Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
- image-20220615102527-16.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 75- LoRaWANDistanceDetectionSensor User Manual1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:1654 846127817-788.png]]2 +[[image:1655254599445-662.png]] 3 3 4 -**Contents:** 5 5 6 -{{toc/}} 7 7 8 8 7 +**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,9 +12,11 @@ 12 12 13 13 14 14 14 + 15 + 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN DistanceDetectionSensor ==18 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 18 18 19 19 ((( 20 20 ... ... @@ -21,7 +21,8 @@ 21 21 22 22 ((( 23 23 ((( 24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 25 +((( 26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 25 25 ))) 26 26 27 27 ((( ... ... @@ -29,7 +29,7 @@ 29 29 ))) 30 30 31 31 ((( 32 - It detectsthedistance**(% style="color:#4472c4" %)between the measured object and thesensor(%%)**,anduploadsthe valuevia wirelesstoLoRaWAN IoT Server.34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 33 33 ))) 34 34 35 35 ((( ... ... @@ -37,7 +37,7 @@ 37 37 ))) 38 38 39 39 ((( 40 - TheLoRawireless technologyusedin LDDS75allowsdeviceto senddataandreachextremelylongrangesatlow data-rates.Itprovidesultra-longrangespread spectrumcommunicationandhighinterferenceimmunitywhilstminimizingcurrent consumption.42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 41 41 ))) 42 42 43 43 ((( ... ... @@ -45,7 +45,7 @@ 45 45 ))) 46 46 47 47 ((( 48 -L DDS75ispoweredby(%style="color:#4472c4"%)** 4000mAor8500mAhLi-SOCI2battery**(%%);It isdesignedforlong term use upto10years*.50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 49 49 ))) 50 50 51 51 ((( ... ... @@ -53,7 +53,7 @@ 53 53 ))) 54 54 55 55 ((( 56 - EachLDDS75pre-loadswithasetof unique keys forLoRaWANregistrations, register thesekeystolocal LoRaWAN serverand it will autoconnectifthereisnetworkcoverage,afterpower on.58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 57 57 ))) 58 58 59 59 ((( ... ... @@ -61,13 +61,24 @@ 61 61 ))) 62 62 63 63 ((( 66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 67 +))) 68 + 69 +((( 70 + 71 +))) 72 +))) 73 + 74 +((( 75 +((( 64 64 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 65 65 ))) 66 66 ))) 67 67 ))) 80 +))) 68 68 69 69 70 -[[image:165 4847051249-359.png]]83 +[[image:1655255122126-327.png]] 71 71 72 72 73 73 ... ... @@ -75,9 +75,10 @@ 75 75 76 76 * LoRaWAN 1.0.3 Class A 77 77 * Ultra low power consumption 78 -* Distance Detection by Ultrasonic technology 79 -* Flat object range 280mm - 7500mm 80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 91 +* Liquid Level Measurement by Ultrasonic technology 92 +* Measure through container, No need to contact Liquid. 93 +* Valid level range 20mm - 2000mm 94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 81 81 * Cable Length : 25cm 82 82 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 83 83 * AT Commands to change parameters ... ... @@ -84,66 +84,130 @@ 84 84 * Uplink on periodically 85 85 * Downlink to change configure 86 86 * IP66 Waterproof Enclosure 87 -* 4000mAh or8500mAh Battery for long term use101 +* 8500mAh Battery for long term use 88 88 89 -== 1.3 S pecification ==103 +== 1.3 Suitable Container & Liquid == 90 90 91 -=== 1.3.1 Rated environmental conditions === 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 92 92 93 - [[image:image-20220610154839-1.png]]112 +== 1.4 Mechanical == 94 94 95 - **Remarks: (1) a. When the ambient temperatureis 0-39℃, the maximum humidity is90% (non-condensing);**114 +[[image:image-20220615090910-1.png]] 96 96 97 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 98 98 117 +[[image:image-20220615090910-2.png]] 99 99 100 100 101 -=== 1.3.2 Effective measurement range Reference beam pattern === 102 102 103 - **(1)The tested object isawhite cylindricaltube made of PVC, with a height of 100cmand a diameter of 7.5cm.**121 +== 1.5 Install LDDS20 == 104 104 105 105 124 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 106 106 107 - [[image:1654852253176-749.png]]126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 108 108 128 +[[image:image-20220615091045-3.png]] 109 109 110 110 111 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 112 112 132 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 113 113 114 - [[image:1654852175653-550.png]](%style="display:none"%)****134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 115 115 136 +[[image:image-20220615092010-11.png]] 116 116 117 117 118 - ==1.5 Applications==139 +No polish needed if the container is shine metal surface without paint or non-metal container. 119 119 120 -* Horizontal distance measurement 121 -* Liquid level measurement 122 -* Parking management system 123 -* Object proximity and presence detection 124 -* Intelligent trash can management system 125 -* Robot obstacle avoidance 126 -* Automatic control 127 -* Sewer 128 -* Bottom water level monitoring 141 +[[image:image-20220615092044-12.png]] 129 129 130 -== 1.6 Pin mapping and power on == 131 131 132 132 133 - [[image:1654847583902-256.png]]145 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 134 134 147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 135 135 136 136 137 - =2.ConfigureLDDS75to connect toLoRaWANnetwork=150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 138 138 152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]] 153 + 154 + 155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 156 + 157 + 158 +(% style="color:red" %)**LED Status:** 159 + 160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 161 + 162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 164 + 165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 166 + 167 + 168 +(% style="color:red" %)**Note 2:** 169 + 170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 171 + 172 + 173 + 174 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 175 + 176 +Prepare Eproxy AB glue. 177 + 178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 179 + 180 +Reset LDDS20 and see if the BLUE LED is slowly blinking. 181 + 182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 183 + 184 + 185 +(% style="color:red" %)**Note 1:** 186 + 187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 188 + 189 + 190 +(% style="color:red" %)**Note 2:** 191 + 192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 193 + 194 + 195 + 196 +== 1.6 Applications == 197 + 198 +* Smart liquid control solution. 199 +* Smart liquefied gas solution. 200 + 201 +== 1.7 Precautions == 202 + 203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 206 + 207 +== 1.8 Pin mapping and power on == 208 + 209 + 210 +[[image:1655257026882-201.png]] 211 + 212 + 213 + 214 += 2. Configure LDDS20 to connect to LoRaWAN network = 215 + 216 + 139 139 == 2.1 How it works == 140 140 141 141 ((( 142 -The LDDS 75is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 143 143 ))) 144 144 145 145 ((( 146 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0 ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20. 147 147 ))) 148 148 149 149 ... ... @@ -155,7 +155,7 @@ 155 155 ))) 156 156 157 157 ((( 158 -[[image:165 4848616367-242.png]]236 +[[image:1655257698953-697.png]] 159 159 ))) 160 160 161 161 ((( ... ... @@ -163,21 +163,31 @@ 163 163 ))) 164 164 165 165 ((( 166 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 244 + 245 + 246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 167 167 ))) 168 168 169 169 ((( 170 -Each LDDS 75is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 171 171 ))) 172 172 173 173 [[image:image-20220607170145-1.jpeg]] 174 174 175 175 256 +((( 176 176 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 258 +))) 177 177 260 +((( 178 178 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 262 +))) 179 179 264 +((( 265 + 266 + 180 180 **Add APP EUI in the application** 268 +))) 181 181 182 182 [[image:image-20220610161353-4.png]] 183 183 ... ... @@ -189,6 +189,7 @@ 189 189 [[image:image-20220610161353-7.png]] 190 190 191 191 280 + 192 192 You can also choose to create the device manually. 193 193 194 194 [[image:image-20220610161538-8.png]] ... ... @@ -201,16 +201,17 @@ 201 201 202 202 203 203 204 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS 75293 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 205 205 206 206 207 207 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 208 208 209 -[[image:image-202206101 61724-10.png]]298 +[[image:image-20220615095102-14.png]] 210 210 211 211 301 + 212 212 ((( 213 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS 75will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.303 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 214 214 ))) 215 215 216 216 [[image:1654849068701-275.png]] ... ... @@ -220,11 +220,13 @@ 220 220 == 2.3 Uplink Payload == 221 221 222 222 ((( 223 -LDDS75 will uplink payload via LoRaWAN with below payload format: 313 +((( 314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 224 224 225 -Uplink payload includes in total 4bytes.226 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on twofields: BAT and Distance316 +Uplink payload includes in total 8 bytes. 317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload). 227 227 ))) 319 +))) 228 228 229 229 ((( 230 230 ... ... @@ -249,7 +249,7 @@ 249 249 === 2.3.1 Battery Info === 250 250 251 251 252 -Check the battery voltage for LDDS 75.344 +Check the battery voltage for LDDS20. 253 253 254 254 Ex1: 0x0B45 = 2885mV 255 255 ... ... @@ -259,18 +259,22 @@ 259 259 260 260 === 2.3.2 Distance === 261 261 262 -Get the distance. Flat object range 280mm - 7500mm. 354 +((( 355 +Get the distance. Flat object range 20mm - 2000mm. 356 +))) 263 263 264 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 358 +((( 359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 360 +))) 265 265 362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 266 266 267 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 268 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 269 269 270 270 271 271 === 2.3.3 Interrupt Pin === 272 272 273 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3. 3A0SetInterruptMode"]] for the hardware and software set up.369 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 274 274 275 275 **Example:** 276 276 ... ... @@ -296,9 +296,13 @@ 296 296 297 297 === 2.3.5 Sensor Flag === 298 298 395 +((( 299 299 0x01: Detect Ultrasonic Sensor 397 +))) 300 300 399 +((( 301 301 0x00: No Ultrasonic Sensor 401 +))) 302 302 303 303 304 304 ... ... @@ -311,592 +311,165 @@ 311 311 312 312 The payload decoder function for TTN V3 is here: 313 313 314 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 315 - 316 - 317 - 318 -== 2.4 Uplink Interval == 319 - 320 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 321 - 322 - 323 - 324 -== 2.5 Show Data in DataCake IoT Server == 325 - 326 326 ((( 327 - [[DATACAKE>>url:https://datacake.co/]] providesa human friendly interface toshow the sensordata,once we havedata in TTN, wean use[[DATACAKE>>url:https://datacake.co/]] toconnect toTTNande thedatain DATACAKE. Belowarethesteps:415 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 328 328 ))) 329 329 330 -((( 331 - 332 -))) 333 333 334 -((( 335 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 336 -))) 337 337 338 -((( 339 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 340 -))) 420 +== 2.4 Downlink Payload == 341 341 422 +By default, LDDS20 prints the downlink payload to console port. 342 342 343 -[[image: 1654592790040-760.png]]424 +[[image:image-20220615100930-15.png]] 344 344 345 345 346 - [[image:1654592800389-571.png]]427 +**Examples:** 347 347 348 348 349 -(% style="color:blue" %)**S tep 3**(%%)**: Createan account or log inDatacake.**430 +* (% style="color:blue" %)**Set TDC** 350 350 351 - (%style="color:blue"%)**Step4**(%%)**: SearchtheLDDS75andaddDevEUI.**432 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 352 352 353 - [[image:1654851029373-510.png]]434 +Payload: 01 00 00 1E TDC=30S 354 354 436 +Payload: 01 00 00 3C TDC=60S 355 355 356 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 357 357 358 - [[image:image-20220610165129-11.png||height="595"width="1088"]]439 +* (% style="color:blue" %)**Reset** 359 359 441 +If payload = 0x04FF, it will reset the LDDS20 360 360 361 361 362 - ==2.6FrequencyPlans ==444 +* (% style="color:blue" %)**CFM** 363 363 364 -((( 365 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 366 -))) 446 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 367 367 368 368 369 369 370 -== =2.6.1EU863-870(EU868)===450 +== 2.5 Show Data in DataCake IoT Server == 371 371 372 372 ((( 373 - (%style="color:blue"%)**Uplink:**453 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 374 374 ))) 375 375 376 376 ((( 377 -868.1 - SF7BW125 to SF12BW125 378 -))) 379 - 380 -((( 381 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 382 -))) 383 - 384 -((( 385 -868.5 - SF7BW125 to SF12BW125 386 -))) 387 - 388 -((( 389 -867.1 - SF7BW125 to SF12BW125 390 -))) 391 - 392 -((( 393 -867.3 - SF7BW125 to SF12BW125 394 -))) 395 - 396 -((( 397 -867.5 - SF7BW125 to SF12BW125 398 -))) 399 - 400 -((( 401 -867.7 - SF7BW125 to SF12BW125 402 -))) 403 - 404 -((( 405 -867.9 - SF7BW125 to SF12BW125 406 -))) 407 - 408 -((( 409 -868.8 - FSK 410 -))) 411 - 412 -((( 413 413 414 414 ))) 415 415 416 416 ((( 417 -(% style="color:blue" %)** Downlink:**461 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 418 418 ))) 419 419 420 420 ((( 421 - Uplinkchannels1-9(RX1)465 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 422 422 ))) 423 423 424 -((( 425 -869.525 - SF9BW125 (RX2 downlink only) 426 -))) 427 427 469 +[[image:1654592790040-760.png]] 428 428 429 429 430 - === 2.6.2 US902-928(US915) ===472 +[[image:1654592800389-571.png]] 431 431 432 -((( 433 -Used in USA, Canada and South America. Default use CHE=2 434 434 435 -(% style="color:blue" %)** Uplink:**475 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 436 436 437 - 903.9-SF7BW125 to SF10BW125477 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 438 438 439 - 904.1- SF7BW125to SF10BW125479 +[[image:1654851029373-510.png]] 440 440 441 -904.3 - SF7BW125 to SF10BW125 442 442 443 - 904.5-SF7BW125toSF10BW125482 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 444 444 445 - 904.7-SF7BW125 to SF10BW125484 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 446 446 447 -904.9 - SF7BW125 to SF10BW125 448 448 449 -905.1 - SF7BW125 to SF10BW125 450 450 451 - 905.3- SF7BW125toSF10BW125488 +== 2.6 LED Indicator == 452 452 490 +The LDDS20 has an internal LED which is to show the status of different state. 453 453 454 -(% style="color:blue" %)**Downlink:** 455 455 456 -923.3 - SF7BW500 to SF12BW500 493 +* Blink once when device power on. 494 +* The device detects the sensor and flashes 5 times. 495 +* Solid ON for 5 seconds once device successful Join the network. 496 +* Blink once when device transmit a packet. 457 457 458 -923.9 - SF7BW500 to SF12BW500 459 459 460 -924.5 - SF7BW500 to SF12BW500 461 461 462 - 925.1- SF7BW500toSF12BW500500 +== 2.7 Firmware Change Log == 463 463 464 -925.7 - SF7BW500 to SF12BW500 465 465 466 -926.3 - SF7BW500 to SF12BW500 467 - 468 -926.9 - SF7BW500 to SF12BW500 469 - 470 -927.5 - SF7BW500 to SF12BW500 471 - 472 -923.3 - SF12BW500(RX2 downlink only) 473 - 474 - 475 - 476 -))) 477 - 478 -=== 2.6.3 CN470-510 (CN470) === 479 - 480 480 ((( 481 - Used inChina, DefaultuseCHE=1504 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 482 482 ))) 483 483 484 484 ((( 485 -(% style="color:blue" %)**Uplink:** 486 -))) 487 - 488 -((( 489 -486.3 - SF7BW125 to SF12BW125 490 -))) 491 - 492 -((( 493 -486.5 - SF7BW125 to SF12BW125 494 -))) 495 - 496 -((( 497 -486.7 - SF7BW125 to SF12BW125 498 -))) 499 - 500 -((( 501 -486.9 - SF7BW125 to SF12BW125 502 -))) 503 - 504 -((( 505 -487.1 - SF7BW125 to SF12BW125 506 -))) 507 - 508 -((( 509 -487.3 - SF7BW125 to SF12BW125 510 -))) 511 - 512 -((( 513 -487.5 - SF7BW125 to SF12BW125 514 -))) 515 - 516 -((( 517 -487.7 - SF7BW125 to SF12BW125 518 -))) 519 - 520 -((( 521 521 522 522 ))) 523 523 524 524 ((( 525 - (%style="color:blue"%)**Downlink:**512 +**Firmware Upgrade Method: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]** 526 526 ))) 527 527 528 -((( 529 -506.7 - SF7BW125 to SF12BW125 530 -))) 531 531 532 -((( 533 -506.9 - SF7BW125 to SF12BW125 534 -))) 535 535 536 -((( 537 -507.1 - SF7BW125 to SF12BW125 538 -))) 517 +== 2.8 Battery Analysis == 539 539 540 -((( 541 -507.3 - SF7BW125 to SF12BW125 542 -))) 543 543 544 -((( 545 -507.5 - SF7BW125 to SF12BW125 546 -))) 547 547 548 -((( 549 -507.7 - SF7BW125 to SF12BW125 550 -))) 551 551 552 -((( 553 -507.9 - SF7BW125 to SF12BW125 554 -))) 522 +=== 2.8.1 Battery Type === 555 555 556 -((( 557 -508.1 - SF7BW125 to SF12BW125 558 -))) 524 +The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 559 559 560 -((( 561 -505.3 - SF12BW125 (RX2 downlink only) 562 -))) 563 563 527 +The battery related documents as below: 564 564 565 - 566 -=== 2.6.4 AU915-928(AU915) === 567 - 568 -((( 569 -Default use CHE=2 570 - 571 -(% style="color:blue" %)**Uplink:** 572 - 573 -916.8 - SF7BW125 to SF12BW125 574 - 575 -917.0 - SF7BW125 to SF12BW125 576 - 577 -917.2 - SF7BW125 to SF12BW125 578 - 579 -917.4 - SF7BW125 to SF12BW125 580 - 581 -917.6 - SF7BW125 to SF12BW125 582 - 583 -917.8 - SF7BW125 to SF12BW125 584 - 585 -918.0 - SF7BW125 to SF12BW125 586 - 587 -918.2 - SF7BW125 to SF12BW125 588 - 589 - 590 -(% style="color:blue" %)**Downlink:** 591 - 592 -923.3 - SF7BW500 to SF12BW500 593 - 594 -923.9 - SF7BW500 to SF12BW500 595 - 596 -924.5 - SF7BW500 to SF12BW500 597 - 598 -925.1 - SF7BW500 to SF12BW500 599 - 600 -925.7 - SF7BW500 to SF12BW500 601 - 602 -926.3 - SF7BW500 to SF12BW500 603 - 604 -926.9 - SF7BW500 to SF12BW500 605 - 606 -927.5 - SF7BW500 to SF12BW500 607 - 608 -923.3 - SF12BW500(RX2 downlink only) 609 - 610 - 611 - 529 +* ((( 530 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 612 612 ))) 613 - 614 -=== 2.6.5 AS920-923 & AS923-925 (AS923) === 615 - 616 -((( 617 -(% style="color:blue" %)**Default Uplink channel:** 532 +* ((( 533 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 618 618 ))) 619 - 620 -((( 621 -923.2 - SF7BW125 to SF10BW125 535 +* ((( 536 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 622 622 ))) 623 623 624 -((( 625 -923.4 - SF7BW125 to SF10BW125 626 -))) 539 + [[image:image-20220615102527-16.png]] 627 627 628 -((( 629 - 630 -))) 631 631 632 -((( 633 -(% style="color:blue" %)**Additional Uplink Channel**: 634 -))) 635 635 636 -((( 637 -(OTAA mode, channel added by JoinAccept message) 638 -))) 543 +== 2.8.2 Battery Note == 639 639 640 -((( 641 - 642 -))) 545 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased. 643 643 644 -((( 645 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 646 -))) 647 647 648 -((( 649 -922.2 - SF7BW125 to SF10BW125 650 -))) 651 651 652 -((( 653 -922.4 - SF7BW125 to SF10BW125 654 -))) 549 +=== 2.8.3 Replace the battery === 655 655 656 656 ((( 657 - 922.6-SF7BW125 toSF10BW125552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 658 658 ))) 659 659 660 660 ((( 661 -922.8 - SF7BW125 to SF10BW125 662 -))) 663 - 664 -((( 665 -923.0 - SF7BW125 to SF10BW125 666 -))) 667 - 668 -((( 669 -922.0 - SF7BW125 to SF10BW125 670 -))) 671 - 672 -((( 673 673 674 674 ))) 675 675 676 676 ((( 677 - (%style="color:blue"%)**AS923~~ AS925forBrunei,Cambodia,HongKong,Indonesia,Laos,Taiwan,Thailand,Vietnam**:560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 678 678 ))) 679 679 680 -((( 681 -923.6 - SF7BW125 to SF10BW125 682 -))) 683 683 684 -((( 685 -923.8 - SF7BW125 to SF10BW125 686 -))) 687 687 688 -((( 689 -924.0 - SF7BW125 to SF10BW125 690 -))) 565 +== 2.8.4 Battery Life Analyze == 691 691 692 -((( 693 -924.2 - SF7BW125 to SF10BW125 694 -))) 567 +Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life: 695 695 696 -((( 697 -924.4 - SF7BW125 to SF10BW125 698 -))) 569 +[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]] 699 699 700 -((( 701 -924.6 - SF7BW125 to SF10BW125 702 -))) 703 703 704 -((( 705 - 706 -))) 707 707 708 -((( 709 -(% style="color:blue" %)**Downlink:** 710 -))) 711 - 712 -((( 713 -Uplink channels 1-8 (RX1) 714 -))) 715 - 716 -((( 717 -923.2 - SF10BW125 (RX2) 718 -))) 719 - 720 - 721 - 722 -=== 2.6.6 KR920-923 (KR920) === 723 - 724 -((( 725 -(% style="color:blue" %)**Default channel:** 726 -))) 727 - 728 -((( 729 -922.1 - SF7BW125 to SF12BW125 730 -))) 731 - 732 -((( 733 -922.3 - SF7BW125 to SF12BW125 734 -))) 735 - 736 -((( 737 -922.5 - SF7BW125 to SF12BW125 738 -))) 739 - 740 -((( 741 - 742 -))) 743 - 744 -((( 745 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 746 -))) 747 - 748 -((( 749 -922.1 - SF7BW125 to SF12BW125 750 -))) 751 - 752 -((( 753 -922.3 - SF7BW125 to SF12BW125 754 -))) 755 - 756 -((( 757 -922.5 - SF7BW125 to SF12BW125 758 -))) 759 - 760 -((( 761 -922.7 - SF7BW125 to SF12BW125 762 -))) 763 - 764 -((( 765 -922.9 - SF7BW125 to SF12BW125 766 -))) 767 - 768 -((( 769 -923.1 - SF7BW125 to SF12BW125 770 -))) 771 - 772 -((( 773 -923.3 - SF7BW125 to SF12BW125 774 -))) 775 - 776 -((( 777 - 778 -))) 779 - 780 -((( 781 -(% style="color:blue" %)**Downlink:** 782 -))) 783 - 784 -((( 785 -Uplink channels 1-7(RX1) 786 -))) 787 - 788 -((( 789 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 790 -))) 791 - 792 - 793 - 794 -=== 2.6.7 IN865-867 (IN865) === 795 - 796 -((( 797 -(% style="color:blue" %)**Uplink:** 798 -))) 799 - 800 -((( 801 -865.0625 - SF7BW125 to SF12BW125 802 -))) 803 - 804 -((( 805 -865.4025 - SF7BW125 to SF12BW125 806 -))) 807 - 808 -((( 809 -865.9850 - SF7BW125 to SF12BW125 810 -))) 811 - 812 -((( 813 - 814 -))) 815 - 816 -((( 817 -(% style="color:blue" %)**Downlink:** 818 -))) 819 - 820 -((( 821 -Uplink channels 1-3 (RX1) 822 -))) 823 - 824 -((( 825 -866.550 - SF10BW125 (RX2) 826 -))) 827 - 828 - 829 - 830 -== 2.7 LED Indicator == 831 - 832 -The LDDS75 has an internal LED which is to show the status of different state. 833 - 834 - 835 -* Blink once when device power on. 836 -* The device detects the sensor and flashes 5 times. 837 -* Solid ON for 5 seconds once device successful Join the network. 838 -* Blink once when device transmit a packet. 839 - 840 - 841 -== 2.8 Firmware Change Log == 842 - 843 - 844 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 845 - 846 - 847 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 848 - 849 - 850 - 851 -== 2.9 Mechanical == 852 - 853 - 854 -[[image:image-20220610172003-1.png]] 855 - 856 - 857 -[[image:image-20220610172003-2.png]] 858 - 859 - 860 - 861 -== 2.10 Battery Analysis == 862 - 863 -=== 2.10.1 Battery Type === 864 - 865 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 866 - 867 - 868 -The battery related documents as below: 869 - 870 -* ((( 871 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 872 -))) 873 -* ((( 874 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 875 -))) 876 -* ((( 877 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 878 -))) 879 - 880 - [[image:image-20220610172400-3.png]] 881 - 882 - 883 - 884 -=== 2.10.2 Replace the battery === 885 - 886 -((( 887 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 888 -))) 889 - 890 -((( 891 - 892 -))) 893 - 894 -((( 895 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 896 -))) 897 - 898 - 899 - 900 900 = 3. Configure LDDS75 via AT Command or LoRaWAN Downlink = 901 901 902 902 ((( ... ... @@ -988,7 +988,9 @@ 988 988 [[image:image-20220610172924-5.png]] 989 989 990 990 664 +((( 991 991 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 666 +))) 992 992 993 993 994 994 [[image:image-20220610172924-6.png||height="601" width="860"]] ... ... @@ -1012,16 +1012,19 @@ 1012 1012 ((( 1013 1013 Format: Command Code (0x01) followed by 3 bytes time value. 1014 1014 690 +((( 1015 1015 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 692 +))) 1016 1016 1017 1017 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1018 1018 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1019 1019 ))) 697 +))) 1020 1020 1021 1021 1022 - 1023 -))) 1024 1024 701 + 702 + 1025 1025 == 3.3 Set Interrupt Mode == 1026 1026 1027 1027 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -1035,13 +1035,13 @@ 1035 1035 1036 1036 Format: Command Code (0x06) followed by 3 bytes. 1037 1037 716 +((( 1038 1038 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 718 +))) 1039 1039 1040 1040 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1041 1041 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1042 1042 1043 - 1044 - 1045 1045 = 4. FAQ = 1046 1046 1047 1047 == 4.1 What is the frequency plan for LDDS75? == ... ... @@ -1101,8 +1101,6 @@ 1101 1101 * (% style="color:red" %)**4 **(%%)**: **4000mAh battery 1102 1102 * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery 1103 1103 1104 - 1105 - 1106 1106 = 7. Packing Info = 1107 1107 1108 1108 ... ... @@ -1117,8 +1117,6 @@ 1117 1117 * Package Size / pcs : cm 1118 1118 * Weight / pcs : g 1119 1119 1120 - 1121 - 1122 1122 = 8. Support = 1123 1123 1124 1124 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.5 KB - Content
- image-20220615102527-16.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +182.9 KB - Content