Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.35
edited by Xiaoling
on 2022/06/11 09:11
Change comment: There is no comment for this version
To version 173.5
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,9 +12,11 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
... ... @@ -21,7 +21,8 @@
21 21  
22 22  (((
23 23  (((
24 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
25 25  )))
26 26  
27 27  (((
... ... @@ -29,7 +29,7 @@
29 29  )))
30 30  
31 31  (((
32 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
41 41  )))
42 42  
43 43  (((
... ... @@ -45,7 +45,7 @@
45 45  )))
46 46  
47 47  (((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 49  )))
50 50  
51 51  (((
... ... @@ -53,7 +53,7 @@
53 53  )))
54 54  
55 55  (((
56 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
57 57  )))
58 58  
59 59  (((
... ... @@ -61,13 +61,24 @@
61 61  )))
62 62  
63 63  (((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
64 64  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 65  )))
66 66  )))
67 67  )))
80 +)))
68 68  
69 69  
70 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
71 71  
72 72  
73 73  
... ... @@ -75,9 +75,10 @@
75 75  
76 76  * LoRaWAN 1.0.3 Class A
77 77  * Ultra low power consumption
78 -* Distance Detection by Ultrasonic technology
79 -* Flat object range 280mm - 7500mm
80 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
81 81  * Cable Length : 25cm
82 82  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
83 83  * AT Commands to change parameters
... ... @@ -84,767 +84,418 @@
84 84  * Uplink on periodically
85 85  * Downlink to change configure
86 86  * IP66 Waterproof Enclosure
87 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
88 88  
89 -== 1.3  Specification ==
103 +== 1.3  Suitable Container & Liquid ==
90 90  
91 -=== 1.3.1  Rated environmental conditions ===
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
92 92  
93 -[[image:image-20220610154839-1.png]]
112 +== 1.4  Mechanical ==
94 94  
95 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
114 +[[image:image-20220615090910-1.png]]
96 96  
97 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
98 98  
117 +[[image:image-20220615090910-2.png]]
99 99  
100 100  
101 -=== 1.3.2  Effective measurement range Reference beam pattern ===
102 102  
103 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
121 +== 1.5  Install LDDS20 ==
104 104  
105 105  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
106 106  
107 -[[image:1654852253176-749.png]]
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 108  
128 +[[image:image-20220615091045-3.png]]
109 109  
110 110  
111 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
112 112  
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
113 113  
114 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
115 115  
136 +[[image:image-20220615092010-11.png]]
116 116  
117 117  
118 -== 1.5 ​ Applications ==
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
119 119  
120 -* Horizontal distance measurement
121 -* Liquid level measurement
122 -* Parking management system
123 -* Object proximity and presence detection
124 -* Intelligent trash can management system
125 -* Robot obstacle avoidance
126 -* Automatic control
127 -* Sewer
128 -* Bottom water level monitoring
141 +[[image:image-20220615092044-12.png]]
129 129  
130 -== 1.6  Pin mapping and power on ==
131 131  
132 132  
133 -[[image:1654847583902-256.png]]
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
134 134  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
135 135  
136 136  
137 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
138 138  
139 -== 2.1  How it works ==
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
140 140  
141 -(((
142 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
143 -)))
144 144  
145 -(((
146 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
147 -)))
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
148 148  
149 149  
158 +(% style="color:red" %)**LED Status:**
150 150  
151 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
152 152  
153 -(((
154 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
155 -)))
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
156 156  
157 -(((
158 -[[image:1654848616367-242.png]]
159 -)))
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
160 160  
161 -(((
162 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 -)))
164 164  
165 -(((
166 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
167 -)))
168 +(% style="color:red" %)**Note 2:**
168 168  
169 -(((
170 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
171 -)))
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
172 172  
173 -[[image:image-20220607170145-1.jpeg]]
174 174  
175 175  
176 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
177 177  
178 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
176 +Prepare Eproxy AB glue.
179 179  
180 -**Add APP EUI in the application**
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
181 181  
182 -[[image:image-20220610161353-4.png]]
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
183 183  
184 -[[image:image-20220610161353-5.png]]
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
185 185  
186 -[[image:image-20220610161353-6.png]]
187 187  
185 +(% style="color:red" %)**Note 1:**
188 188  
189 -[[image:image-20220610161353-7.png]]
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
190 190  
191 191  
192 -You can also choose to create the device manually.
190 +(% style="color:red" %)**Note 2:**
193 193  
194 - [[image:image-20220610161538-8.png]]
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
195 195  
196 196  
197 197  
198 -**Add APP KEY and DEV EUI**
196 +== 1.6 Applications ==
199 199  
200 -[[image:image-20220610161538-9.png]]
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
201 201  
201 +== 1.7  Precautions ==
202 202  
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
203 203  
204 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
207 +== 1.8  Pin mapping and power on ==
205 205  
206 206  
207 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
210 +[[image:1655257026882-201.png]]
208 208  
209 -[[image:image-20220610161724-10.png]]
210 210  
211 211  
212 -(((
213 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
214 -)))
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 215  
216 -[[image:1654849068701-275.png]]
217 217  
217 +== 2.1  How it works ==
218 218  
219 -
220 -== 2.3  ​Uplink Payload ==
221 -
222 222  (((
223 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
224 -
225 -Uplink payload includes in total 4 bytes.
226 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
227 227  )))
228 228  
229 229  (((
230 -
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
231 231  )))
232 232  
233 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
234 -|=(% style="width: 62.5px;" %)(((
235 -**Size (bytes)**
236 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
237 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
238 -[[Distance>>||anchor="H2.3.2A0Distance"]]
239 239  
240 -(unit: mm)
241 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
242 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
243 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
244 244  
245 -[[image:1654850511545-399.png]]
229 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
246 246  
247 -
248 -
249 -=== 2.3.1  Battery Info ===
250 -
251 -
252 -Check the battery voltage for LDDS75.
253 -
254 -Ex1: 0x0B45 = 2885mV
255 -
256 -Ex2: 0x0B49 = 2889mV
257 -
258 -
259 -
260 -=== 2.3.2  Distance ===
261 -
262 -Get the distance. Flat object range 280mm - 7500mm.
263 -
264 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
265 -
266 -
267 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
268 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
269 -
270 -
271 -=== 2.3.3  Interrupt Pin ===
272 -
273 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
274 -
275 -**Example:**
276 -
277 -0x00: Normal uplink packet.
278 -
279 -0x01: Interrupt Uplink Packet.
280 -
281 -
282 -
283 -=== 2.3.4  DS18B20 Temperature sensor ===
284 -
285 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
286 -
287 -**Example**:
288 -
289 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
290 -
291 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
292 -
293 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
294 -
295 -
296 -
297 -=== 2.3.5  Sensor Flag ===
298 -
299 -0x01: Detect Ultrasonic Sensor
300 -
301 -0x00: No Ultrasonic Sensor
302 -
303 -
304 -
305 -=== 2.3.6  Decode payload in The Things Network ===
306 -
307 -While using TTN network, you can add the payload format to decode the payload.
308 -
309 -
310 -[[image:1654850829385-439.png]]
311 -
312 -The payload decoder function for TTN V3 is here:
313 -
314 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
315 -
316 -
317 -
318 -== 2.4  Uplink Interval ==
319 -
320 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321 -
322 -
323 -
324 -== 2.5  ​Show Data in DataCake IoT Server ==
325 -
326 326  (((
327 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
328 328  )))
329 329  
330 330  (((
331 -
236 +[[image:1655257698953-697.png]]
332 332  )))
333 333  
334 334  (((
335 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
336 336  )))
337 337  
338 338  (((
339 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
340 -)))
244 +
341 341  
342 -
343 -[[image:1654592790040-760.png]]
344 -
345 -
346 -[[image:1654592800389-571.png]]
347 -
348 -
349 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
350 -
351 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
352 -
353 -[[image:1654851029373-510.png]]
354 -
355 -
356 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
357 -
358 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
359 -
360 -
361 -
362 -== 2.6  Frequency Plans ==
363 -
364 -(((
365 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
366 366  )))
367 367  
368 -
369 -
370 -=== 2.6.1  EU863-870 (EU868) ===
371 -
372 372  (((
373 -(% style="color:blue" %)**Uplink:**
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
374 374  )))
375 375  
376 -(((
377 -868.1 - SF7BW125 to SF12BW125
378 -)))
253 +[[image:image-20220607170145-1.jpeg]]
379 379  
380 -(((
381 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
382 -)))
383 383  
384 384  (((
385 -868.5 - SF7BW125 to SF12BW125
257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
386 386  )))
387 387  
388 388  (((
389 -867.1 - SF7BW125 to SF12BW125
261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
390 390  )))
391 391  
392 392  (((
393 -867.3 - SF7BW125 to SF12BW125
394 -)))
395 -
396 -(((
397 -867.5 - SF7BW125 to SF12BW125
398 -)))
399 -
400 -(((
401 -867.7 - SF7BW125 to SF12BW125
402 -)))
403 -
404 -(((
405 -867.9 - SF7BW125 to SF12BW125
406 -)))
407 -
408 -(((
409 -868.8 - FSK
410 -)))
411 -
412 -(((
413 413  
414 -)))
415 415  
416 -(((
417 -(% style="color:blue" %)**Downlink:**
267 +**Add APP EUI in the application**
418 418  )))
419 419  
420 -(((
421 -Uplink channels 1-9 (RX1)
422 -)))
270 +[[image:image-20220610161353-4.png]]
423 423  
424 -(((
425 -869.525 - SF9BW125 (RX2 downlink only)
426 -)))
272 +[[image:image-20220610161353-5.png]]
427 427  
274 +[[image:image-20220610161353-6.png]]
428 428  
429 429  
430 -=== 2.6.2  US902-928(US915) ===
277 +[[image:image-20220610161353-7.png]]
431 431  
432 -(((
433 -Used in USA, Canada and South America. Default use CHE=2
434 434  
435 -(% style="color:blue" %)**Uplink:**
436 436  
437 -903.9 - SF7BW125 to SF10BW125
281 +You can also choose to create the device manually.
438 438  
439 -904.1 - SF7BW125 to SF10BW125
283 + [[image:image-20220610161538-8.png]]
440 440  
441 -904.3 - SF7BW125 to SF10BW125
442 442  
443 -904.5 - SF7BW125 to SF10BW125
444 444  
445 -904.7 - SF7BW125 to SF10BW125
287 +**Add APP KEY and DEV EUI**
446 446  
447 -904.9 - SF7BW125 to SF10BW125
289 +[[image:image-20220610161538-9.png]]
448 448  
449 -905.1 - SF7BW125 to SF10BW125
450 450  
451 -905.3 - SF7BW125 to SF10BW125
452 452  
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
453 453  
454 -(% style="color:blue" %)**Downlink:**
455 455  
456 -923.3 - SF7BW500 to SF12BW500
296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
457 457  
458 -923.9 - SF7BW500 to SF12BW500
298 +[[image:image-20220615095102-14.png]]
459 459  
460 -924.5 - SF7BW500 to SF12BW500
461 461  
462 -925.1 - SF7BW500 to SF12BW500
463 463  
464 -925.7 - SF7BW500 to SF12BW500
302 +(((
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304 +)))
465 465  
466 -926.3 - SF7BW500 to SF12BW500
306 +[[image:1654849068701-275.png]]
467 467  
468 -926.9 - SF7BW500 to SF12BW500
469 469  
470 -927.5 - SF7BW500 to SF12BW500
471 471  
472 -923.3 - SF12BW500(RX2 downlink only)
310 +== 2.3  ​Uplink Payload ==
473 473  
474 -
475 -
476 -)))
477 -
478 -=== 2.6.3  CN470-510 (CN470) ===
479 -
480 480  (((
481 -Used in China, Default use CHE=1
482 -)))
483 -
484 484  (((
485 -(% style="color:blue" %)**Uplink:**
486 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
487 487  
488 -(((
489 -486.3 - SF7BW125 to SF12BW125
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
490 490  )))
491 -
492 -(((
493 -486.5 - SF7BW125 to SF12BW125
494 494  )))
495 495  
496 496  (((
497 -486.7 - SF7BW125 to SF12BW125
322 +
498 498  )))
499 499  
500 -(((
501 -486.9 - SF7BW125 to SF12BW125
502 -)))
325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 +|=(% style="width: 62.5px;" %)(((
327 +**Size (bytes)**
328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 +[[Distance>>||anchor="H2.3.2A0Distance"]]
503 503  
504 -(((
505 -487.1 - SF7BW125 to SF12BW125
506 -)))
332 +(unit: mm)
333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
507 507  
508 -(((
509 -487.3 - SF7BW125 to SF12BW125
510 -)))
337 +[[image:1654850511545-399.png]]
511 511  
512 -(((
513 -487.5 - SF7BW125 to SF12BW125
514 -)))
515 515  
516 -(((
517 -487.7 - SF7BW125 to SF12BW125
518 -)))
519 519  
520 -(((
521 -
522 -)))
341 +=== 2.3.1  Battery Info ===
523 523  
524 -(((
525 -(% style="color:blue" %)**Downlink:**
526 -)))
527 527  
528 -(((
529 -506.7 - SF7BW125 to SF12BW125
530 -)))
344 +Check the battery voltage for LDDS20.
531 531  
532 -(((
533 -506.9 - SF7BW125 to SF12BW125
534 -)))
346 +Ex1: 0x0B45 = 2885mV
535 535  
536 -(((
537 -507.1 - SF7BW125 to SF12BW125
538 -)))
348 +Ex2: 0x0B49 = 2889mV
539 539  
540 -(((
541 -507.3 - SF7BW125 to SF12BW125
542 -)))
543 543  
544 -(((
545 -507.5 - SF7BW125 to SF12BW125
546 -)))
547 547  
548 -(((
549 -507.7 - SF7BW125 to SF12BW125
550 -)))
352 +=== 2.3.2  Distance ===
551 551  
552 552  (((
553 -507.9 - SF7BW125 to SF12BW125
355 +Get the distance. Flat object range 20mm - 2000mm.
554 554  )))
555 555  
556 556  (((
557 -508.1 - SF7BW125 to SF12BW125
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
558 558  )))
559 559  
560 -(((
561 -505.3 - SF12BW125 (RX2 downlink only)
562 -)))
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
563 563  
365 +=== 2.3.3  Interrupt Pin ===
564 564  
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
565 565  
566 -=== 2.6.4  AU915-928(AU915) ===
369 +**Example:**
567 567  
568 -(((
569 -Default use CHE=2
371 +0x00: Normal uplink packet.
570 570  
571 -(% style="color:blue" %)**Uplink:**
373 +0x01: Interrupt Uplink Packet.
572 572  
573 -916.8 - SF7BW125 to SF12BW125
574 574  
575 -917.0 - SF7BW125 to SF12BW125
576 576  
577 -917.2 - SF7BW125 to SF12BW125
377 +=== 2.3.4  DS18B20 Temperature sensor ===
578 578  
579 -917.4 - SF7BW125 to SF12BW125
379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
580 580  
581 -917.6 - SF7BW125 to SF12BW125
381 +**Example**:
582 582  
583 -917.8 - SF7BW125 to SF12BW125
383 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
584 584  
585 -918.0 - SF7BW125 to SF12BW125
385 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
586 586  
587 -918.2 - SF7BW125 to SF12BW125
387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
588 588  
589 589  
590 -(% style="color:blue" %)**Downlink:**
591 591  
592 -923.3 - SF7BW500 to SF12BW500
391 +=== 2.3.5  Sensor Flag ===
593 593  
594 -923.9 - SF7BW500 to SF12BW500
595 -
596 -924.5 - SF7BW500 to SF12BW500
597 -
598 -925.1 - SF7BW500 to SF12BW500
599 -
600 -925.7 - SF7BW500 to SF12BW500
601 -
602 -926.3 - SF7BW500 to SF12BW500
603 -
604 -926.9 - SF7BW500 to SF12BW500
605 -
606 -927.5 - SF7BW500 to SF12BW500
607 -
608 -923.3 - SF12BW500(RX2 downlink only)
609 -
610 -
611 -
612 -)))
613 -
614 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
615 -
616 616  (((
617 -(% style="color:blue" %)**Default Uplink channel:**
394 +0x01: Detect Ultrasonic Sensor
618 618  )))
619 619  
620 620  (((
621 -923.2 - SF7BW125 to SF10BW125
398 +0x00: No Ultrasonic Sensor
622 622  )))
623 623  
624 -(((
625 -923.4 - SF7BW125 to SF10BW125
626 -)))
627 627  
628 -(((
629 -
630 -)))
631 631  
632 -(((
633 -(% style="color:blue" %)**Additional Uplink Channel**:
634 -)))
403 +=== 2.3.6  Decode payload in The Things Network ===
635 635  
636 -(((
637 -(OTAA mode, channel added by JoinAccept message)
638 -)))
405 +While using TTN network, you can add the payload format to decode the payload.
639 639  
640 -(((
641 -
642 -)))
643 643  
644 -(((
645 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
646 -)))
408 +[[image:1654850829385-439.png]]
647 647  
648 -(((
649 -922.2 - SF7BW125 to SF10BW125
650 -)))
410 +The payload decoder function for TTN V3 is here:
651 651  
652 652  (((
653 -922.4 - SF7BW125 to SF10BW125
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
654 654  )))
655 655  
656 -(((
657 -922.6 - SF7BW125 to SF10BW125
658 -)))
659 659  
660 -(((
661 -922.8 - SF7BW125 to SF10BW125
662 -)))
663 663  
664 -(((
665 -923.0 - SF7BW125 to SF10BW125
666 -)))
418 +== 2.4  Downlink Payload ==
667 667  
668 -(((
669 -922.0 - SF7BW125 to SF10BW125
670 -)))
420 +By default, LDDS20 prints the downlink payload to console port.
671 671  
672 -(((
673 -
674 -)))
422 +[[image:image-20220615100930-15.png]]
675 675  
676 -(((
677 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
678 -)))
679 679  
680 -(((
681 -923.6 - SF7BW125 to SF10BW125
682 -)))
425 +**Examples:**
683 683  
684 -(((
685 -923.8 - SF7BW125 to SF10BW125
686 -)))
687 687  
688 -(((
689 -924.0 - SF7BW125 to SF10BW125
690 -)))
428 +* (% style="color:blue" %)**Set TDC**
691 691  
692 -(((
693 -924.2 - SF7BW125 to SF10BW125
694 -)))
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
695 695  
696 -(((
697 -924.4 - SF7BW125 to SF10BW125
698 -)))
432 +Payload:    01 00 00 1E    TDC=30S
699 699  
700 -(((
701 -924.6 - SF7BW125 to SF10BW125
702 -)))
434 +Payload:    01 00 00 3C    TDC=60S
703 703  
704 -(((
705 -
706 -)))
707 707  
708 -(((
709 -(% style="color:blue" %)**Downlink:**
710 -)))
437 +* (% style="color:blue" %)**Reset**
711 711  
712 -(((
713 -Uplink channels 1-8 (RX1)
714 -)))
439 +If payload = 0x04FF, it will reset the LDDS20
715 715  
716 -(((
717 -923.2 - SF10BW125 (RX2)
718 -)))
719 719  
442 +* (% style="color:blue" %)**CFM**
720 720  
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
721 721  
722 -=== 2.6.6  KR920-923 (KR920) ===
723 723  
724 -(((
725 -(% style="color:blue" %)**Default channel:**
726 -)))
727 727  
728 -(((
729 -922.1 - SF7BW125 to SF12BW125
730 -)))
448 +== 2.5  ​Show Data in DataCake IoT Server ==
731 731  
732 732  (((
733 -922.3 - SF7BW125 to SF12BW125
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
734 734  )))
735 735  
736 736  (((
737 -922.5 - SF7BW125 to SF12BW125
738 -)))
739 -
740 -(((
741 741  
742 742  )))
743 743  
744 744  (((
745 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
746 746  )))
747 747  
748 748  (((
749 -922.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
750 750  )))
751 751  
752 -(((
753 -922.3 - SF7BW125 to SF12BW125
754 -)))
755 755  
756 -(((
757 -922.5 - SF7BW125 to SF12BW125
758 -)))
467 +[[image:1654592790040-760.png]]
759 759  
760 -(((
761 -922.7 - SF7BW125 to SF12BW125
762 -)))
763 763  
764 -(((
765 -922.9 - SF7BW125 to SF12BW125
766 -)))
470 +[[image:1654592800389-571.png]]
767 767  
768 -(((
769 -923.1 - SF7BW125 to SF12BW125
770 -)))
771 771  
772 -(((
773 -923.3 - SF7BW125 to SF12BW125
774 -)))
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
775 775  
776 -(((
777 -
778 -)))
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
779 779  
780 -(((
781 -(% style="color:blue" %)**Downlink:**
782 -)))
477 +[[image:1654851029373-510.png]]
783 783  
784 -(((
785 -Uplink channels 1-7(RX1)
786 -)))
787 787  
788 -(((
789 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
790 -)))
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
791 791  
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
792 792  
793 793  
794 -=== 2.6.7  IN865-867 (IN865) ===
795 795  
796 -(((
797 -(% style="color:blue" %)**Uplink:**
798 -)))
486 +== 2.6  LED Indicator ==
799 799  
800 -(((
801 -865.0625 - SF7BW125 to SF12BW125
802 -)))
488 +The LDDS20 has an internal LED which is to show the status of different state.
803 803  
804 -(((
805 -865.4025 - SF7BW125 to SF12BW125
806 -)))
807 807  
808 -(((
809 -865.9850 - SF7BW125 to SF12BW125
810 -)))
811 -
812 -(((
813 -
814 -)))
815 -
816 -(((
817 -(% style="color:blue" %)**Downlink:**
818 -)))
819 -
820 -(((
821 -Uplink channels 1-3 (RX1)
822 -)))
823 -
824 -(((
825 -866.550 - SF10BW125 (RX2)
826 -)))
827 -
828 -
829 -
830 -== 2.7  LED Indicator ==
831 -
832 -The LDDS75 has an internal LED which is to show the status of different state.
833 -
834 -
835 835  * Blink once when device power on.
836 836  * The device detects the sensor and flashes 5 times.
837 837  * Solid ON for 5 seconds once device successful Join the network.
838 -* Blink once when device transmit a packet.
839 839  
495 +Blink once when device transmit a packet.
840 840  
497 +
498 +
841 841  == 2.8  ​Firmware Change Log ==
842 842  
843 843  
502 +(((
844 844  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
504 +)))
845 845  
506 +(((
507 +
508 +)))
846 846  
510 +(((
847 847  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
512 +)))
848 848  
849 849  
850 850  
... ... @@ -988,7 +988,9 @@
988 988  [[image:image-20220610172924-5.png]]
989 989  
990 990  
656 +(((
991 991  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
658 +)))
992 992  
993 993  
994 994   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -1012,16 +1012,19 @@
1012 1012  (((
1013 1013  Format: Command Code (0x01) followed by 3 bytes time value.
1014 1014  
682 +(((
1015 1015  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
684 +)))
1016 1016  
1017 1017  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1018 1018  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1019 1019  )))
689 +)))
1020 1020  
1021 1021  
1022 -
1023 -)))
1024 1024  
693 +
694 +
1025 1025  == 3.3  Set Interrupt Mode ==
1026 1026  
1027 1027  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1035,13 +1035,13 @@
1035 1035  
1036 1036  Format: Command Code (0x06) followed by 3 bytes.
1037 1037  
708 +(((
1038 1038  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
710 +)))
1039 1039  
1040 1040  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1041 1041  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1042 1042  
1043 -
1044 -
1045 1045  = 4.  FAQ =
1046 1046  
1047 1047  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1101,8 +1101,6 @@
1101 1101  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1102 1102  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1103 1103  
1104 -
1105 -
1106 1106  = 7. ​ Packing Info =
1107 1107  
1108 1108  
... ... @@ -1117,8 +1117,6 @@
1117 1117  * Package Size / pcs : cm
1118 1118  * Weight / pcs : g
1119 1119  
1120 -
1121 -
1122 1122  = 8.  ​Support =
1123 1123  
1124 1124  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content