Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 75- LoRaWANDistanceDetectionSensor User Manual1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:1654 846127817-788.png]]2 +[[image:1655254599445-662.png]] 3 3 4 -**Contents:** 5 5 6 -{{toc/}} 7 7 8 8 7 +**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,9 +12,11 @@ 12 12 13 13 14 14 14 + 15 + 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN DistanceDetectionSensor ==18 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 18 18 19 19 ((( 20 20 ... ... @@ -21,7 +21,8 @@ 21 21 22 22 ((( 23 23 ((( 24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 25 +((( 26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 25 25 ))) 26 26 27 27 ((( ... ... @@ -29,7 +29,7 @@ 29 29 ))) 30 30 31 31 ((( 32 - It detectsthedistance**(% style="color:#4472c4" %)between the measured object and thesensor(%%)**,anduploadsthe valuevia wirelesstoLoRaWAN IoT Server.34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 33 33 ))) 34 34 35 35 ((( ... ... @@ -37,7 +37,7 @@ 37 37 ))) 38 38 39 39 ((( 40 - TheLoRawireless technologyusedin LDDS75allowsdeviceto senddataandreachextremelylongrangesatlow data-rates.Itprovidesultra-longrangespread spectrumcommunicationandhighinterferenceimmunitywhilstminimizingcurrent consumption.42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 41 41 ))) 42 42 43 43 ((( ... ... @@ -45,7 +45,7 @@ 45 45 ))) 46 46 47 47 ((( 48 -L DDS75ispoweredby(%style="color:#4472c4"%)** 4000mAor8500mAhLi-SOCI2battery**(%%);It isdesignedforlong term use upto10years*.50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 49 49 ))) 50 50 51 51 ((( ... ... @@ -53,7 +53,7 @@ 53 53 ))) 54 54 55 55 ((( 56 - EachLDDS75pre-loadswithasetof unique keys forLoRaWANregistrations, register thesekeystolocal LoRaWAN serverand it will autoconnectifthereisnetworkcoverage,afterpower on.58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 57 57 ))) 58 58 59 59 ((( ... ... @@ -61,13 +61,24 @@ 61 61 ))) 62 62 63 63 ((( 66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 67 +))) 68 + 69 +((( 70 + 71 +))) 72 +))) 73 + 74 +((( 75 +((( 64 64 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 65 65 ))) 66 66 ))) 67 67 ))) 80 +))) 68 68 69 69 70 -[[image:165 4847051249-359.png]]83 +[[image:1655255122126-327.png]] 71 71 72 72 73 73 ... ... @@ -75,9 +75,10 @@ 75 75 76 76 * LoRaWAN 1.0.3 Class A 77 77 * Ultra low power consumption 78 -* Distance Detection by Ultrasonic technology 79 -* Flat object range 280mm - 7500mm 80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 91 +* Liquid Level Measurement by Ultrasonic technology 92 +* Measure through container, No need to contact Liquid. 93 +* Valid level range 20mm - 2000mm 94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 81 81 * Cable Length : 25cm 82 82 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 83 83 * AT Commands to change parameters ... ... @@ -84,754 +84,396 @@ 84 84 * Uplink on periodically 85 85 * Downlink to change configure 86 86 * IP66 Waterproof Enclosure 87 -* 4000mAh or8500mAh Battery for long term use101 +* 8500mAh Battery for long term use 88 88 89 -== 1.3 S pecification ==103 +== 1.3 Suitable Container & Liquid == 90 90 91 -=== 1.3.1 Rated environmental conditions === 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 92 92 93 - [[image:image-20220610154839-1.png]]112 +== 1.4 Mechanical == 94 94 95 - **Remarks: (1) a. When the ambient temperatureis 0-39℃, the maximum humidity is90% (non-condensing);**114 +[[image:image-20220615090910-1.png]] 96 96 97 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 98 98 117 +[[image:image-20220615090910-2.png]] 99 99 100 100 101 -=== 1.3.2 Effective measurement range Reference beam pattern === 102 102 103 - **(1)The tested object isawhite cylindricaltube made of PVC, with a height of 100cmand a diameter of 7.5cm.**121 +== 1.5 Install LDDS20 == 104 104 105 105 124 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 106 106 107 - [[image:1654852253176-749.png]]126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 108 108 128 +[[image:image-20220615091045-3.png]] 109 109 110 110 111 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 112 112 132 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 113 113 114 - [[image:1654852175653-550.png]](%style="display:none"%)****134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 115 115 136 +[[image:image-20220615092010-11.png]] 116 116 117 117 118 - ==1.5 Applications==139 +No polish needed if the container is shine metal surface without paint or non-metal container. 119 119 120 -* Horizontal distance measurement 121 -* Liquid level measurement 122 -* Parking management system 123 -* Object proximity and presence detection 124 -* Intelligent trash can management system 125 -* Robot obstacle avoidance 126 -* Automatic control 127 -* Sewer 128 -* Bottom water level monitoring 141 +[[image:image-20220615092044-12.png]] 129 129 130 -== 1.6 Pin mapping and power on == 131 131 132 132 133 - [[image:1654847583902-256.png]]145 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 134 134 147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 135 135 136 136 137 - =2.ConfigureLDDS75to connect toLoRaWANnetwork=150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 138 138 139 - ==2.1Howitworks==152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]] 140 140 141 -((( 142 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 143 -))) 144 144 145 -((( 146 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 147 -))) 155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 148 148 149 149 158 +(% style="color:red" %)**LED Status:** 150 150 151 - ==2.2Quickguidetoconnectto LoRaWANserver(OTAA)==160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 152 152 153 -((( 154 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 155 -))) 162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 156 156 157 -((( 158 -[[image:1654848616367-242.png]] 159 -))) 165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 160 160 161 -((( 162 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 -))) 164 164 165 -((( 166 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 167 -))) 168 +(% style="color:red" %)**Note 2:** 168 168 169 -((( 170 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 171 -))) 170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 172 172 173 -[[image:image-20220607170145-1.jpeg]] 174 174 175 175 176 - ForOTAA registration, weneed toset**APP EUI/ APP KEY/ DEV EUI**.Some server mightno need tosetAPPEUI.174 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 177 177 178 - Enterthese keys in the LoRaWAN Serverportal.Belowis TTN V3 screen shot:176 +Prepare Eproxy AB glue. 179 179 180 - **Add APPEUIin the application**178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 181 181 182 - [[image:image-20220610161353-4.png]]180 +Reset LDDS20 and see if the BLUE LED is slowly blinking. 183 183 184 -[[image:image-2022061016 1353-5.png]]182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 185 185 186 -[[image:image-20220610161353-6.png]] 187 187 185 +(% style="color:red" %)**Note 1:** 188 188 189 - [[image:image-20220610161353-7.png]]187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 190 190 191 191 192 - Youcan alsochoosetocreatethe device manually.190 +(% style="color:red" %)**Note 2:** 193 193 194 - [[image:image-20220610161538-8.png]]192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 195 195 196 196 197 197 198 - **AddAPPKEYandDEV EUI**196 +== 1.6 Applications == 199 199 200 -[[image:image-20220610161538-9.png]] 198 +* Smart liquid control solution. 199 +* Smart liquefied gas solution. 201 201 201 +== 1.7 Precautions == 202 202 203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 203 203 204 - (% style="color:blue"%)**Step2**(%%):Power onLDDS75207 +== 1.8 Pin mapping and power on == 205 205 206 206 207 - Put a Jumper on JP2to power on the device.( The Switch must be in FLASHposition).210 +[[image:1655257026882-201.png]] 208 208 209 -[[image:image-20220610161724-10.png]] 210 210 211 211 212 -((( 213 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 214 -))) 214 += 2. Configure LDDS20 to connect to LoRaWAN network = 215 215 216 -[[image:1654849068701-275.png]] 217 217 217 +== 2.1 How it works == 218 218 219 - 220 -== 2.3 Uplink Payload == 221 - 222 222 ((( 223 -LDDS75 will uplink payload via LoRaWAN with below payload format: 224 - 225 -Uplink payload includes in total 4 bytes. 226 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 227 227 ))) 228 228 229 229 ((( 230 - 224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20. 231 231 ))) 232 232 233 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 234 -|=(% style="width: 62.5px;" %)((( 235 -**Size (bytes)** 236 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 237 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 238 -[[Distance>>||anchor="H2.3.2A0Distance"]] 239 239 240 -(unit: mm) 241 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 242 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 243 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 244 244 245 - [[image:1654850511545-399.png]]229 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 246 246 247 - 248 - 249 -=== 2.3.1 Battery Info === 250 - 251 - 252 -Check the battery voltage for LDDS75. 253 - 254 -Ex1: 0x0B45 = 2885mV 255 - 256 -Ex2: 0x0B49 = 2889mV 257 - 258 - 259 - 260 -=== 2.3.2 Distance === 261 - 262 -Get the distance. Flat object range 280mm - 7500mm. 263 - 264 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 265 - 266 - 267 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 268 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 269 - 270 - 271 -=== 2.3.3 Interrupt Pin === 272 - 273 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up. 274 - 275 -**Example:** 276 - 277 -0x00: Normal uplink packet. 278 - 279 -0x01: Interrupt Uplink Packet. 280 - 281 - 282 - 283 -=== 2.3.4 DS18B20 Temperature sensor === 284 - 285 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 286 - 287 -**Example**: 288 - 289 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 290 - 291 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 292 - 293 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 294 - 295 - 296 - 297 -=== 2.3.5 Sensor Flag === 298 - 299 -0x01: Detect Ultrasonic Sensor 300 - 301 -0x00: No Ultrasonic Sensor 302 - 303 - 304 - 305 -=== 2.3.6 Decode payload in The Things Network === 306 - 307 -While using TTN network, you can add the payload format to decode the payload. 308 - 309 - 310 -[[image:1654850829385-439.png]] 311 - 312 -The payload decoder function for TTN V3 is here: 313 - 314 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 315 - 316 - 317 - 318 -== 2.4 Uplink Interval == 319 - 320 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 321 - 322 - 323 - 324 -== 2.5 Show Data in DataCake IoT Server == 325 - 326 326 ((( 327 -[[ DATACAKE>>url:https://datacake.co/]] provides ahuman friendly interfacetoshow thesensordata, once wehavedata in TTN, wecan use[[DATACAKE>>url:https://datacake.co/]] tonnecttoTTNandseethe datain DATACAKE.Belowrethesteps:232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 328 328 ))) 329 329 330 330 ((( 331 - 236 +[[image:1655257698953-697.png]] 332 332 ))) 333 333 334 334 ((( 335 - (%style="color:blue"%)**Step 1**(%%)**: Besurehatyourdeviceis programmedandproperlyconnectedo thehistime.**240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 336 336 ))) 337 337 338 338 ((( 339 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 340 -))) 244 + 341 341 342 - 343 -[[image:1654592790040-760.png]] 344 - 345 - 346 -[[image:1654592800389-571.png]] 347 - 348 - 349 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 350 - 351 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 352 - 353 -[[image:1654851029373-510.png]] 354 - 355 - 356 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 357 - 358 -[[image:image-20220610165129-11.png||height="595" width="1088"]] 359 - 360 - 361 - 362 -== 2.6 Frequency Plans == 363 - 364 -((( 365 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 366 366 ))) 367 367 368 - 369 - 370 -=== 2.6.1 EU863-870 (EU868) === 371 - 372 372 ((( 373 - (%style="color:blue"%)**Uplink:**250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 374 374 ))) 375 375 376 -((( 377 -868.1 - SF7BW125 to SF12BW125 378 -))) 253 +[[image:image-20220607170145-1.jpeg]] 379 379 380 -((( 381 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 382 -))) 383 383 384 384 ((( 385 - 868.5-SF7BW125to SF12BW125257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 386 386 ))) 387 387 388 388 ((( 389 - 867.1-SF7BW125to SF12BW125261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 390 390 ))) 391 391 392 392 ((( 393 -867.3 - SF7BW125 to SF12BW125 394 -))) 395 - 396 -((( 397 -867.5 - SF7BW125 to SF12BW125 398 -))) 399 - 400 -((( 401 -867.7 - SF7BW125 to SF12BW125 402 -))) 403 - 404 -((( 405 -867.9 - SF7BW125 to SF12BW125 406 -))) 407 - 408 -((( 409 -868.8 - FSK 410 -))) 411 - 412 -((( 413 413 414 -))) 415 415 416 -((( 417 -(% style="color:blue" %)**Downlink:** 267 +**Add APP EUI in the application** 418 418 ))) 419 419 420 -((( 421 -Uplink channels 1-9 (RX1) 422 -))) 270 +[[image:image-20220610161353-4.png]] 423 423 424 -((( 425 -869.525 - SF9BW125 (RX2 downlink only) 426 -))) 272 +[[image:image-20220610161353-5.png]] 427 427 274 +[[image:image-20220610161353-6.png]] 428 428 429 429 430 - ===2.6.2 US902-928(US915) ===277 +[[image:image-20220610161353-7.png]] 431 431 432 -((( 433 -Used in USA, Canada and South America. Default use CHE=2 434 434 435 -(% style="color:blue" %)**Uplink:** 436 436 437 - 903.9-SF7BW125toSF10BW125281 +You can also choose to create the device manually. 438 438 439 - 904.1-SF7BW125toSF10BW125283 + [[image:image-20220610161538-8.png]] 440 440 441 -904.3 - SF7BW125 to SF10BW125 442 442 443 -904.5 - SF7BW125 to SF10BW125 444 444 445 - 904.7-SF7BW125toSF10BW125287 +**Add APP KEY and DEV EUI** 446 446 447 - 904.9-SF7BW125 to SF10BW125289 +[[image:image-20220610161538-9.png]] 448 448 449 -905.1 - SF7BW125 to SF10BW125 450 450 451 -905.3 - SF7BW125 to SF10BW125 452 452 293 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 453 453 454 -(% style="color:blue" %)**Downlink:** 455 455 456 - 923.3-SF7BW500toSF12BW500296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 457 457 458 - 923.9-SF7BW500to SF12BW500298 +[[image:image-20220615095102-14.png]] 459 459 460 -924.5 - SF7BW500 to SF12BW500 461 461 462 -925.1 - SF7BW500 to SF12BW500 463 463 464 -925.7 - SF7BW500 to SF12BW500 302 +((( 303 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 304 +))) 465 465 466 -9 26.3 - SF7BW500 to SF12BW500306 +[[image:1654849068701-275.png]] 467 467 468 -926.9 - SF7BW500 to SF12BW500 469 469 470 -927.5 - SF7BW500 to SF12BW500 471 471 472 - 923.3- SF12BW500(RX2 downlinkonly)310 +== 2.3 Uplink Payload == 473 473 474 - 475 - 476 -))) 477 - 478 -=== 2.6.3 CN470-510 (CN470) === 479 - 480 480 ((( 481 -Used in China, Default use CHE=1 482 -))) 483 - 484 484 ((( 485 -(% style="color:blue" %)**Uplink:** 486 -))) 314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 487 487 488 - (((489 -4 86.3-SF7BW125toSF12BW125316 +Uplink payload includes in total 8 bytes. 317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload). 490 490 ))) 491 - 492 -((( 493 -486.5 - SF7BW125 to SF12BW125 494 494 ))) 495 495 496 496 ((( 497 - 486.7- SF7BW125 to SF12BW125322 + 498 498 ))) 499 499 500 -((( 501 -486.9 - SF7BW125 to SF12BW125 502 -))) 325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 326 +|=(% style="width: 62.5px;" %)((( 327 +**Size (bytes)** 328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 330 +[[Distance>>||anchor="H2.3.2A0Distance"]] 503 503 504 -((( 505 -487.1 - SF7BW125 to SF12BW125 506 -))) 332 +(unit: mm) 333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 507 507 508 -((( 509 -487.3 - SF7BW125 to SF12BW125 510 -))) 337 +[[image:1654850511545-399.png]] 511 511 512 -((( 513 -487.5 - SF7BW125 to SF12BW125 514 -))) 515 515 516 -((( 517 -487.7 - SF7BW125 to SF12BW125 518 -))) 519 519 520 -((( 521 - 522 -))) 341 +=== 2.3.1 Battery Info === 523 523 524 -((( 525 -(% style="color:blue" %)**Downlink:** 526 -))) 527 527 528 -((( 529 -506.7 - SF7BW125 to SF12BW125 530 -))) 344 +Check the battery voltage for LDDS20. 531 531 532 -((( 533 -506.9 - SF7BW125 to SF12BW125 534 -))) 346 +Ex1: 0x0B45 = 2885mV 535 535 536 -((( 537 -507.1 - SF7BW125 to SF12BW125 538 -))) 348 +Ex2: 0x0B49 = 2889mV 539 539 540 -((( 541 -507.3 - SF7BW125 to SF12BW125 542 -))) 543 543 544 -((( 545 -507.5 - SF7BW125 to SF12BW125 546 -))) 547 547 548 -((( 549 -507.7 - SF7BW125 to SF12BW125 550 -))) 352 +=== 2.3.2 Distance === 551 551 552 552 ((( 553 - 507.9-SF7BW125toSF12BW125355 +Get the distance. Flat object range 20mm - 2000mm. 554 554 ))) 555 555 556 556 ((( 557 - 508.1-SF7BW125toSF12BW125359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 558 558 ))) 559 559 560 -((( 561 -505.3 - SF12BW125 (RX2 downlink only) 562 -))) 362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 563 563 365 +=== 2.3.3 Interrupt Pin === 564 564 367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 565 565 566 - === 2.6.4 AU915-928(AU915) ===369 +**Example:** 567 567 568 -((( 569 -Default use CHE=2 371 +0x00: Normal uplink packet. 570 570 571 - (%style="color:blue"%)**Uplink:**373 +0x01: Interrupt Uplink Packet. 572 572 573 -916.8 - SF7BW125 to SF12BW125 574 574 575 -917.0 - SF7BW125 to SF12BW125 576 576 577 - 917.2-SF7BW125toSF12BW125377 +=== 2.3.4 DS18B20 Temperature sensor === 578 578 579 - 917.4-SF7BW125toSF12BW125379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 580 580 581 - 917.6 - SF7BW125 to SF12BW125381 +**Example**: 582 582 583 - 917.8-SF7BW125toSF12BW125383 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 584 584 585 - 918.0-SF7BW125toSF12BW125385 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 586 586 587 - 918.2-SF7BW125toSF12BW125387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 588 588 589 589 590 -(% style="color:blue" %)**Downlink:** 591 591 592 - 923.3- SF7BW500toSF12BW500391 +=== 2.3.5 Sensor Flag === 593 593 594 -923.9 - SF7BW500 to SF12BW500 595 - 596 -924.5 - SF7BW500 to SF12BW500 597 - 598 -925.1 - SF7BW500 to SF12BW500 599 - 600 -925.7 - SF7BW500 to SF12BW500 601 - 602 -926.3 - SF7BW500 to SF12BW500 603 - 604 -926.9 - SF7BW500 to SF12BW500 605 - 606 -927.5 - SF7BW500 to SF12BW500 607 - 608 -923.3 - SF12BW500(RX2 downlink only) 609 - 610 - 611 - 612 -))) 613 - 614 -=== 2.6.5 AS920-923 & AS923-925 (AS923) === 615 - 616 616 ((( 617 - (% style="color:blue"%)**Default Uplink channel:**394 +0x01: Detect Ultrasonic Sensor 618 618 ))) 619 619 620 620 ((( 621 - 923.2-SF7BW125to SF10BW125398 +0x00: No Ultrasonic Sensor 622 622 ))) 623 623 624 -((( 625 -923.4 - SF7BW125 to SF10BW125 626 -))) 627 627 628 -((( 629 - 630 -))) 631 631 632 -((( 633 -(% style="color:blue" %)**Additional Uplink Channel**: 634 -))) 403 +=== 2.3.6 Decode payload in The Things Network === 635 635 636 -((( 637 -(OTAA mode, channel added by JoinAccept message) 638 -))) 405 +While using TTN network, you can add the payload format to decode the payload. 639 639 640 -((( 641 - 642 -))) 643 643 644 -((( 645 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 646 -))) 408 +[[image:1654850829385-439.png]] 647 647 648 -((( 649 -922.2 - SF7BW125 to SF10BW125 650 -))) 410 +The payload decoder function for TTN V3 is here: 651 651 652 652 ((( 653 - 922.4-SF7BW125toF10BW125413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 654 654 ))) 655 655 656 -((( 657 -922.6 - SF7BW125 to SF10BW125 658 -))) 659 659 660 -((( 661 -922.8 - SF7BW125 to SF10BW125 662 -))) 663 663 664 -((( 665 -923.0 - SF7BW125 to SF10BW125 666 -))) 418 +== 2.4 Downlink Payload == 667 667 668 -((( 669 -922.0 - SF7BW125 to SF10BW125 670 -))) 420 +By default, LDDS20 prints the downlink payload to console port. 671 671 672 -((( 673 - 674 -))) 422 +[[image:image-20220615100930-15.png]] 675 675 676 -((( 677 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 678 -))) 679 679 680 -((( 681 -923.6 - SF7BW125 to SF10BW125 682 -))) 425 +**Examples:** 683 683 684 -((( 685 -923.8 - SF7BW125 to SF10BW125 686 -))) 687 687 688 -((( 689 -924.0 - SF7BW125 to SF10BW125 690 -))) 428 +* (% style="color:blue" %)**Set TDC** 691 691 692 -((( 693 -924.2 - SF7BW125 to SF10BW125 694 -))) 430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 695 695 696 -((( 697 -924.4 - SF7BW125 to SF10BW125 698 -))) 432 +Payload: 01 00 00 1E TDC=30S 699 699 700 -((( 701 -924.6 - SF7BW125 to SF10BW125 702 -))) 434 +Payload: 01 00 00 3C TDC=60S 703 703 704 -((( 705 - 706 -))) 707 707 708 -((( 709 -(% style="color:blue" %)**Downlink:** 710 -))) 437 +* (% style="color:blue" %)**Reset** 711 711 712 -((( 713 -Uplink channels 1-8 (RX1) 714 -))) 439 +If payload = 0x04FF, it will reset the LDDS20 715 715 716 -((( 717 -923.2 - SF10BW125 (RX2) 718 -))) 719 719 442 +* (% style="color:blue" %)**CFM** 720 720 444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 721 721 722 -=== 2.6.6 KR920-923 (KR920) === 723 723 724 -((( 725 -(% style="color:blue" %)**Default channel:** 726 -))) 727 727 728 -((( 729 -922.1 - SF7BW125 to SF12BW125 730 -))) 448 +== 2.5 Show Data in DataCake IoT Server == 731 731 732 732 ((( 733 - 922.3-SF7BW125toSF12BW125451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 734 734 ))) 735 735 736 736 ((( 737 -922.5 - SF7BW125 to SF12BW125 738 -))) 739 - 740 -((( 741 741 742 742 ))) 743 743 744 744 ((( 745 -(% style="color:blue" %)** Uplink:(OTAAmode,channeladdedbyJoinAcceptmessage)**459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 746 746 ))) 747 747 748 748 ((( 749 - 922.1-SF7BW125toSF12BW125463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 750 750 ))) 751 751 752 -((( 753 -922.3 - SF7BW125 to SF12BW125 754 -))) 755 755 756 -((( 757 -922.5 - SF7BW125 to SF12BW125 758 -))) 467 +[[image:1654592790040-760.png]] 759 759 760 -((( 761 -922.7 - SF7BW125 to SF12BW125 762 -))) 763 763 764 -((( 765 -922.9 - SF7BW125 to SF12BW125 766 -))) 470 +[[image:1654592800389-571.png]] 767 767 768 -((( 769 -923.1 - SF7BW125 to SF12BW125 770 -))) 771 771 772 -((( 773 -923.3 - SF7BW125 to SF12BW125 774 -))) 473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 775 775 776 -((( 777 - 778 -))) 475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 779 779 780 -((( 781 -(% style="color:blue" %)**Downlink:** 782 -))) 477 +[[image:1654851029373-510.png]] 783 783 784 -((( 785 -Uplink channels 1-7(RX1) 786 -))) 787 787 788 -((( 789 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 790 -))) 480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 791 791 482 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 792 792 793 793 794 -=== 2.6.7 IN865-867 (IN865) === 795 795 796 -((( 797 -(% style="color:blue" %)**Uplink:** 798 -))) 486 +== 2.6 LED Indicator == 799 799 800 -((( 801 -865.0625 - SF7BW125 to SF12BW125 802 -))) 488 +The LDDS20 has an internal LED which is to show the status of different state. 803 803 804 -((( 805 -865.4025 - SF7BW125 to SF12BW125 806 -))) 807 807 808 -((( 809 -865.9850 - SF7BW125 to SF12BW125 810 -))) 811 - 812 -((( 813 - 814 -))) 815 - 816 -((( 817 -(% style="color:blue" %)**Downlink:** 818 -))) 819 - 820 -((( 821 -Uplink channels 1-3 (RX1) 822 -))) 823 - 824 -((( 825 -866.550 - SF10BW125 (RX2) 826 -))) 827 - 828 - 829 - 830 -== 2.7 LED Indicator == 831 - 832 -The LDDS75 has an internal LED which is to show the status of different state. 833 - 834 - 835 835 * Blink once when device power on. 836 836 * The device detects the sensor and flashes 5 times. 837 837 * Solid ON for 5 seconds once device successful Join the network. ... ... @@ -838,13 +838,21 @@ 838 838 * Blink once when device transmit a packet. 839 839 840 840 497 + 841 841 == 2.8 Firmware Change Log == 842 842 843 843 501 +((( 844 844 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 503 +))) 845 845 505 +((( 506 + 507 +))) 846 846 509 +((( 847 847 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 511 +))) 848 848 849 849 850 850 ... ... @@ -988,7 +988,9 @@ 988 988 [[image:image-20220610172924-5.png]] 989 989 990 990 655 +((( 991 991 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 657 +))) 992 992 993 993 994 994 [[image:image-20220610172924-6.png||height="601" width="860"]] ... ... @@ -1012,16 +1012,19 @@ 1012 1012 ((( 1013 1013 Format: Command Code (0x01) followed by 3 bytes time value. 1014 1014 681 +((( 1015 1015 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 683 +))) 1016 1016 1017 1017 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1018 1018 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1019 1019 ))) 688 +))) 1020 1020 1021 1021 1022 - 1023 -))) 1024 1024 692 + 693 + 1025 1025 == 3.3 Set Interrupt Mode == 1026 1026 1027 1027 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -1035,13 +1035,13 @@ 1035 1035 1036 1036 Format: Command Code (0x06) followed by 3 bytes. 1037 1037 707 +((( 1038 1038 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 709 +))) 1039 1039 1040 1040 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1041 1041 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1042 1042 1043 - 1044 - 1045 1045 = 4. FAQ = 1046 1046 1047 1047 == 4.1 What is the frequency plan for LDDS75? == ... ... @@ -1101,8 +1101,6 @@ 1101 1101 * (% style="color:red" %)**4 **(%%)**: **4000mAh battery 1102 1102 * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery 1103 1103 1104 - 1105 - 1106 1106 = 7. Packing Info = 1107 1107 1108 1108 ... ... @@ -1117,8 +1117,6 @@ 1117 1117 * Package Size / pcs : cm 1118 1118 * Weight / pcs : g 1119 1119 1120 - 1121 - 1122 1122 = 8. Support = 1123 1123 1124 1124 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.5 KB - Content