
704 704  
705 -(((
706 -
707 -)))
708 708  
709 -(((
710 -(% style="color:blue" %)**Downlink:**
711 -)))
437 +* (% style="color:blue" %)**Reset**
712 712  
713 -(((
714 -Uplink channels 1-8 (RX1)
715 -)))
439 +If payload = 0x04FF, it will reset the LDDS20
716 716  
717 -(((
718 -923.2 - SF10BW125 (RX2)
719 -)))
720 720  
442 +* (% style="color:blue" %)**CFM**
721 721  
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
722 722  
723 -=== 2.6.6  KR920-923 (KR920) ===
724 724  
725 -(((
726 -(% style="color:blue" %)**Default channel:**
727 -)))
728 728  
729 -(((
730 -922.1 - SF7BW125 to SF12BW125
731 -)))
448 +== 2.5  ​Show Data in DataCake IoT Server ==
732 732  
733 733  (((
734 -922.3 - SF7BW125 to SF12BW125
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
735 735  )))
736 736  
737 737  (((
738 -922.5 - SF7BW125 to SF12BW125
739 -)))
740 -
741 -(((
742 742  
743 743  )))
744 744  
745 745  (((
746 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
747 747  )))
748 748  
749 749  (((
750 -922.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
751 751  )))
752 752  
753 -(((
754 -922.3 - SF7BW125 to SF12BW125
755 -)))
756 756  
757 -(((
758 -922.5 - SF7BW125 to SF12BW125
759 -)))
467 +[[image:1654592790040-760.png]]
760 760  
761 -(((
762 -922.7 - SF7BW125 to SF12BW125
763 -)))
764 764  
765 -(((
766 -922.9 - SF7BW125 to SF12BW125
767 -)))
470 +[[image:1654592800389-571.png]]
768 768  
769 -(((
770 -923.1 - SF7BW125 to SF12BW125
771 -)))
772 772  
773 -(((
774 -923.3 - SF7BW125 to SF12BW125
775 -)))
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
776 776  
777 -(((
778 -
779 -)))
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
780 780  
781 -(((
782 -(% style="color:blue" %)**Downlink:**
783 -)))
477 +[[image:1654851029373-510.png]]
784 784  
785 -(((
786 -Uplink channels 1-7(RX1)
787 -)))
788 788  
789 -(((
790 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
791 -)))
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
792 792  
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
793 793  
794 794  
795 -=== 2.6.7  IN865-867 (IN865) ===
796 796  
797 -(((
798 -(% style="color:blue" %)**Uplink:**
799 -)))
486 +== 2.6  LED Indicator ==
800 800  
801 -(((
802 -865.0625 - SF7BW125 to SF12BW125
803 -)))
488 +The LDDS20 has an internal LED which is to show the status of different state.
804 804  
805 -(((
806 -865.4025 - SF7BW125 to SF12BW125
807 -)))
808 808  
809 -(((
810 -865.9850 - SF7BW125 to SF12BW125
811 -)))
812 -
813 -(((
814 -
815 -)))
816 -
817 -(((
818 -(% style="color:blue" %)**Downlink:**
819 -)))
820 -
821 -(((
822 -Uplink channels 1-3 (RX1)
823 -)))
824 -
825 -(((
826 -866.550 - SF10BW125 (RX2)
827 -)))
828 -
829 -
830 -
831 -== 2.7  LED Indicator ==
832 -
833 -The LDDS75 has an internal LED which is to show the status of different state.
834 -
835 -
836 836  * Blink once when device power on.
837 837  * The device detects the sensor and flashes 5 times.
838 838  * Solid ON for 5 seconds once device successful Join the network.
839 839  * Blink once when device transmit a packet.
840 840  
496 +
497 +
841 841  == 2.8  ​Firmware Change Log ==
842 842  
843 843  
501 +(((
844 844  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
503 +)))
845 845  
505 +(((
506 +
507 +)))
846 846  
509 +(((
847 847  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
511 +)))
848 848  
849 849  
850 850  
... ... @@ -988,7 +988,9 @@
988 988  [[image:image-20220610172924-5.png]]
989 989  
990 990  
655 +(((
991 991  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
657 +)))
992 992  
993 993  
994 994   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -1012,16 +1012,19 @@
1012 1012  (((
1013 1013  Format: Command Code (0x01) followed by 3 bytes time value.
1014 1014  
681 +(((
1015 1015  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
683 +)))
1016 1016  
1017 1017  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1018 1018  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1019 1019  )))
688 +)))
1020 1020  
1021 1021  
1022 -
1023 -)))
1024 1024  
692 +
693 +
1025 1025  == 3.3  Set Interrupt Mode ==
1026 1026  
1027 1027  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1035,12 +1035,13 @@
1035 1035  
1036 1036  Format: Command Code (0x06) followed by 3 bytes.
1037 1037  
707 +(((
1038 1038  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
709 +)))
1039 1039  
1040 1040  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1041 1041  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1042 1042  
1043 -
1044 1044  = 4.  FAQ =
1045 1045  
1046 1046  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1100,7 +1100,6 @@
1100 1100  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1101 1101  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1102 1102  
1103 -
1104 1104  = 7. ​ Packing Info =
1105 1105  
1106 1106  
... ... @@ -1115,7 +1115,6 @@
1115 1115  * Package Size / pcs : cm
1116 1116  * Weight / pcs : g
1117 1117  
1118 -
1119 1119  = 8.  ​Support =
1120 1120  
1121 1121  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content