Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.36
edited by Xiaoling
on 2022/06/11 09:12
Change comment: There is no comment for this version
To version 173.6
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,9 +12,11 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
... ... @@ -21,7 +21,8 @@
21 21  
22 22  (((
23 23  (((
24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
25 25  )))
26 26  
27 27  (((
... ... @@ -29,7 +29,7 @@
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
41 41  )))
42 42  
43 43  (((
... ... @@ -45,7 +45,7 @@
45 45  )))
46 46  
47 47  (((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 49  )))
50 50  
51 51  (((
... ... @@ -53,7 +53,7 @@
53 53  )))
54 54  
55 55  (((
56 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
57 57  )))
58 58  
59 59  (((
... ... @@ -61,13 +61,24 @@
61 61  )))
62 62  
63 63  (((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
64 64  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 65  )))
66 66  )))
67 67  )))
80 +)))
68 68  
69 69  
70 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
71 71  
72 72  
73 73  
... ... @@ -75,9 +75,10 @@
75 75  
76 76  * LoRaWAN 1.0.3 Class A
77 77  * Ultra low power consumption
78 -* Distance Detection by Ultrasonic technology
79 -* Flat object range 280mm - 7500mm
80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
81 81  * Cable Length : 25cm
82 82  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
83 83  * AT Commands to change parameters
... ... @@ -84,69 +84,130 @@
84 84  * Uplink on periodically
85 85  * Downlink to change configure
86 86  * IP66 Waterproof Enclosure
87 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
88 88  
103 +== 1.3  Suitable Container & Liquid ==
89 89  
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
90 90  
112 +== 1.4  Mechanical ==
91 91  
92 -== 1.3  Specification ==
114 +[[image:image-20220615090910-1.png]]
93 93  
94 -=== 1.3.1  Rated environmental conditions ===
95 95  
96 -[[image:image-20220610154839-1.png]]
117 +[[image:image-20220615090910-2.png]]
97 97  
98 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
99 99  
100 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
101 101  
121 +== 1.5  Install LDDS20 ==
102 102  
103 103  
104 -=== 1.3.2  Effective measurement range Reference beam pattern ===
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
105 105  
106 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
107 107  
128 +[[image:image-20220615091045-3.png]]
108 108  
109 109  
110 -[[image:1654852253176-749.png]]
111 111  
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
112 112  
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
113 113  
114 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
136 +[[image:image-20220615092010-11.png]]
115 115  
116 116  
117 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
118 118  
141 +[[image:image-20220615092044-12.png]]
119 119  
120 120  
121 -== 1.5 ​ Applications ==
122 122  
123 -* Horizontal distance measurement
124 -* Liquid level measurement
125 -* Parking management system
126 -* Object proximity and presence detection
127 -* Intelligent trash can management system
128 -* Robot obstacle avoidance
129 -* Automatic control
130 -* Sewer
131 -* Bottom water level monitoring
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
132 132  
133 -== 1.6  Pin mapping and power on ==
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 134  
135 135  
136 -[[image:1654847583902-256.png]]
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
137 137  
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
138 138  
139 139  
140 -= 2 Configure LDDS75 to connect to LoRaWAN network =
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
141 141  
157 +
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
142 142  == 2.1  How it works ==
143 143  
144 144  (((
145 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
146 146  )))
147 147  
148 148  (((
149 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
150 150  )))
151 151  
152 152  
... ... @@ -158,7 +158,7 @@
158 158  )))
159 159  
160 160  (((
161 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
162 162  )))
163 163  
164 164  (((
... ... @@ -166,21 +166,31 @@
166 166  )))
167 167  
168 168  (((
169 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
244 +
245 +
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
170 170  )))
171 171  
172 172  (((
173 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
174 174  )))
175 175  
176 176  [[image:image-20220607170145-1.jpeg]]
177 177  
178 178  
256 +(((
179 179  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
258 +)))
180 180  
260 +(((
181 181  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
262 +)))
182 182  
264 +(((
265 +
266 +
183 183  **Add APP EUI in the application**
268 +)))
184 184  
185 185  [[image:image-20220610161353-4.png]]
186 186  
... ... @@ -192,6 +192,7 @@
192 192  [[image:image-20220610161353-7.png]]
193 193  
194 194  
280 +
195 195  You can also choose to create the device manually.
196 196  
197 197   [[image:image-20220610161538-8.png]]
... ... @@ -204,16 +204,17 @@
204 204  
205 205  
206 206  
207 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
208 208  
209 209  
210 210  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
211 211  
212 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
213 213  
214 214  
301 +
215 215  (((
216 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
217 217  )))
218 218  
219 219  [[image:1654849068701-275.png]]
... ... @@ -223,11 +223,13 @@
223 223  == 2.3  ​Uplink Payload ==
224 224  
225 225  (((
226 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
313 +(((
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
227 227  
228 -Uplink payload includes in total 4 bytes.
229 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
230 230  )))
319 +)))
231 231  
232 232  (((
233 233  
... ... @@ -252,7 +252,7 @@
252 252  === 2.3.1  Battery Info ===
253 253  
254 254  
255 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
256 256  
257 257  Ex1: 0x0B45 = 2885mV
258 258  
... ... @@ -262,18 +262,20 @@
262 262  
263 263  === 2.3.2  Distance ===
264 264  
265 -Get the distance. Flat object range 280mm - 7500mm.
354 +(((
355 +Get the distance. Flat object range 20mm - 2000mm.
356 +)))
266 266  
267 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
358 +(((
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 +)))
268 268  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
269 269  
270 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
271 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
272 -
273 -
274 274  === 2.3.3  Interrupt Pin ===
275 275  
276 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
277 277  
278 278  **Example:**
279 279  
... ... @@ -299,9 +299,13 @@
299 299  
300 300  === 2.3.5  Sensor Flag ===
301 301  
393 +(((
302 302  0x01: Detect Ultrasonic Sensor
395 +)))
303 303  
397 +(((
304 304  0x00: No Ultrasonic Sensor
399 +)))
305 305  
306 306  
307 307  
... ... @@ -314,543 +314,109 @@
314 314  
315 315  The payload decoder function for TTN V3 is here:
316 316  
317 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
318 -
319 -
320 -
321 -== 2.4  Uplink Interval ==
322 -
323 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
324 -
325 -
326 -
327 -== 2.5  ​Show Data in DataCake IoT Server ==
328 -
329 329  (((
330 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
331 331  )))
332 332  
333 -(((
334 -
335 -)))
336 336  
337 -(((
338 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
339 -)))
340 340  
341 -(((
342 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
343 -)))
418 +== 2.4  Downlink Payload ==
344 344  
420 +By default, LDDS20 prints the downlink payload to console port.
345 345  
346 -[[image:1654592790040-760.png]]
422 +[[image:image-20220615100930-15.png]]
347 347  
348 348  
349 -[[image:1654592800389-571.png]]
425 +**Examples:**
350 350  
351 351  
352 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
428 +* (% style="color:blue" %)**Set TDC**
353 353  
354 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
355 355  
356 -[[image:1654851029373-510.png]]
432 +Payload:    01 00 00 1E    TDC=30S
357 357  
434 +Payload:    01 00 00 3C    TDC=60S
358 358  
359 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
360 360  
361 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
437 +* (% style="color:blue" %)**Reset**
362 362  
439 +If payload = 0x04FF, it will reset the LDDS20
363 363  
364 364  
365 -== 2.6  Frequency Plans ==
442 +* (% style="color:blue" %)**CFM**
366 366  
367 -(((
368 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
369 -)))
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
370 370  
371 371  
372 372  
373 -=== 2.6.1  EU863-870 (EU868) ===
448 +== 2.5  ​Show Data in DataCake IoT Server ==
374 374  
375 375  (((
376 -(% style="color:blue" %)**Uplink:**
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
377 377  )))
378 378  
379 379  (((
380 -868.1 - SF7BW125 to SF12BW125
381 -)))
382 -
383 -(((
384 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
385 -)))
386 -
387 -(((
388 -868.5 - SF7BW125 to SF12BW125
389 -)))
390 -
391 -(((
392 -867.1 - SF7BW125 to SF12BW125
393 -)))
394 -
395 -(((
396 -867.3 - SF7BW125 to SF12BW125
397 -)))
398 -
399 -(((
400 -867.5 - SF7BW125 to SF12BW125
401 -)))
402 -
403 -(((
404 -867.7 - SF7BW125 to SF12BW125
405 -)))
406 -
407 -(((
408 -867.9 - SF7BW125 to SF12BW125
409 -)))
410 -
411 -(((
412 -868.8 - FSK
413 -)))
414 -
415 -(((
416 416  
417 417  )))
418 418  
419 419  (((
420 -(% style="color:blue" %)**Downlink:**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
421 421  )))
422 422  
423 423  (((
424 -Uplink channels 1-9 (RX1)
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
425 425  )))
426 426  
427 -(((
428 -869.525 - SF9BW125 (RX2 downlink only)
429 -)))
430 430  
467 +[[image:1654592790040-760.png]]
431 431  
432 432  
433 -=== 2.6.2  US902-928(US915) ===
470 +[[image:1654592800389-571.png]]
434 434  
435 -(((
436 -Used in USA, Canada and South America. Default use CHE=2
437 437  
438 -(% style="color:blue" %)**Uplink:**
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
439 439  
440 -903.9 - SF7BW125 to SF10BW125
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
441 441  
442 -904.1 - SF7BW125 to SF10BW125
477 +[[image:1654851029373-510.png]]
443 443  
444 -904.3 - SF7BW125 to SF10BW125
445 445  
446 -904.5 - SF7BW125 to SF10BW125
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
447 447  
448 -904.7 - SF7BW125 to SF10BW125
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
449 449  
450 -904.9 - SF7BW125 to SF10BW125
451 451  
452 -905.1 - SF7BW125 to SF10BW125
453 453  
454 -905.3 - SF7BW125 to SF10BW125
486 +== 2.6  LED Indicator ==
455 455  
488 +The LDDS20 has an internal LED which is to show the status of different state.
456 456  
457 -(% style="color:blue" %)**Downlink:**
458 458  
459 -923.3 - SF7BW500 to SF12BW500
491 +* Blink once when device power on.
492 +* The device detects the sensor and flashes 5 times.
493 +* Solid ON for 5 seconds once device successful Join the network.
494 +* Blink once when device transmit a packet.
460 460  
461 -923.9 - SF7BW500 to SF12BW500
462 462  
463 -924.5 - SF7BW500 to SF12BW500
464 464  
465 -925.1 - SF7BW500 to SF12BW500
498 +== 2. Firmware Change Log ==
466 466  
467 -925.7 - SF7BW500 to SF12BW500
468 468  
469 -926.3 - SF7BW500 to SF12BW500
470 -
471 -926.9 - SF7BW500 to SF12BW500
472 -
473 -927.5 - SF7BW500 to SF12BW500
474 -
475 -923.3 - SF12BW500(RX2 downlink only)
476 -
477 -
478 -
479 -)))
480 -
481 -=== 2.6.3  CN470-510 (CN470) ===
482 -
483 483  (((
484 -Used in China, Default use CHE=1
502 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
485 485  )))
486 486  
487 487  (((
488 -(% style="color:blue" %)**Uplink:**
489 -)))
490 -
491 -(((
492 -486.3 - SF7BW125 to SF12BW125
493 -)))
494 -
495 -(((
496 -486.5 - SF7BW125 to SF12BW125
497 -)))
498 -
499 -(((
500 -486.7 - SF7BW125 to SF12BW125
501 -)))
502 -
503 -(((
504 -486.9 - SF7BW125 to SF12BW125
505 -)))
506 -
507 -(((
508 -487.1 - SF7BW125 to SF12BW125
509 -)))
510 -
511 -(((
512 -487.3 - SF7BW125 to SF12BW125
513 -)))
514 -
515 -(((
516 -487.5 - SF7BW125 to SF12BW125
517 -)))
518 -
519 -(((
520 -487.7 - SF7BW125 to SF12BW125
521 -)))
522 -
523 -(((
524 524  
525 525  )))
526 526  
527 527  (((
528 -(% style="color:blue" %)**Downlink:**
510 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
529 529  )))
530 530  
531 -(((
532 -506.7 - SF7BW125 to SF12BW125
533 -)))
534 534  
535 -(((
536 -506.9 - SF7BW125 to SF12BW125
537 -)))
538 538  
539 -(((
540 -507.1 - SF7BW125 to SF12BW125
541 -)))
542 -
543 -(((
544 -507.3 - SF7BW125 to SF12BW125
545 -)))
546 -
547 -(((
548 -507.5 - SF7BW125 to SF12BW125
549 -)))
550 -
551 -(((
552 -507.7 - SF7BW125 to SF12BW125
553 -)))
554 -
555 -(((
556 -507.9 - SF7BW125 to SF12BW125
557 -)))
558 -
559 -(((
560 -508.1 - SF7BW125 to SF12BW125
561 -)))
562 -
563 -(((
564 -505.3 - SF12BW125 (RX2 downlink only)
565 -)))
566 -
567 -
568 -
569 -=== 2.6.4  AU915-928(AU915) ===
570 -
571 -(((
572 -Default use CHE=2
573 -
574 -(% style="color:blue" %)**Uplink:**
575 -
576 -916.8 - SF7BW125 to SF12BW125
577 -
578 -917.0 - SF7BW125 to SF12BW125
579 -
580 -917.2 - SF7BW125 to SF12BW125
581 -
582 -917.4 - SF7BW125 to SF12BW125
583 -
584 -917.6 - SF7BW125 to SF12BW125
585 -
586 -917.8 - SF7BW125 to SF12BW125
587 -
588 -918.0 - SF7BW125 to SF12BW125
589 -
590 -918.2 - SF7BW125 to SF12BW125
591 -
592 -
593 -(% style="color:blue" %)**Downlink:**
594 -
595 -923.3 - SF7BW500 to SF12BW500
596 -
597 -923.9 - SF7BW500 to SF12BW500
598 -
599 -924.5 - SF7BW500 to SF12BW500
600 -
601 -925.1 - SF7BW500 to SF12BW500
602 -
603 -925.7 - SF7BW500 to SF12BW500
604 -
605 -926.3 - SF7BW500 to SF12BW500
606 -
607 -926.9 - SF7BW500 to SF12BW500
608 -
609 -927.5 - SF7BW500 to SF12BW500
610 -
611 -923.3 - SF12BW500(RX2 downlink only)
612 -
613 -
614 -
615 -)))
616 -
617 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
618 -
619 -(((
620 -(% style="color:blue" %)**Default Uplink channel:**
621 -)))
622 -
623 -(((
624 -923.2 - SF7BW125 to SF10BW125
625 -)))
626 -
627 -(((
628 -923.4 - SF7BW125 to SF10BW125
629 -)))
630 -
631 -(((
632 -
633 -)))
634 -
635 -(((
636 -(% style="color:blue" %)**Additional Uplink Channel**:
637 -)))
638 -
639 -(((
640 -(OTAA mode, channel added by JoinAccept message)
641 -)))
642 -
643 -(((
644 -
645 -)))
646 -
647 -(((
648 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
649 -)))
650 -
651 -(((
652 -922.2 - SF7BW125 to SF10BW125
653 -)))
654 -
655 -(((
656 -922.4 - SF7BW125 to SF10BW125
657 -)))
658 -
659 -(((
660 -922.6 - SF7BW125 to SF10BW125
661 -)))
662 -
663 -(((
664 -922.8 - SF7BW125 to SF10BW125
665 -)))
666 -
667 -(((
668 -923.0 - SF7BW125 to SF10BW125
669 -)))
670 -
671 -(((
672 -922.0 - SF7BW125 to SF10BW125
673 -)))
674 -
675 -(((
676 -
677 -)))
678 -
679 -(((
680 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
681 -)))
682 -
683 -(((
684 -923.6 - SF7BW125 to SF10BW125
685 -)))
686 -
687 -(((
688 -923.8 - SF7BW125 to SF10BW125
689 -)))
690 -
691 -(((
692 -924.0 - SF7BW125 to SF10BW125
693 -)))
694 -
695 -(((
696 -924.2 - SF7BW125 to SF10BW125
697 -)))
698 -
699 -(((
700 -924.4 - SF7BW125 to SF10BW125
701 -)))
702 -
703 -(((
704 -924.6 - SF7BW125 to SF10BW125
705 -)))
706 -
707 -(((
708 -
709 -)))
710 -
711 -(((
712 -(% style="color:blue" %)**Downlink:**
713 -)))
714 -
715 -(((
716 -Uplink channels 1-8 (RX1)
717 -)))
718 -
719 -(((
720 -923.2 - SF10BW125 (RX2)
721 -)))
722 -
723 -
724 -
725 -=== 2.6.6  KR920-923 (KR920) ===
726 -
727 -(((
728 -(% style="color:blue" %)**Default channel:**
729 -)))
730 -
731 -(((
732 -922.1 - SF7BW125 to SF12BW125
733 -)))
734 -
735 -(((
736 -922.3 - SF7BW125 to SF12BW125
737 -)))
738 -
739 -(((
740 -922.5 - SF7BW125 to SF12BW125
741 -)))
742 -
743 -(((
744 -
745 -)))
746 -
747 -(((
748 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
749 -)))
750 -
751 -(((
752 -922.1 - SF7BW125 to SF12BW125
753 -)))
754 -
755 -(((
756 -922.3 - SF7BW125 to SF12BW125
757 -)))
758 -
759 -(((
760 -922.5 - SF7BW125 to SF12BW125
761 -)))
762 -
763 -(((
764 -922.7 - SF7BW125 to SF12BW125
765 -)))
766 -
767 -(((
768 -922.9 - SF7BW125 to SF12BW125
769 -)))
770 -
771 -(((
772 -923.1 - SF7BW125 to SF12BW125
773 -)))
774 -
775 -(((
776 -923.3 - SF7BW125 to SF12BW125
777 -)))
778 -
779 -(((
780 -
781 -)))
782 -
783 -(((
784 -(% style="color:blue" %)**Downlink:**
785 -)))
786 -
787 -(((
788 -Uplink channels 1-7(RX1)
789 -)))
790 -
791 -(((
792 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
793 -)))
794 -
795 -
796 -
797 -=== 2.6.7  IN865-867 (IN865) ===
798 -
799 -(((
800 -(% style="color:blue" %)**Uplink:**
801 -)))
802 -
803 -(((
804 -865.0625 - SF7BW125 to SF12BW125
805 -)))
806 -
807 -(((
808 -865.4025 - SF7BW125 to SF12BW125
809 -)))
810 -
811 -(((
812 -865.9850 - SF7BW125 to SF12BW125
813 -)))
814 -
815 -(((
816 -
817 -)))
818 -
819 -(((
820 -(% style="color:blue" %)**Downlink:**
821 -)))
822 -
823 -(((
824 -Uplink channels 1-3 (RX1)
825 -)))
826 -
827 -(((
828 -866.550 - SF10BW125 (RX2)
829 -)))
830 -
831 -
832 -
833 -== 2.7  LED Indicator ==
834 -
835 -The LDDS75 has an internal LED which is to show the status of different state.
836 -
837 -
838 -* Blink once when device power on.
839 -* The device detects the sensor and flashes 5 times.
840 -* Solid ON for 5 seconds once device successful Join the network.
841 -* Blink once when device transmit a packet.
842 -
843 -
844 -== 2.8  ​Firmware Change Log ==
845 -
846 -
847 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
848 -
849 -
850 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
851 -
852 -
853 -
854 854  == 2.9  Mechanical ==
855 855  
856 856  
... ... @@ -991,7 +991,9 @@
991 991  [[image:image-20220610172924-5.png]]
992 992  
993 993  
655 +(((
994 994  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
657 +)))
995 995  
996 996  
997 997   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -1015,16 +1015,19 @@
1015 1015  (((
1016 1016  Format: Command Code (0x01) followed by 3 bytes time value.
1017 1017  
681 +(((
1018 1018  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
683 +)))
1019 1019  
1020 1020  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1021 1021  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1022 1022  )))
688 +)))
1023 1023  
1024 1024  
1025 -
1026 -)))
1027 1027  
692 +
693 +
1028 1028  == 3.3  Set Interrupt Mode ==
1029 1029  
1030 1030  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1038,13 +1038,13 @@
1038 1038  
1039 1039  Format: Command Code (0x06) followed by 3 bytes.
1040 1040  
707 +(((
1041 1041  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
709 +)))
1042 1042  
1043 1043  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1044 1044  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1045 1045  
1046 -
1047 -
1048 1048  = 4.  FAQ =
1049 1049  
1050 1050  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1104,8 +1104,6 @@
1104 1104  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1105 1105  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1106 1106  
1107 -
1108 -
1109 1109  = 7. ​ Packing Info =
1110 1110  
1111 1111  
... ... @@ -1120,8 +1120,6 @@
1120 1120  * Package Size / pcs : cm
1121 1121  * Weight / pcs : g
1122 1122  
1123 -
1124 -
1125 1125  = 8.  ​Support =
1126 1126  
1127 1127  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content