Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.35
edited by Xiaoling
on 2022/06/11 09:11
Change comment: There is no comment for this version
To version 174.7
edited by Xiaoling
on 2022/06/15 10:34
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,9 +12,11 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
... ... @@ -21,7 +21,8 @@
21 21  
22 22  (((
23 23  (((
24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
25 25  )))
26 26  
27 27  (((
... ... @@ -29,7 +29,7 @@
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
41 41  )))
42 42  
43 43  (((
... ... @@ -45,7 +45,7 @@
45 45  )))
46 46  
47 47  (((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 49  )))
50 50  
51 51  (((
... ... @@ -53,7 +53,7 @@
53 53  )))
54 54  
55 55  (((
56 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
57 57  )))
58 58  
59 59  (((
... ... @@ -61,13 +61,24 @@
61 61  )))
62 62  
63 63  (((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
64 64  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 65  )))
66 66  )))
67 67  )))
80 +)))
68 68  
69 69  
70 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
71 71  
72 72  
73 73  
... ... @@ -75,9 +75,10 @@
75 75  
76 76  * LoRaWAN 1.0.3 Class A
77 77  * Ultra low power consumption
78 -* Distance Detection by Ultrasonic technology
79 -* Flat object range 280mm - 7500mm
80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
81 81  * Cable Length : 25cm
82 82  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
83 83  * AT Commands to change parameters
... ... @@ -84,66 +84,130 @@
84 84  * Uplink on periodically
85 85  * Downlink to change configure
86 86  * IP66 Waterproof Enclosure
87 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
88 88  
89 -== 1.3  Specification ==
103 +== 1.3  Suitable Container & Liquid ==
90 90  
91 -=== 1.3.1  Rated environmental conditions ===
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
92 92  
93 -[[image:image-20220610154839-1.png]]
112 +== 1.4  Mechanical ==
94 94  
95 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
114 +[[image:image-20220615090910-1.png]]
96 96  
97 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
98 98  
117 +[[image:image-20220615090910-2.png]]
99 99  
100 100  
101 -=== 1.3.2  Effective measurement range Reference beam pattern ===
102 102  
103 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
121 +== 1.5  Install LDDS20 ==
104 104  
105 105  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
106 106  
107 -[[image:1654852253176-749.png]]
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 108  
128 +[[image:image-20220615091045-3.png]]
109 109  
110 110  
111 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
112 112  
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
113 113  
114 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
115 115  
136 +[[image:image-20220615092010-11.png]]
116 116  
117 117  
118 -== 1.5 ​ Applications ==
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
119 119  
120 -* Horizontal distance measurement
121 -* Liquid level measurement
122 -* Parking management system
123 -* Object proximity and presence detection
124 -* Intelligent trash can management system
125 -* Robot obstacle avoidance
126 -* Automatic control
127 -* Sewer
128 -* Bottom water level monitoring
141 +[[image:image-20220615092044-12.png]]
129 129  
130 -== 1.6  Pin mapping and power on ==
131 131  
132 132  
133 -[[image:1654847583902-256.png]]
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
134 134  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
135 135  
136 136  
137 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
138 138  
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
153 +
154 +
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 +
157 +
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
139 139  == 2.1  How it works ==
140 140  
141 141  (((
142 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
143 143  )))
144 144  
145 145  (((
146 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
147 147  )))
148 148  
149 149  
... ... @@ -155,7 +155,7 @@
155 155  )))
156 156  
157 157  (((
158 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
159 159  )))
160 160  
161 161  (((
... ... @@ -163,21 +163,31 @@
163 163  )))
164 164  
165 165  (((
166 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
244 +
245 +
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
167 167  )))
168 168  
169 169  (((
170 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
171 171  )))
172 172  
173 173  [[image:image-20220607170145-1.jpeg]]
174 174  
175 175  
256 +(((
176 176  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
258 +)))
177 177  
260 +(((
178 178  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
262 +)))
179 179  
264 +(((
265 +
266 +
180 180  **Add APP EUI in the application**
268 +)))
181 181  
182 182  [[image:image-20220610161353-4.png]]
183 183  
... ... @@ -189,6 +189,7 @@
189 189  [[image:image-20220610161353-7.png]]
190 190  
191 191  
280 +
192 192  You can also choose to create the device manually.
193 193  
194 194   [[image:image-20220610161538-8.png]]
... ... @@ -201,16 +201,17 @@
201 201  
202 202  
203 203  
204 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
205 205  
206 206  
207 207  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
208 208  
209 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
210 210  
211 211  
301 +
212 212  (((
213 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
214 214  )))
215 215  
216 216  [[image:1654849068701-275.png]]
... ... @@ -220,11 +220,13 @@
220 220  == 2.3  ​Uplink Payload ==
221 221  
222 222  (((
223 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
313 +(((
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
224 224  
225 -Uplink payload includes in total 4 bytes.
226 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
227 227  )))
319 +)))
228 228  
229 229  (((
230 230  
... ... @@ -249,7 +249,7 @@
249 249  === 2.3.1  Battery Info ===
250 250  
251 251  
252 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
253 253  
254 254  Ex1: 0x0B45 = 2885mV
255 255  
... ... @@ -259,18 +259,22 @@
259 259  
260 260  === 2.3.2  Distance ===
261 261  
262 -Get the distance. Flat object range 280mm - 7500mm.
354 +(((
355 +Get the distance. Flat object range 20mm - 2000mm.
356 +)))
263 263  
264 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
358 +(((
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 +)))
265 265  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
266 266  
267 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
268 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
269 269  
270 270  
271 271  === 2.3.3  Interrupt Pin ===
272 272  
273 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
369 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
274 274  
275 275  **Example:**
276 276  
... ... @@ -296,9 +296,13 @@
296 296  
297 297  === 2.3.5  Sensor Flag ===
298 298  
395 +(((
299 299  0x01: Detect Ultrasonic Sensor
397 +)))
300 300  
399 +(((
301 301  0x00: No Ultrasonic Sensor
401 +)))
302 302  
303 303  
304 304  
... ... @@ -311,592 +311,165 @@
311 311  
312 312  The payload decoder function for TTN V3 is here:
313 313  
314 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
315 -
316 -
317 -
318 -== 2.4  Uplink Interval ==
319 -
320 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321 -
322 -
323 -
324 -== 2.5  ​Show Data in DataCake IoT Server ==
325 -
326 326  (((
327 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
415 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
328 328  )))
329 329  
330 -(((
331 -
332 -)))
333 333  
334 -(((
335 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
336 -)))
337 337  
338 -(((
339 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
340 -)))
420 +== 2.4  Downlink Payload ==
341 341  
422 +By default, LDDS20 prints the downlink payload to console port.
342 342  
343 -[[image:1654592790040-760.png]]
424 +[[image:image-20220615100930-15.png]]
344 344  
345 345  
346 -[[image:1654592800389-571.png]]
427 +**Examples:**
347 347  
348 348  
349 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
430 +* (% style="color:blue" %)**Set TDC**
350 350  
351 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
432 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
352 352  
353 -[[image:1654851029373-510.png]]
434 +Payload:    01 00 00 1E    TDC=30S
354 354  
436 +Payload:    01 00 00 3C    TDC=60S
355 355  
356 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
357 357  
358 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
439 +* (% style="color:blue" %)**Reset**
359 359  
441 +If payload = 0x04FF, it will reset the LDDS20
360 360  
361 361  
362 -== 2.6  Frequency Plans ==
444 +* (% style="color:blue" %)**CFM**
363 363  
364 -(((
365 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
366 -)))
446 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
367 367  
368 368  
369 369  
370 -=== 2.6.1  EU863-870 (EU868) ===
450 +== 2.5  ​Show Data in DataCake IoT Server ==
371 371  
372 372  (((
373 -(% style="color:blue" %)**Uplink:**
453 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
374 374  )))
375 375  
376 376  (((
377 -868.1 - SF7BW125 to SF12BW125
378 -)))
379 -
380 -(((
381 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
382 -)))
383 -
384 -(((
385 -868.5 - SF7BW125 to SF12BW125
386 -)))
387 -
388 -(((
389 -867.1 - SF7BW125 to SF12BW125
390 -)))
391 -
392 -(((
393 -867.3 - SF7BW125 to SF12BW125
394 -)))
395 -
396 -(((
397 -867.5 - SF7BW125 to SF12BW125
398 -)))
399 -
400 -(((
401 -867.7 - SF7BW125 to SF12BW125
402 -)))
403 -
404 -(((
405 -867.9 - SF7BW125 to SF12BW125
406 -)))
407 -
408 -(((
409 -868.8 - FSK
410 -)))
411 -
412 -(((
413 413  
414 414  )))
415 415  
416 416  (((
417 -(% style="color:blue" %)**Downlink:**
461 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
418 418  )))
419 419  
420 420  (((
421 -Uplink channels 1-9 (RX1)
465 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
422 422  )))
423 423  
424 -(((
425 -869.525 - SF9BW125 (RX2 downlink only)
426 -)))
427 427  
469 +[[image:1654592790040-760.png]]
428 428  
429 429  
430 -=== 2.6.2  US902-928(US915) ===
472 +[[image:1654592800389-571.png]]
431 431  
432 -(((
433 -Used in USA, Canada and South America. Default use CHE=2
434 434  
435 -(% style="color:blue" %)**Uplink:**
475 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
436 436  
437 -903.9 - SF7BW125 to SF10BW125
477 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
438 438  
439 -904.1 - SF7BW125 to SF10BW125
479 +[[image:1654851029373-510.png]]
440 440  
441 -904.3 - SF7BW125 to SF10BW125
442 442  
443 -904.5 - SF7BW125 to SF10BW125
482 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
444 444  
445 -904.7 - SF7BW125 to SF10BW125
484 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
446 446  
447 -904.9 - SF7BW125 to SF10BW125
448 448  
449 -905.1 - SF7BW125 to SF10BW125
450 450  
451 -905.3 - SF7BW125 to SF10BW125
488 +== 2.6  LED Indicator ==
452 452  
490 +The LDDS20 has an internal LED which is to show the status of different state.
453 453  
454 -(% style="color:blue" %)**Downlink:**
455 455  
456 -923.3 - SF7BW500 to SF12BW500
493 +* Blink once when device power on.
494 +* The device detects the sensor and flashes 5 times.
495 +* Solid ON for 5 seconds once device successful Join the network.
496 +* Blink once when device transmit a packet.
457 457  
458 -923.9 - SF7BW500 to SF12BW500
459 459  
460 -924.5 - SF7BW500 to SF12BW500
461 461  
462 -925.1 - SF7BW500 to SF12BW500
500 +== 2. Firmware Change Log ==
463 463  
464 -925.7 - SF7BW500 to SF12BW500
465 465  
466 -926.3 - SF7BW500 to SF12BW500
467 -
468 -926.9 - SF7BW500 to SF12BW500
469 -
470 -927.5 - SF7BW500 to SF12BW500
471 -
472 -923.3 - SF12BW500(RX2 downlink only)
473 -
474 -
475 -
476 -)))
477 -
478 -=== 2.6.3  CN470-510 (CN470) ===
479 -
480 480  (((
481 -Used in China, Default use CHE=1
504 +**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
482 482  )))
483 483  
484 484  (((
485 -(% style="color:blue" %)**Uplink:**
486 -)))
487 -
488 -(((
489 -486.3 - SF7BW125 to SF12BW125
490 -)))
491 -
492 -(((
493 -486.5 - SF7BW125 to SF12BW125
494 -)))
495 -
496 -(((
497 -486.7 - SF7BW125 to SF12BW125
498 -)))
499 -
500 -(((
501 -486.9 - SF7BW125 to SF12BW125
502 -)))
503 -
504 -(((
505 -487.1 - SF7BW125 to SF12BW125
506 -)))
507 -
508 -(((
509 -487.3 - SF7BW125 to SF12BW125
510 -)))
511 -
512 -(((
513 -487.5 - SF7BW125 to SF12BW125
514 -)))
515 -
516 -(((
517 -487.7 - SF7BW125 to SF12BW125
518 -)))
519 -
520 -(((
521 521  
522 522  )))
523 523  
524 524  (((
525 -(% style="color:blue" %)**Downlink:**
512 +**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
526 526  )))
527 527  
528 -(((
529 -506.7 - SF7BW125 to SF12BW125
530 -)))
531 531  
532 -(((
533 -506.9 - SF7BW125 to SF12BW125
534 -)))
535 535  
536 -(((
537 -507.1 - SF7BW125 to SF12BW125
538 -)))
517 +== 2.8  Battery Analysis ==
539 539  
540 -(((
541 -507.3 - SF7BW125 to SF12BW125
542 -)))
543 543  
544 -(((
545 -507.5 - SF7BW125 to SF12BW125
546 -)))
547 547  
548 -(((
549 -507.7 - SF7BW125 to SF12BW125
550 -)))
551 551  
552 -(((
553 -507.9 - SF7BW125 to SF12BW125
554 -)))
522 +=== 2.8.1  Battery Type ===
555 555  
556 -(((
557 -508.1 - SF7BW125 to SF12BW125
558 -)))
524 +The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
559 559  
560 -(((
561 -505.3 - SF12BW125 (RX2 downlink only)
562 -)))
563 563  
527 +The battery related documents as below:
564 564  
565 -
566 -=== 2.6.4  AU915-928(AU915) ===
567 -
568 -(((
569 -Default use CHE=2
570 -
571 -(% style="color:blue" %)**Uplink:**
572 -
573 -916.8 - SF7BW125 to SF12BW125
574 -
575 -917.0 - SF7BW125 to SF12BW125
576 -
577 -917.2 - SF7BW125 to SF12BW125
578 -
579 -917.4 - SF7BW125 to SF12BW125
580 -
581 -917.6 - SF7BW125 to SF12BW125
582 -
583 -917.8 - SF7BW125 to SF12BW125
584 -
585 -918.0 - SF7BW125 to SF12BW125
586 -
587 -918.2 - SF7BW125 to SF12BW125
588 -
589 -
590 -(% style="color:blue" %)**Downlink:**
591 -
592 -923.3 - SF7BW500 to SF12BW500
593 -
594 -923.9 - SF7BW500 to SF12BW500
595 -
596 -924.5 - SF7BW500 to SF12BW500
597 -
598 -925.1 - SF7BW500 to SF12BW500
599 -
600 -925.7 - SF7BW500 to SF12BW500
601 -
602 -926.3 - SF7BW500 to SF12BW500
603 -
604 -926.9 - SF7BW500 to SF12BW500
605 -
606 -927.5 - SF7BW500 to SF12BW500
607 -
608 -923.3 - SF12BW500(RX2 downlink only)
609 -
610 -
611 -
529 +* (((
530 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
612 612  )))
613 -
614 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
615 -
616 -(((
617 -(% style="color:blue" %)**Default Uplink channel:**
532 +* (((
533 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
618 618  )))
619 -
620 -(((
621 -923.2 - SF7BW125 to SF10BW125
535 +* (((
536 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
622 622  )))
623 623  
624 -(((
625 -923.4 - SF7BW125 to SF10BW125
626 -)))
539 + [[image:image-20220615102527-16.png]]
627 627  
628 -(((
629 -
630 -)))
631 631  
632 -(((
633 -(% style="color:blue" %)**Additional Uplink Channel**:
634 -)))
635 635  
636 -(((
637 -(OTAA mode, channel added by JoinAccept message)
638 -)))
543 +== 2.8.2  Battery Note ==
639 639  
640 -(((
641 -
642 -)))
545 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
643 643  
644 -(((
645 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
646 -)))
647 647  
648 -(((
649 -922.2 - SF7BW125 to SF10BW125
650 -)))
651 651  
652 -(((
653 -922.4 - SF7BW125 to SF10BW125
654 -)))
549 +=== 2.8.3  Replace the battery ===
655 655  
656 656  (((
657 -922.6 - SF7BW125 to SF10BW125
552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
658 658  )))
659 659  
660 660  (((
661 -922.8 - SF7BW125 to SF10BW125
662 -)))
663 -
664 -(((
665 -923.0 - SF7BW125 to SF10BW125
666 -)))
667 -
668 -(((
669 -922.0 - SF7BW125 to SF10BW125
670 -)))
671 -
672 -(((
673 673  
674 674  )))
675 675  
676 676  (((
677 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
678 678  )))
679 679  
680 -(((
681 -923.6 - SF7BW125 to SF10BW125
682 -)))
683 683  
684 -(((
685 -923.8 - SF7BW125 to SF10BW125
686 -)))
687 687  
688 -(((
689 -924.0 - SF7BW125 to SF10BW125
690 -)))
565 +== 2.8.4  Battery Life Analyze ==
691 691  
692 -(((
693 -924.2 - SF7BW125 to SF10BW125
694 -)))
567 +Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
695 695  
696 -(((
697 -924.4 - SF7BW125 to SF10BW125
698 -)))
569 +[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
699 699  
700 -(((
701 -924.6 - SF7BW125 to SF10BW125
702 -)))
703 703  
704 -(((
705 -
706 -)))
707 707  
708 -(((
709 -(% style="color:blue" %)**Downlink:**
710 -)))
711 -
712 -(((
713 -Uplink channels 1-8 (RX1)
714 -)))
715 -
716 -(((
717 -923.2 - SF10BW125 (RX2)
718 -)))
719 -
720 -
721 -
722 -=== 2.6.6  KR920-923 (KR920) ===
723 -
724 -(((
725 -(% style="color:blue" %)**Default channel:**
726 -)))
727 -
728 -(((
729 -922.1 - SF7BW125 to SF12BW125
730 -)))
731 -
732 -(((
733 -922.3 - SF7BW125 to SF12BW125
734 -)))
735 -
736 -(((
737 -922.5 - SF7BW125 to SF12BW125
738 -)))
739 -
740 -(((
741 -
742 -)))
743 -
744 -(((
745 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
746 -)))
747 -
748 -(((
749 -922.1 - SF7BW125 to SF12BW125
750 -)))
751 -
752 -(((
753 -922.3 - SF7BW125 to SF12BW125
754 -)))
755 -
756 -(((
757 -922.5 - SF7BW125 to SF12BW125
758 -)))
759 -
760 -(((
761 -922.7 - SF7BW125 to SF12BW125
762 -)))
763 -
764 -(((
765 -922.9 - SF7BW125 to SF12BW125
766 -)))
767 -
768 -(((
769 -923.1 - SF7BW125 to SF12BW125
770 -)))
771 -
772 -(((
773 -923.3 - SF7BW125 to SF12BW125
774 -)))
775 -
776 -(((
777 -
778 -)))
779 -
780 -(((
781 -(% style="color:blue" %)**Downlink:**
782 -)))
783 -
784 -(((
785 -Uplink channels 1-7(RX1)
786 -)))
787 -
788 -(((
789 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
790 -)))
791 -
792 -
793 -
794 -=== 2.6.7  IN865-867 (IN865) ===
795 -
796 -(((
797 -(% style="color:blue" %)**Uplink:**
798 -)))
799 -
800 -(((
801 -865.0625 - SF7BW125 to SF12BW125
802 -)))
803 -
804 -(((
805 -865.4025 - SF7BW125 to SF12BW125
806 -)))
807 -
808 -(((
809 -865.9850 - SF7BW125 to SF12BW125
810 -)))
811 -
812 -(((
813 -
814 -)))
815 -
816 -(((
817 -(% style="color:blue" %)**Downlink:**
818 -)))
819 -
820 -(((
821 -Uplink channels 1-3 (RX1)
822 -)))
823 -
824 -(((
825 -866.550 - SF10BW125 (RX2)
826 -)))
827 -
828 -
829 -
830 -== 2.7  LED Indicator ==
831 -
832 -The LDDS75 has an internal LED which is to show the status of different state.
833 -
834 -
835 -* Blink once when device power on.
836 -* The device detects the sensor and flashes 5 times.
837 -* Solid ON for 5 seconds once device successful Join the network.
838 -* Blink once when device transmit a packet.
839 -
840 -
841 -== 2.8  ​Firmware Change Log ==
842 -
843 -
844 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
845 -
846 -
847 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
848 -
849 -
850 -
851 -== 2.9  Mechanical ==
852 -
853 -
854 -[[image:image-20220610172003-1.png]]
855 -
856 -
857 -[[image:image-20220610172003-2.png]]
858 -
859 -
860 -
861 -== 2.10  Battery Analysis ==
862 -
863 -=== 2.10.1  Battery Type ===
864 -
865 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
866 -
867 -
868 -The battery related documents as below:
869 -
870 -* (((
871 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
872 -)))
873 -* (((
874 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
875 -)))
876 -* (((
877 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
878 -)))
879 -
880 - [[image:image-20220610172400-3.png]]
881 -
882 -
883 -
884 -=== 2.10.2  Replace the battery ===
885 -
886 -(((
887 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
888 -)))
889 -
890 -(((
891 -
892 -)))
893 -
894 -(((
895 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
896 -)))
897 -
898 -
899 -
900 900  = 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
901 901  
902 902  (((
... ... @@ -988,7 +988,9 @@
988 988  [[image:image-20220610172924-5.png]]
989 989  
990 990  
664 +(((
991 991  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
666 +)))
992 992  
993 993  
994 994   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -1012,16 +1012,19 @@
1012 1012  (((
1013 1013  Format: Command Code (0x01) followed by 3 bytes time value.
1014 1014  
690 +(((
1015 1015  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
692 +)))
1016 1016  
1017 1017  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1018 1018  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1019 1019  )))
697 +)))
1020 1020  
1021 1021  
1022 -
1023 -)))
1024 1024  
701 +
702 +
1025 1025  == 3.3  Set Interrupt Mode ==
1026 1026  
1027 1027  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1035,13 +1035,13 @@
1035 1035  
1036 1036  Format: Command Code (0x06) followed by 3 bytes.
1037 1037  
716 +(((
1038 1038  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
718 +)))
1039 1039  
1040 1040  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1041 1041  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1042 1042  
1043 -
1044 -
1045 1045  = 4.  FAQ =
1046 1046  
1047 1047  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1101,8 +1101,6 @@
1101 1101  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1102 1102  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1103 1103  
1104 -
1105 -
1106 1106  = 7. ​ Packing Info =
1107 1107  
1108 1108  
... ... @@ -1117,8 +1117,6 @@
1117 1117  * Package Size / pcs : cm
1118 1118  * Weight / pcs : g
1119 1119  
1120 -
1121 -
1122 1122  = 8.  ​Support =
1123 1123  
1124 1124  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +182.9 KB
Content