Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 75- LoRaWANDistanceDetectionSensor User Manual1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:1654 846127817-788.png]]2 +[[image:1655254599445-662.png]] 3 3 4 -**Contents:** 5 5 6 -{{toc/}} 7 7 8 8 7 +**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,9 +12,11 @@ 12 12 13 13 14 14 14 + 15 + 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN DistanceDetectionSensor ==18 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 18 18 19 19 ((( 20 20 ... ... @@ -21,7 +21,8 @@ 21 21 22 22 ((( 23 23 ((( 24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 25 +((( 26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 25 25 ))) 26 26 27 27 ((( ... ... @@ -29,7 +29,7 @@ 29 29 ))) 30 30 31 31 ((( 32 - It detectsthedistance**(% style="color:#4472c4" %)between the measured object and thesensor(%%)**,anduploadsthe valuevia wirelesstoLoRaWAN IoT Server.34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 33 33 ))) 34 34 35 35 ((( ... ... @@ -37,7 +37,7 @@ 37 37 ))) 38 38 39 39 ((( 40 - TheLoRawireless technologyusedin LDDS75allowsdeviceto senddataandreachextremelylongrangesatlow data-rates.Itprovidesultra-longrangespread spectrumcommunicationandhighinterferenceimmunitywhilstminimizingcurrent consumption.42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 41 41 ))) 42 42 43 43 ((( ... ... @@ -45,7 +45,7 @@ 45 45 ))) 46 46 47 47 ((( 48 -L DDS75ispoweredby(%style="color:#4472c4"%)** 4000mAor8500mAhLi-SOCI2battery**(%%);It isdesignedforlong term use upto10years*.50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 49 49 ))) 50 50 51 51 ((( ... ... @@ -53,7 +53,7 @@ 53 53 ))) 54 54 55 55 ((( 56 - EachLDDS75pre-loadswithasetof unique keys forLoRaWANregistrations, register thesekeystolocal LoRaWAN serverand it will autoconnectifthereisnetworkcoverage,afterpower on.58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 57 57 ))) 58 58 59 59 ((( ... ... @@ -61,13 +61,24 @@ 61 61 ))) 62 62 63 63 ((( 66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 67 +))) 68 + 69 +((( 70 + 71 +))) 72 +))) 73 + 74 +((( 75 +((( 64 64 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 65 65 ))) 66 66 ))) 67 67 ))) 80 +))) 68 68 69 69 70 -[[image:165 4847051249-359.png]]83 +[[image:1655255122126-327.png]] 71 71 72 72 73 73 ... ... @@ -75,9 +75,10 @@ 75 75 76 76 * LoRaWAN 1.0.3 Class A 77 77 * Ultra low power consumption 78 -* Distance Detection by Ultrasonic technology 79 -* Flat object range 280mm - 7500mm 80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 91 +* Liquid Level Measurement by Ultrasonic technology 92 +* Measure through container, No need to contact Liquid. 93 +* Valid level range 20mm - 2000mm 94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 81 81 * Cable Length : 25cm 82 82 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 83 83 * AT Commands to change parameters ... ... @@ -84,767 +84,417 @@ 84 84 * Uplink on periodically 85 85 * Downlink to change configure 86 86 * IP66 Waterproof Enclosure 87 -* 4000mAh or8500mAh Battery for long term use101 +* 8500mAh Battery for long term use 88 88 103 +== 1.3 Suitable Container & Liquid == 89 89 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 90 90 91 -== 1. 3Specification==112 +== 1.4 Mechanical == 92 92 93 - === 1.3.1 Rated environmental conditions ===114 +[[image:image-20220615090910-1.png]] 94 94 95 -[[image:image-20220610154839-1.png]] 96 96 97 -((( 98 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing); b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 99 -))) 117 +[[image:image-20220615090910-2.png]] 100 100 101 101 102 102 103 -== =1.3.2Effective measurementrangeReferencebeam pattern===121 +== 1.5 Install LDDS20 == 104 104 105 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 106 106 124 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 107 107 126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 108 108 109 -[[image: 1654852253176-749.png]]128 +[[image:image-20220615091045-3.png]] 110 110 111 111 112 112 113 - **(2)****The object to be tested is a"corrugated cardboardbox"perpendicularto thecentralxisof 0 °, andthe length * width is 60cm * 50cm.**132 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 114 114 134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 115 115 116 -[[image: 1654852175653-550.png]](% style="display:none" %) ** **136 +[[image:image-20220615092010-11.png]] 117 117 118 118 139 +No polish needed if the container is shine metal surface without paint or non-metal container. 119 119 120 - == 1.5 Applications ==141 +[[image:image-20220615092044-12.png]] 121 121 122 -* Horizontal distance measurement 123 -* Liquid level measurement 124 -* Parking management system 125 -* Object proximity and presence detection 126 -* Intelligent trash can management system 127 -* Robot obstacle avoidance 128 -* Automatic control 129 -* Sewer 130 -* Bottom water level monitoring 131 131 132 -== 1.6 Pin mapping and power on == 133 133 145 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 134 134 135 - [[image:1654847583902-256.png]]147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 136 136 137 137 150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 138 138 139 - =2.ConfigureLDDS75to connecttoLoRaWANnetwork=152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]] 140 140 141 -== 2.1 How it works == 142 142 143 -((( 144 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 145 -))) 155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 146 146 147 -((( 148 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 149 -))) 150 150 158 +(% style="color:red" %)**LED Status:** 151 151 160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 152 152 153 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 154 154 155 -((( 156 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 157 -))) 165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 158 158 159 -((( 160 -[[image:1654848616367-242.png]] 161 -))) 162 162 163 -((( 164 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 165 -))) 168 +(% style="color:red" %)**Note 2:** 166 166 167 -((( 168 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 169 -))) 170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 170 170 171 -((( 172 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 173 -))) 174 174 175 -[[image:image-20220607170145-1.jpeg]] 176 176 174 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 177 177 178 - ForOTAA registration, weneed to set **APPEUI/ APP KEY/ DEV EUI**. Some server might noneed to setAPPEUI.176 +Prepare Eproxy AB glue. 179 179 180 - Enter thesekeys in theLoRaWAN Serverportal. Belowis TTN V3 screenshot:178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 181 181 182 - **AddAPPEUIintheapplication**180 +Reset LDDS20 and see if the BLUE LED is slowly blinking. 183 183 184 -[[image:image-2022061016 1353-4.png]]182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 185 185 186 -[[image:image-20220610161353-5.png]] 187 187 188 - [[image:image-20220610161353-6.png]]185 +(% style="color:red" %)**Note 1:** 189 189 187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 190 190 191 -[[image:image-20220610161353-7.png]] 192 192 190 +(% style="color:red" %)**Note 2:** 193 193 194 - You canalsochoosetocreatethe devicemanually.192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 195 195 196 - [[image:image-20220610161538-8.png]] 197 197 198 198 196 +== 1.6 Applications == 199 199 200 -**Add APP KEY and DEV EUI** 198 +* Smart liquid control solution. 199 +* Smart liquefied gas solution. 201 201 202 - [[image:image-20220610161538-9.png]]201 +== 1.7 Precautions == 203 203 203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 204 204 207 +== 1.8 Pin mapping and power on == 205 205 206 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 207 207 210 +[[image:1655257026882-201.png]] 208 208 209 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 210 210 211 -[[image:image-20220610161724-10.png]] 212 212 214 += 2. Configure LDDS20 to connect to LoRaWAN network = 213 213 214 -((( 215 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 216 -))) 217 217 218 - [[image:1654849068701-275.png]]217 +== 2.1 How it works == 219 219 220 - 221 - 222 -== 2.3 Uplink Payload == 223 - 224 224 ((( 225 -LDDS75 will uplink payload via LoRaWAN with below payload format: 226 - 227 -Uplink payload includes in total 4 bytes. 228 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 229 229 ))) 230 230 231 231 ((( 232 - 224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20. 233 233 ))) 234 234 235 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 236 -|=(% style="width: 62.5px;" %)((( 237 -**Size (bytes)** 238 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 239 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 240 -[[Distance>>||anchor="H2.3.2A0Distance"]] 241 241 242 -(unit: mm) 243 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 244 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 245 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 246 246 247 - [[image:1654850511545-399.png]]229 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 248 248 249 - 250 - 251 -=== 2.3.1 Battery Info === 252 - 253 - 254 -Check the battery voltage for LDDS75. 255 - 256 -Ex1: 0x0B45 = 2885mV 257 - 258 -Ex2: 0x0B49 = 2889mV 259 - 260 - 261 - 262 -=== 2.3.2 Distance === 263 - 264 -Get the distance. Flat object range 280mm - 7500mm. 265 - 266 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 267 - 268 - 269 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 270 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 271 - 272 -=== 2.3.3 Interrupt Pin === 273 - 274 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up. 275 - 276 -**Example:** 277 - 278 -0x00: Normal uplink packet. 279 - 280 -0x01: Interrupt Uplink Packet. 281 - 282 - 283 - 284 -=== 2.3.4 DS18B20 Temperature sensor === 285 - 286 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 287 - 288 -**Example**: 289 - 290 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 291 - 292 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 293 - 294 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 295 - 296 - 297 - 298 -=== 2.3.5 Sensor Flag === 299 - 300 -0x01: Detect Ultrasonic Sensor 301 - 302 -0x00: No Ultrasonic Sensor 303 - 304 - 305 - 306 -=== 2.3.6 Decode payload in The Things Network === 307 - 308 -While using TTN network, you can add the payload format to decode the payload. 309 - 310 - 311 -[[image:1654850829385-439.png]] 312 - 313 -The payload decoder function for TTN V3 is here: 314 - 315 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 316 - 317 - 318 - 319 -== 2.4 Uplink Interval == 320 - 321 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 322 - 323 - 324 - 325 -== 2.5 Show Data in DataCake IoT Server == 326 - 327 327 ((( 328 -[[ DATACAKE>>url:https://datacake.co/]] provides ahuman friendly interfacetoshow thesensordata, once wehavedata in TTN, wecan use[[DATACAKE>>url:https://datacake.co/]] tonnecttoTTNandseethe datain DATACAKE.Belowrethesteps:232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 329 329 ))) 330 330 331 331 ((( 332 - 236 +[[image:1655257698953-697.png]] 333 333 ))) 334 334 335 335 ((( 336 - (%style="color:blue"%)**Step 1**(%%)**: Besurehatyourdeviceis programmedandproperlyconnectedo thehistime.**240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 337 337 ))) 338 338 339 339 ((( 340 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 341 -))) 244 + 342 342 343 - 344 -[[image:1654592790040-760.png]] 345 - 346 - 347 -[[image:1654592800389-571.png]] 348 - 349 - 350 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 351 - 352 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 353 - 354 -[[image:1654851029373-510.png]] 355 - 356 - 357 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 358 - 359 -[[image:image-20220610165129-11.png||height="595" width="1088"]] 360 - 361 - 362 - 363 -== 2.6 Frequency Plans == 364 - 365 -((( 366 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 367 367 ))) 368 368 369 - 370 - 371 -=== 2.6.1 EU863-870 (EU868) === 372 - 373 373 ((( 374 - (%style="color:blue"%)**Uplink:**250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 375 375 ))) 376 376 377 -((( 378 -868.1 - SF7BW125 to SF12BW125 379 -))) 253 +[[image:image-20220607170145-1.jpeg]] 380 380 381 -((( 382 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 383 -))) 384 384 385 385 ((( 386 - 868.5-SF7BW125to SF12BW125257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 387 387 ))) 388 388 389 389 ((( 390 - 867.1-SF7BW125to SF12BW125261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 391 391 ))) 392 392 393 393 ((( 394 -867.3 - SF7BW125 to SF12BW125 395 -))) 396 - 397 -((( 398 -867.5 - SF7BW125 to SF12BW125 399 -))) 400 - 401 -((( 402 -867.7 - SF7BW125 to SF12BW125 403 -))) 404 - 405 -((( 406 -867.9 - SF7BW125 to SF12BW125 407 -))) 408 - 409 -((( 410 -868.8 - FSK 411 -))) 412 - 413 -((( 414 414 415 -))) 416 416 417 -((( 418 -(% style="color:blue" %)**Downlink:** 267 +**Add APP EUI in the application** 419 419 ))) 420 420 421 -((( 422 -Uplink channels 1-9 (RX1) 423 -))) 270 +[[image:image-20220610161353-4.png]] 424 424 425 -((( 426 -869.525 - SF9BW125 (RX2 downlink only) 427 -))) 272 +[[image:image-20220610161353-5.png]] 428 428 274 +[[image:image-20220610161353-6.png]] 429 429 430 430 431 - ===2.6.2 US902-928(US915) ===277 +[[image:image-20220610161353-7.png]] 432 432 433 -((( 434 -Used in USA, Canada and South America. Default use CHE=2 435 435 436 -(% style="color:blue" %)**Uplink:** 437 437 438 - 903.9-SF7BW125toSF10BW125281 +You can also choose to create the device manually. 439 439 440 - 904.1-SF7BW125toSF10BW125283 + [[image:image-20220610161538-8.png]] 441 441 442 -904.3 - SF7BW125 to SF10BW125 443 443 444 -904.5 - SF7BW125 to SF10BW125 445 445 446 - 904.7-SF7BW125toSF10BW125287 +**Add APP KEY and DEV EUI** 447 447 448 - 904.9-SF7BW125 to SF10BW125289 +[[image:image-20220610161538-9.png]] 449 449 450 -905.1 - SF7BW125 to SF10BW125 451 451 452 -905.3 - SF7BW125 to SF10BW125 453 453 293 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 454 454 455 -(% style="color:blue" %)**Downlink:** 456 456 457 - 923.3-SF7BW500toSF12BW500296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 458 458 459 - 923.9-SF7BW500to SF12BW500298 +[[image:image-20220615095102-14.png]] 460 460 461 -924.5 - SF7BW500 to SF12BW500 462 462 463 -925.1 - SF7BW500 to SF12BW500 464 464 465 -925.7 - SF7BW500 to SF12BW500 302 +((( 303 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 304 +))) 466 466 467 -9 26.3 - SF7BW500 to SF12BW500306 +[[image:1654849068701-275.png]] 468 468 469 -926.9 - SF7BW500 to SF12BW500 470 470 471 -927.5 - SF7BW500 to SF12BW500 472 472 473 - 923.3- SF12BW500(RX2 downlinkonly)310 +== 2.3 Uplink Payload == 474 474 475 - 476 - 477 -))) 478 - 479 -=== 2.6.3 CN470-510 (CN470) === 480 - 481 481 ((( 482 -Used in China, Default use CHE=1 483 -))) 484 - 485 485 ((( 486 -(% style="color:blue" %)**Uplink:** 487 -))) 314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 488 488 489 - (((490 -4 86.3-SF7BW125toSF12BW125316 +Uplink payload includes in total 8 bytes. 317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload). 491 491 ))) 492 - 493 -((( 494 -486.5 - SF7BW125 to SF12BW125 495 495 ))) 496 496 497 497 ((( 498 - 486.7- SF7BW125 to SF12BW125322 + 499 499 ))) 500 500 501 -((( 502 -486.9 - SF7BW125 to SF12BW125 503 -))) 325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 326 +|=(% style="width: 62.5px;" %)((( 327 +**Size (bytes)** 328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 330 +[[Distance>>||anchor="H2.3.2A0Distance"]] 504 504 505 -((( 506 -487.1 - SF7BW125 to SF12BW125 507 -))) 332 +(unit: mm) 333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 508 508 509 -((( 510 -487.3 - SF7BW125 to SF12BW125 511 -))) 337 +[[image:1654850511545-399.png]] 512 512 513 -((( 514 -487.5 - SF7BW125 to SF12BW125 515 -))) 516 516 517 -((( 518 -487.7 - SF7BW125 to SF12BW125 519 -))) 520 520 521 -((( 522 - 523 -))) 341 +=== 2.3.1 Battery Info === 524 524 525 -((( 526 -(% style="color:blue" %)**Downlink:** 527 -))) 528 528 529 -((( 530 -506.7 - SF7BW125 to SF12BW125 531 -))) 344 +Check the battery voltage for LDDS20. 532 532 533 -((( 534 -506.9 - SF7BW125 to SF12BW125 535 -))) 346 +Ex1: 0x0B45 = 2885mV 536 536 537 -((( 538 -507.1 - SF7BW125 to SF12BW125 539 -))) 348 +Ex2: 0x0B49 = 2889mV 540 540 541 -((( 542 -507.3 - SF7BW125 to SF12BW125 543 -))) 544 544 545 -((( 546 -507.5 - SF7BW125 to SF12BW125 547 -))) 548 548 549 -((( 550 -507.7 - SF7BW125 to SF12BW125 551 -))) 352 +=== 2.3.2 Distance === 552 552 553 553 ((( 554 - 507.9-SF7BW125toSF12BW125355 +Get the distance. Flat object range 20mm - 2000mm. 555 555 ))) 556 556 557 557 ((( 558 - 508.1-SF7BW125toSF12BW125359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 559 559 ))) 560 560 561 -((( 562 -505.3 - SF12BW125 (RX2 downlink only) 563 -))) 362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 564 564 365 +=== 2.3.3 Interrupt Pin === 565 565 367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 566 566 567 - === 2.6.4 AU915-928(AU915) ===369 +**Example:** 568 568 569 -((( 570 -Default use CHE=2 371 +0x00: Normal uplink packet. 571 571 572 - (%style="color:blue"%)**Uplink:**373 +0x01: Interrupt Uplink Packet. 573 573 574 -916.8 - SF7BW125 to SF12BW125 575 575 576 -917.0 - SF7BW125 to SF12BW125 577 577 578 - 917.2-SF7BW125toSF12BW125377 +=== 2.3.4 DS18B20 Temperature sensor === 579 579 580 - 917.4-SF7BW125toSF12BW125379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 581 581 582 - 917.6 - SF7BW125 to SF12BW125381 +**Example**: 583 583 584 - 917.8-SF7BW125toSF12BW125383 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 585 585 586 - 918.0-SF7BW125toSF12BW125385 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 587 587 588 - 918.2-SF7BW125toSF12BW125387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 589 589 590 590 591 -(% style="color:blue" %)**Downlink:** 592 592 593 - 923.3- SF7BW500toSF12BW500391 +=== 2.3.5 Sensor Flag === 594 594 595 -923.9 - SF7BW500 to SF12BW500 596 - 597 -924.5 - SF7BW500 to SF12BW500 598 - 599 -925.1 - SF7BW500 to SF12BW500 600 - 601 -925.7 - SF7BW500 to SF12BW500 602 - 603 -926.3 - SF7BW500 to SF12BW500 604 - 605 -926.9 - SF7BW500 to SF12BW500 606 - 607 -927.5 - SF7BW500 to SF12BW500 608 - 609 -923.3 - SF12BW500(RX2 downlink only) 610 - 611 - 612 - 613 -))) 614 - 615 -=== 2.6.5 AS920-923 & AS923-925 (AS923) === 616 - 617 617 ((( 618 - (% style="color:blue"%)**Default Uplink channel:**394 +0x01: Detect Ultrasonic Sensor 619 619 ))) 620 620 621 621 ((( 622 - 923.2-SF7BW125to SF10BW125398 +0x00: No Ultrasonic Sensor 623 623 ))) 624 624 625 -((( 626 -923.4 - SF7BW125 to SF10BW125 627 -))) 628 628 629 -((( 630 - 631 -))) 632 632 633 -((( 634 -(% style="color:blue" %)**Additional Uplink Channel**: 635 -))) 403 +=== 2.3.6 Decode payload in The Things Network === 636 636 637 -((( 638 -(OTAA mode, channel added by JoinAccept message) 639 -))) 405 +While using TTN network, you can add the payload format to decode the payload. 640 640 641 -((( 642 - 643 -))) 644 644 645 -((( 646 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 647 -))) 408 +[[image:1654850829385-439.png]] 648 648 649 -((( 650 -922.2 - SF7BW125 to SF10BW125 651 -))) 410 +The payload decoder function for TTN V3 is here: 652 652 653 653 ((( 654 - 922.4-SF7BW125toF10BW125413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 655 655 ))) 656 656 657 -((( 658 -922.6 - SF7BW125 to SF10BW125 659 -))) 660 660 661 -((( 662 -922.8 - SF7BW125 to SF10BW125 663 -))) 664 664 665 -((( 666 -923.0 - SF7BW125 to SF10BW125 667 -))) 418 +== 2.4 Downlink Payload == 668 668 669 -((( 670 -922.0 - SF7BW125 to SF10BW125 671 -))) 420 +By default, LDDS20 prints the downlink payload to console port. 672 672 673 -((( 674 - 675 -))) 422 +[[image:image-20220615100930-15.png]] 676 676 677 -((( 678 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 679 -))) 680 680 681 -((( 682 -923.6 - SF7BW125 to SF10BW125 683 -))) 425 +**Examples:** 684 684 685 -((( 686 -923.8 - SF7BW125 to SF10BW125 687 -))) 688 688 689 -((( 690 -924.0 - SF7BW125 to SF10BW125 691 -))) 428 +* (% style="color:blue" %)**Set TDC** 692 692 693 -((( 694 -924.2 - SF7BW125 to SF10BW125 695 -))) 430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 696 696 697 -((( 698 -924.4 - SF7BW125 to SF10BW125 699 -))) 432 +Payload: 01 00 00 1E TDC=30S 700 700 701 -((( 702 -924.6 - SF7BW125 to SF10BW125 703 -))) 434 +Payload: 01 00 00 3C TDC=60S 704 704 705 -((( 706 - 707 -))) 708 708 709 -((( 710 -(% style="color:blue" %)**Downlink:** 711 -))) 437 +* (% style="color:blue" %)**Reset** 712 712 713 -((( 714 -Uplink channels 1-8 (RX1) 715 -))) 439 +If payload = 0x04FF, it will reset the LDDS20 716 716 717 -((( 718 -923.2 - SF10BW125 (RX2) 719 -))) 720 720 442 +* (% style="color:blue" %)**CFM** 721 721 444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 722 722 723 -=== 2.6.6 KR920-923 (KR920) === 724 724 725 -((( 726 -(% style="color:blue" %)**Default channel:** 727 -))) 728 728 729 -((( 730 -922.1 - SF7BW125 to SF12BW125 731 -))) 448 +== 2.5 Show Data in DataCake IoT Server == 732 732 733 733 ((( 734 - 922.3-SF7BW125toSF12BW125451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 735 735 ))) 736 736 737 737 ((( 738 -922.5 - SF7BW125 to SF12BW125 739 -))) 740 - 741 -((( 742 742 743 743 ))) 744 744 745 745 ((( 746 -(% style="color:blue" %)** Uplink:(OTAAmode,channeladdedbyJoinAcceptmessage)**459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 747 747 ))) 748 748 749 749 ((( 750 - 922.1-SF7BW125toSF12BW125463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 751 751 ))) 752 752 753 -((( 754 -922.3 - SF7BW125 to SF12BW125 755 -))) 756 756 757 -((( 758 -922.5 - SF7BW125 to SF12BW125 759 -))) 467 +[[image:1654592790040-760.png]] 760 760 761 -((( 762 -922.7 - SF7BW125 to SF12BW125 763 -))) 764 764 765 -((( 766 -922.9 - SF7BW125 to SF12BW125 767 -))) 470 +[[image:1654592800389-571.png]] 768 768 769 -((( 770 -923.1 - SF7BW125 to SF12BW125 771 -))) 772 772 773 -((( 774 -923.3 - SF7BW125 to SF12BW125 775 -))) 473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 776 776 777 -((( 778 - 779 -))) 475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 780 780 781 -((( 782 -(% style="color:blue" %)**Downlink:** 783 -))) 477 +[[image:1654851029373-510.png]] 784 784 785 -((( 786 -Uplink channels 1-7(RX1) 787 -))) 788 788 789 -((( 790 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 791 -))) 480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 792 792 482 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 793 793 794 794 795 -=== 2.6.7 IN865-867 (IN865) === 796 796 797 -((( 798 -(% style="color:blue" %)**Uplink:** 799 -))) 486 +== 2.6 LED Indicator == 800 800 801 -((( 802 -865.0625 - SF7BW125 to SF12BW125 803 -))) 488 +The LDDS20 has an internal LED which is to show the status of different state. 804 804 805 -((( 806 -865.4025 - SF7BW125 to SF12BW125 807 -))) 808 808 809 -((( 810 -865.9850 - SF7BW125 to SF12BW125 811 -))) 812 - 813 -((( 814 - 815 -))) 816 - 817 -((( 818 -(% style="color:blue" %)**Downlink:** 819 -))) 820 - 821 -((( 822 -Uplink channels 1-3 (RX1) 823 -))) 824 - 825 -((( 826 -866.550 - SF10BW125 (RX2) 827 -))) 828 - 829 - 830 - 831 -== 2.7 LED Indicator == 832 - 833 -The LDDS75 has an internal LED which is to show the status of different state. 834 - 835 - 836 836 * Blink once when device power on. 837 837 * The device detects the sensor and flashes 5 times. 838 838 * Solid ON for 5 seconds once device successful Join the network. 839 839 * Blink once when device transmit a packet. 840 840 496 + 497 + 841 841 == 2.8 Firmware Change Log == 842 842 843 843 501 +((( 844 844 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 503 +))) 845 845 505 +((( 506 + 507 +))) 846 846 509 +((( 847 847 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 511 +))) 848 848 849 849 850 850 ... ... @@ -988,7 +988,9 @@ 988 988 [[image:image-20220610172924-5.png]] 989 989 990 990 655 +((( 991 991 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 657 +))) 992 992 993 993 994 994 [[image:image-20220610172924-6.png||height="601" width="860"]] ... ... @@ -1012,16 +1012,19 @@ 1012 1012 ((( 1013 1013 Format: Command Code (0x01) followed by 3 bytes time value. 1014 1014 681 +((( 1015 1015 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 683 +))) 1016 1016 1017 1017 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1018 1018 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1019 1019 ))) 688 +))) 1020 1020 1021 1021 1022 - 1023 -))) 1024 1024 692 + 693 + 1025 1025 == 3.3 Set Interrupt Mode == 1026 1026 1027 1027 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -1035,12 +1035,13 @@ 1035 1035 1036 1036 Format: Command Code (0x06) followed by 3 bytes. 1037 1037 707 +((( 1038 1038 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 709 +))) 1039 1039 1040 1040 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1041 1041 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1042 1042 1043 - 1044 1044 = 4. FAQ = 1045 1045 1046 1046 == 4.1 What is the frequency plan for LDDS75? == ... ... @@ -1100,7 +1100,6 @@ 1100 1100 * (% style="color:red" %)**4 **(%%)**: **4000mAh battery 1101 1101 * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery 1102 1102 1103 - 1104 1104 = 7. Packing Info = 1105 1105 1106 1106 ... ... @@ -1115,7 +1115,6 @@ 1115 1115 * Package Size / pcs : cm 1116 1116 * Weight / pcs : g 1117 1117 1118 - 1119 1119 = 8. Support = 1120 1120 1121 1121 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.5 KB - Content