Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.34
edited by Xiaoling
on 2022/06/11 09:10
Change comment: There is no comment for this version
To version 174.9
edited by Xiaoling
on 2022/06/15 10:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,35 +12,76 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
24 +(((
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
27 +)))
24 24  
29 +(((
30 +
31 +)))
25 25  
26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 +(((
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
35 +)))
27 27  
37 +(((
38 +
39 +)))
28 28  
29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 +(((
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
43 +)))
30 30  
45 +(((
46 +
47 +)))
31 31  
32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
49 +(((
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
51 +)))
33 33  
53 +(((
54 +
55 +)))
34 34  
35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
57 +(((
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
59 +)))
36 36  
61 +(((
62 +
63 +)))
37 37  
65 +(((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 +)))
68 +
69 +(((
70 +
71 +)))
72 +)))
73 +
74 +(((
75 +(((
38 38  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
39 39  )))
40 40  )))
79 +)))
80 +)))
41 41  
42 42  
43 -[[image:1654847051249-359.png]]
83 +[[image:1655255122126-327.png]]
44 44  
45 45  
46 46  
... ... @@ -48,9 +48,10 @@
48 48  
49 49  * LoRaWAN 1.0.3 Class A
50 50  * Ultra low power consumption
51 -* Distance Detection by Ultrasonic technology
52 -* Flat object range 280mm - 7500mm
53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
54 54  * Cable Length : 25cm
55 55  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 56  * AT Commands to change parameters
... ... @@ -57,66 +57,130 @@
57 57  * Uplink on periodically
58 58  * Downlink to change configure
59 59  * IP66 Waterproof Enclosure
60 -* 4000mAh or 8500mAh Battery for long term use
101 +* 8500mAh Battery for long term use
61 61  
62 -== 1.3  Specification ==
103 +== 1.3  Suitable Container & Liquid ==
63 63  
64 -=== 1.3.1  Rated environmental conditions ===
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
65 65  
66 -[[image:image-20220610154839-1.png]]
112 +== 1.4  Mechanical ==
67 67  
68 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
114 +[[image:image-20220615090910-1.png]]
69 69  
70 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 71  
117 +[[image:image-20220615090910-2.png]]
72 72  
73 73  
74 -=== 1.3.2  Effective measurement range Reference beam pattern ===
75 75  
76 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
121 +== 1.5  Install LDDS20 ==
77 77  
78 78  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
79 79  
80 -[[image:1654852253176-749.png]]
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
81 81  
128 +[[image:image-20220615091045-3.png]]
82 82  
83 83  
84 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
85 85  
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
86 86  
87 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
88 88  
136 +[[image:image-20220615092010-11.png]]
89 89  
90 90  
91 -== 1.5 ​ Applications ==
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
92 92  
93 -* Horizontal distance measurement
94 -* Liquid level measurement
95 -* Parking management system
96 -* Object proximity and presence detection
97 -* Intelligent trash can management system
98 -* Robot obstacle avoidance
99 -* Automatic control
100 -* Sewer
101 -* Bottom water level monitoring
141 +[[image:image-20220615092044-12.png]]
102 102  
103 -== 1.6  Pin mapping and power on ==
104 104  
105 105  
106 -[[image:1654847583902-256.png]]
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
107 107  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
108 108  
109 109  
110 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
111 111  
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
153 +
154 +
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 +
157 +
158 +(% style="color:red" %)**LED Status:**
159 +
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 +
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 +
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +
167 +
168 +(% style="color:red" %)**Note 2:**
169 +
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 +
172 +
173 +
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 +
176 +Prepare Eproxy AB glue.
177 +
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 +
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 +
184 +
185 +(% style="color:red" %)**Note 1:**
186 +
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +
189 +
190 +(% style="color:red" %)**Note 2:**
191 +
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 +
194 +
195 +
196 +== 1.6 ​ Applications ==
197 +
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
200 +
201 +== 1.7  Precautions ==
202 +
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 +
207 +== 1.8  Pin mapping and power on ==
208 +
209 +
210 +[[image:1655257026882-201.png]]
211 +
212 +
213 +
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
215 +
216 +
112 112  == 2.1  How it works ==
113 113  
114 114  (((
115 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
116 116  )))
117 117  
118 118  (((
119 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
120 120  )))
121 121  
122 122  
... ... @@ -128,7 +128,7 @@
128 128  )))
129 129  
130 130  (((
131 -[[image:1654848616367-242.png]]
236 +[[image:1655257698953-697.png]]
132 132  )))
133 133  
134 134  (((
... ... @@ -136,21 +136,31 @@
136 136  )))
137 137  
138 138  (((
139 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
244 +
245 +
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
140 140  )))
141 141  
142 142  (((
143 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
144 144  )))
145 145  
146 146  [[image:image-20220607170145-1.jpeg]]
147 147  
148 148  
256 +(((
149 149  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
258 +)))
150 150  
260 +(((
151 151  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
262 +)))
152 152  
264 +(((
265 +
266 +
153 153  **Add APP EUI in the application**
268 +)))
154 154  
155 155  [[image:image-20220610161353-4.png]]
156 156  
... ... @@ -162,6 +162,7 @@
162 162  [[image:image-20220610161353-7.png]]
163 163  
164 164  
280 +
165 165  You can also choose to create the device manually.
166 166  
167 167   [[image:image-20220610161538-8.png]]
... ... @@ -174,16 +174,17 @@
174 174  
175 175  
176 176  
177 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
178 178  
179 179  
180 180  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
181 181  
182 -[[image:image-20220610161724-10.png]]
298 +[[image:image-20220615095102-14.png]]
183 183  
184 184  
301 +
185 185  (((
186 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
187 187  )))
188 188  
189 189  [[image:1654849068701-275.png]]
... ... @@ -193,11 +193,13 @@
193 193  == 2.3  ​Uplink Payload ==
194 194  
195 195  (((
196 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
313 +(((
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
197 197  
198 -Uplink payload includes in total 4 bytes.
199 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
200 200  )))
319 +)))
201 201  
202 202  (((
203 203  
... ... @@ -222,7 +222,7 @@
222 222  === 2.3.1  Battery Info ===
223 223  
224 224  
225 -Check the battery voltage for LDDS75.
344 +Check the battery voltage for LDDS20.
226 226  
227 227  Ex1: 0x0B45 = 2885mV
228 228  
... ... @@ -232,18 +232,22 @@
232 232  
233 233  === 2.3.2  Distance ===
234 234  
235 -Get the distance. Flat object range 280mm - 7500mm.
354 +(((
355 +Get the distance. Flat object range 20mm - 2000mm.
356 +)))
236 236  
237 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
358 +(((
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 +)))
238 238  
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
239 239  
240 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
241 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
242 242  
243 243  
244 244  === 2.3.3  Interrupt Pin ===
245 245  
246 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
369 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
247 247  
248 248  **Example:**
249 249  
... ... @@ -269,9 +269,13 @@
269 269  
270 270  === 2.3.5  Sensor Flag ===
271 271  
395 +(((
272 272  0x01: Detect Ultrasonic Sensor
397 +)))
273 273  
399 +(((
274 274  0x00: No Ultrasonic Sensor
401 +)))
275 275  
276 276  
277 277  
... ... @@ -284,690 +284,301 @@
284 284  
285 285  The payload decoder function for TTN V3 is here:
286 286  
287 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
288 -
289 -
290 -
291 -== 2.4  Uplink Interval ==
292 -
293 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
294 -
295 -
296 -
297 -== 2.5  ​Show Data in DataCake IoT Server ==
298 -
299 299  (((
300 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
415 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
301 301  )))
302 302  
303 -(((
304 -
305 -)))
306 306  
307 -(((
308 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
309 -)))
310 310  
311 -(((
312 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
313 -)))
420 +== 2.4  Downlink Payload ==
314 314  
422 +By default, LDDS20 prints the downlink payload to console port.
315 315  
316 -[[image:1654592790040-760.png]]
424 +[[image:image-20220615100930-15.png]]
317 317  
318 318  
319 -[[image:1654592800389-571.png]]
427 +**Examples:**
320 320  
321 321  
322 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
430 +* (% style="color:blue" %)**Set TDC**
323 323  
324 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
432 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
325 325  
326 -[[image:1654851029373-510.png]]
434 +Payload:    01 00 00 1E    TDC=30S
327 327  
436 +Payload:    01 00 00 3C    TDC=60S
328 328  
329 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
330 330  
331 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
439 +* (% style="color:blue" %)**Reset**
332 332  
441 +If payload = 0x04FF, it will reset the LDDS20
333 333  
334 334  
335 -== 2.6  Frequency Plans ==
444 +* (% style="color:blue" %)**CFM**
336 336  
337 -(((
338 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
339 -)))
446 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
340 340  
341 341  
342 342  
343 -=== 2.6.1  EU863-870 (EU868) ===
450 +== 2.5  ​Show Data in DataCake IoT Server ==
344 344  
345 345  (((
346 -(% style="color:blue" %)**Uplink:**
453 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
347 347  )))
348 348  
349 349  (((
350 -868.1 - SF7BW125 to SF12BW125
351 -)))
352 -
353 -(((
354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
355 -)))
356 -
357 -(((
358 -868.5 - SF7BW125 to SF12BW125
359 -)))
360 -
361 -(((
362 -867.1 - SF7BW125 to SF12BW125
363 -)))
364 -
365 -(((
366 -867.3 - SF7BW125 to SF12BW125
367 -)))
368 -
369 -(((
370 -867.5 - SF7BW125 to SF12BW125
371 -)))
372 -
373 -(((
374 -867.7 - SF7BW125 to SF12BW125
375 -)))
376 -
377 -(((
378 -867.9 - SF7BW125 to SF12BW125
379 -)))
380 -
381 -(((
382 -868.8 - FSK
383 -)))
384 -
385 -(((
386 386  
387 387  )))
388 388  
389 389  (((
390 -(% style="color:blue" %)**Downlink:**
461 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
391 391  )))
392 392  
393 393  (((
394 -Uplink channels 1-9 (RX1)
465 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
395 395  )))
396 396  
397 -(((
398 -869.525 - SF9BW125 (RX2 downlink only)
399 -)))
400 400  
469 +[[image:1654592790040-760.png]]
401 401  
402 402  
403 -=== 2.6.2  US902-928(US915) ===
472 +[[image:1654592800389-571.png]]
404 404  
405 -(((
406 -Used in USA, Canada and South America. Default use CHE=2
407 407  
408 -(% style="color:blue" %)**Uplink:**
475 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
409 409  
410 -903.9 - SF7BW125 to SF10BW125
477 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
411 411  
412 -904.1 - SF7BW125 to SF10BW125
479 +[[image:1654851029373-510.png]]
413 413  
414 -904.3 - SF7BW125 to SF10BW125
415 415  
416 -904.5 - SF7BW125 to SF10BW125
482 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
417 417  
418 -904.7 - SF7BW125 to SF10BW125
484 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
419 419  
420 -904.9 - SF7BW125 to SF10BW125
421 421  
422 -905.1 - SF7BW125 to SF10BW125
423 423  
424 -905.3 - SF7BW125 to SF10BW125
488 +== 2.6  LED Indicator ==
425 425  
490 +The LDDS20 has an internal LED which is to show the status of different state.
426 426  
427 -(% style="color:blue" %)**Downlink:**
428 428  
429 -923.3 - SF7BW500 to SF12BW500
493 +* Blink once when device power on.
494 +* The device detects the sensor and flashes 5 times.
495 +* Solid ON for 5 seconds once device successful Join the network.
496 +* Blink once when device transmit a packet.
430 430  
431 -923.9 - SF7BW500 to SF12BW500
432 432  
433 -924.5 - SF7BW500 to SF12BW500
434 434  
435 -925.1 - SF7BW500 to SF12BW500
500 +== 2. Firmware Change Log ==
436 436  
437 -925.7 - SF7BW500 to SF12BW500
438 438  
439 -926.3 - SF7BW500 to SF12BW500
440 -
441 -926.9 - SF7BW500 to SF12BW500
442 -
443 -927.5 - SF7BW500 to SF12BW500
444 -
445 -923.3 - SF12BW500(RX2 downlink only)
446 -
447 -
448 -
449 -)))
450 -
451 -=== 2.6.3  CN470-510 (CN470) ===
452 -
453 453  (((
454 -Used in China, Default use CHE=1
504 +**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
455 455  )))
456 456  
457 457  (((
458 -(% style="color:blue" %)**Uplink:**
459 -)))
460 -
461 -(((
462 -486.3 - SF7BW125 to SF12BW125
463 -)))
464 -
465 -(((
466 -486.5 - SF7BW125 to SF12BW125
467 -)))
468 -
469 -(((
470 -486.7 - SF7BW125 to SF12BW125
471 -)))
472 -
473 -(((
474 -486.9 - SF7BW125 to SF12BW125
475 -)))
476 -
477 -(((
478 -487.1 - SF7BW125 to SF12BW125
479 -)))
480 -
481 -(((
482 -487.3 - SF7BW125 to SF12BW125
483 -)))
484 -
485 -(((
486 -487.5 - SF7BW125 to SF12BW125
487 -)))
488 -
489 -(((
490 -487.7 - SF7BW125 to SF12BW125
491 -)))
492 -
493 -(((
494 494  
495 495  )))
496 496  
497 497  (((
498 -(% style="color:blue" %)**Downlink:**
512 +**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
499 499  )))
500 500  
501 -(((
502 -506.7 - SF7BW125 to SF12BW125
503 -)))
504 504  
505 -(((
506 -506.9 - SF7BW125 to SF12BW125
507 -)))
508 508  
509 -(((
510 -507.1 - SF7BW125 to SF12BW125
511 -)))
517 +== 2.8  Battery Analysis ==
512 512  
513 -(((
514 -507.3 - SF7BW125 to SF12BW125
515 -)))
516 516  
517 -(((
518 -507.5 - SF7BW125 to SF12BW125
519 -)))
520 520  
521 -(((
522 -507.7 - SF7BW125 to SF12BW125
523 -)))
524 524  
525 -(((
526 -507.9 - SF7BW125 to SF12BW125
527 -)))
522 +=== 2.8.1  Battery Type ===
528 528  
529 -(((
530 -508.1 - SF7BW125 to SF12BW125
531 -)))
524 +The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
532 532  
533 -(((
534 -505.3 - SF12BW125 (RX2 downlink only)
535 -)))
536 536  
527 +The battery related documents as below:
537 537  
538 -
539 -=== 2.6.4  AU915-928(AU915) ===
540 -
541 -(((
542 -Default use CHE=2
543 -
544 -(% style="color:blue" %)**Uplink:**
545 -
546 -916.8 - SF7BW125 to SF12BW125
547 -
548 -917.0 - SF7BW125 to SF12BW125
549 -
550 -917.2 - SF7BW125 to SF12BW125
551 -
552 -917.4 - SF7BW125 to SF12BW125
553 -
554 -917.6 - SF7BW125 to SF12BW125
555 -
556 -917.8 - SF7BW125 to SF12BW125
557 -
558 -918.0 - SF7BW125 to SF12BW125
559 -
560 -918.2 - SF7BW125 to SF12BW125
561 -
562 -
563 -(% style="color:blue" %)**Downlink:**
564 -
565 -923.3 - SF7BW500 to SF12BW500
566 -
567 -923.9 - SF7BW500 to SF12BW500
568 -
569 -924.5 - SF7BW500 to SF12BW500
570 -
571 -925.1 - SF7BW500 to SF12BW500
572 -
573 -925.7 - SF7BW500 to SF12BW500
574 -
575 -926.3 - SF7BW500 to SF12BW500
576 -
577 -926.9 - SF7BW500 to SF12BW500
578 -
579 -927.5 - SF7BW500 to SF12BW500
580 -
581 -923.3 - SF12BW500(RX2 downlink only)
582 -
583 -
584 -
529 +* (((
530 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
585 585  )))
586 -
587 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
588 -
589 -(((
590 -(% style="color:blue" %)**Default Uplink channel:**
532 +* (((
533 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
591 591  )))
592 -
593 -(((
594 -923.2 - SF7BW125 to SF10BW125
535 +* (((
536 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
595 595  )))
596 596  
597 -(((
598 -923.4 - SF7BW125 to SF10BW125
599 -)))
539 + [[image:image-20220615102527-16.png]]
600 600  
601 -(((
602 -
603 -)))
604 604  
605 -(((
606 -(% style="color:blue" %)**Additional Uplink Channel**:
607 -)))
608 608  
609 -(((
610 -(OTAA mode, channel added by JoinAccept message)
611 -)))
543 +== 2.8.2  Battery Note ==
612 612  
613 -(((
614 -
615 -)))
545 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
616 616  
617 -(((
618 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
619 -)))
620 620  
621 -(((
622 -922.2 - SF7BW125 to SF10BW125
623 -)))
624 624  
625 -(((
626 -922.4 - SF7BW125 to SF10BW125
627 -)))
549 +=== 2.8.3  Replace the battery ===
628 628  
629 629  (((
630 -922.6 - SF7BW125 to SF10BW125
552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
631 631  )))
632 632  
633 633  (((
634 -922.8 - SF7BW125 to SF10BW125
635 -)))
636 -
637 -(((
638 -923.0 - SF7BW125 to SF10BW125
639 -)))
640 -
641 -(((
642 -922.0 - SF7BW125 to SF10BW125
643 -)))
644 -
645 -(((
646 646  
647 647  )))
648 648  
649 649  (((
650 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
651 651  )))
652 652  
653 -(((
654 -923.6 - SF7BW125 to SF10BW125
655 -)))
656 656  
657 -(((
658 -923.8 - SF7BW125 to SF10BW125
659 -)))
660 660  
661 -(((
662 -924.0 - SF7BW125 to SF10BW125
663 -)))
565 +== 2.8.4  Battery Life Analyze ==
664 664  
665 -(((
666 -924.2 - SF7BW125 to SF10BW125
667 -)))
567 +Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
668 668  
669 -(((
670 -924.4 - SF7BW125 to SF10BW125
671 -)))
569 +[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
672 672  
673 -(((
674 -924.6 - SF7BW125 to SF10BW125
675 -)))
676 676  
677 -(((
678 -
679 -)))
680 680  
681 -(((
682 -(% style="color:blue" %)**Downlink:**
683 -)))
573 += 3.  Using the AT Commands =
684 684  
685 685  (((
686 -Uplink channels 1-8 (RX1)
687 -)))
688 -
689 689  (((
690 -923.2 - SF10BW125 (RX2)
691 -)))
692 -
693 -
694 -
695 -=== 2.6.6  KR920-923 (KR920) ===
696 -
697 -(((
698 -(% style="color:blue" %)**Default channel:**
699 -)))
700 -
701 -(((
702 -922.1 - SF7BW125 to SF12BW125
703 -)))
704 -
705 -(((
706 -922.3 - SF7BW125 to SF12BW125
707 -)))
708 -
709 -(((
710 -922.5 - SF7BW125 to SF12BW125
711 -)))
712 -
713 -(((
714 714  
715 715  )))
716 -
717 -(((
718 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
719 719  )))
720 720  
721 -(((
722 -922.1 - SF7BW125 to SF12BW125
723 -)))
581 +== 3.1  Access AT Commands ==
724 724  
725 -(((
726 -922.3 - SF7BW125 to SF12BW125
727 -)))
583 +LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below.
728 728  
729 -(((
730 -922.5 - SF7BW125 to SF12BW125
731 -)))
732 732  
733 -(((
734 -922.7 - SF7BW125 to SF12BW125
735 -)))
586 +[[image:image-20220610172924-4.png||height="483" width="988"]]
736 736  
737 -(((
738 -922.9 - SF7BW125 to SF12BW125
739 -)))
740 740  
741 -(((
742 -923.1 - SF7BW125 to SF12BW125
743 -)))
589 +Or if you have below board, use below connection:
744 744  
745 -(((
746 -923.3 - SF7BW125 to SF12BW125
747 -)))
748 748  
749 -(((
750 -
751 -)))
592 +[[image:image-20220610172924-5.png]]
752 752  
753 -(((
754 -(% style="color:blue" %)**Downlink:**
755 -)))
756 756  
757 757  (((
758 -Uplink channels 1-7(RX1)
596 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below:
759 759  )))
760 760  
761 -(((
762 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
763 -)))
764 764  
600 + [[image:image-20220610172924-6.png||height="601" width="860"]]
765 765  
602 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]].
766 766  
767 -=== 2.6.7  IN865-867 (IN865) ===
768 768  
769 -(((
770 -(% style="color:blue" %)**Uplink:**
771 -)))
605 +AT+<CMD>?  :  Help on <CMD>
772 772  
773 -(((
774 -865.0625 - SF7BW125 to SF12BW125
775 -)))
607 +AT+<CMD>  :  Run <CMD>
776 776  
777 -(((
778 -865.4025 - SF7BW125 to SF12BW125
779 -)))
609 +AT+<CMD>=<value>  :  Set the value
780 780  
781 -(((
782 -865.9850 - SF7BW125 to SF12BW125
783 -)))
611 +AT+<CMD>=?  :  Get the value
784 784  
785 -(((
786 -
787 -)))
788 788  
789 -(((
790 -(% style="color:blue" %)**Downlink:**
791 -)))
614 +**General Commands**      
792 792  
793 -(((
794 -Uplink channels 1-3 (RX1)
795 -)))
616 +AT                    : Attention       
796 796  
797 -(((
798 -866.550 - SF10BW125 (RX2)
799 -)))
618 +AT?                            : Short Help     
800 800  
620 +ATZ                            : MCU Reset    
801 801  
622 +AT+TDC           : Application Data Transmission Interval 
802 802  
803 -== 2.7  LED Indicator ==
804 804  
805 -The LDDS75 has an internal LED which is to show the status of different state.
625 +**Keys, IDs and EUIs management**
806 806  
627 +AT+APPEUI              : Application EUI      
807 807  
808 -* Blink once when device power on.
809 -* The device detects the sensor and flashes 5 times.
810 -* Solid ON for 5 seconds once device successful Join the network.
811 -* Blink once when device transmit a packet.
629 +AT+APPKEY              : Application Key     
812 812  
631 +AT+APPSKEY            : Application Session Key
813 813  
814 -== 2.8  ​Firmware Change Log ==
633 +AT+DADDR              : Device Address     
815 815  
635 +AT+DEUI                   : Device EUI     
816 816  
817 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
637 +AT+NWKID               : Network ID (You can enter this command change only after successful network connection
818 818  
639 +AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
819 819  
820 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
641 +AT+CFM          : Confirm Mode       
821 821  
643 +AT+CFS                     : Confirm Status       
822 822  
645 +AT+JOIN          : Join LoRa? Network       
823 823  
824 -== 2.9  Mechanical ==
647 +AT+NJM          : LoRa? Network Join Mode    
825 825  
649 +AT+NJS                     : LoRa? Network Join Status    
826 826  
827 -[[image:image-20220610172003-1.png]]
651 +AT+RECV                  : Print Last Received Data in Raw Format
828 828  
653 +AT+RECVB                : Print Last Received Data in Binary Format      
829 829  
830 -[[image:image-20220610172003-2.png]]
655 +AT+SEND                  : Send Text Data      
831 831  
657 +AT+SENB                  : Send Hexadecimal Data
832 832  
833 833  
834 -== 2.10  Battery Analysis ==
660 +**LoRa Network Management**
835 835  
836 -=== 2.10.1  Battery Type ===
662 +AT+ADR          : Adaptive Rate
837 837  
838 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
664 +AT+CLASS                : LoRa Class(Currently only support class A
839 839  
666 +AT+DCS           : Duty Cycle Setting 
840 840  
841 -The battery related documents as below:
668 +AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
842 842  
843 -* (((
844 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
845 -)))
846 -* (((
847 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
848 -)))
849 -* (((
850 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
851 -)))
670 +AT+FCD           : Frame Counter Downlink       
852 852  
853 - [[image:image-20220610172400-3.png]]
672 +AT+FCU           : Frame Counter Uplink   
854 854  
674 +AT+JN1DL                : Join Accept Delay1
855 855  
676 +AT+JN2DL                : Join Accept Delay2
856 856  
857 -=== 2.10.2  Replace the battery ===
678 +AT+PNM                   : Public Network Mode   
858 858  
859 -(((
860 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
861 -)))
680 +AT+RX1DL                : Receive Delay1      
862 862  
863 -(((
864 -
865 -)))
682 +AT+RX2DL                : Receive Delay2      
866 866  
867 -(((
868 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
869 -)))
684 +AT+RX2DR               : Rx2 Window Data Rate 
870 870  
686 +AT+RX2FQ               : Rx2 Window Frequency
871 871  
688 +AT+TXP           : Transmit Power
872 872  
873 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
874 874  
875 -(((
876 -(((
877 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
878 -)))
879 -)))
691 +**Information** 
880 880  
881 -* (((
882 -(((
883 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
884 -)))
885 -)))
886 -* (((
887 -(((
888 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
889 -)))
890 -)))
693 +AT+RSSI           : RSSI of the Last Received Packet   
891 891  
892 -(((
893 -(((
894 -
895 -)))
695 +AT+SNR           : SNR of the Last Received Packet   
896 896  
897 -(((
898 -There are two kinds of commands to configure LDDS75, they are:
899 -)))
900 -)))
697 +AT+VER           : Image Version and Frequency Band       
901 901  
902 -* (((
903 -(((
904 -(% style="color:#4f81bd" %)** General Commands**.
905 -)))
906 -)))
699 +AT+FDR           : Factory Data Reset
907 907  
908 -(((
909 -(((
910 -These commands are to configure:
911 -)))
912 -)))
701 +AT+PORT                  : Application Port    
913 913  
914 -* (((
915 -(((
916 -General system settings like: uplink interval.
917 -)))
918 -)))
919 -* (((
920 -(((
921 -LoRaWAN protocol & radio related command.
922 -)))
923 -)))
703 +AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
924 924  
925 -(((
926 -(((
927 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
928 -)))
929 -)))
705 + AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
930 930  
931 -(((
932 -(((
933 -
934 -)))
935 -)))
936 936  
937 -* (((
938 -(((
939 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
940 -)))
941 -)))
942 942  
943 -(((
944 -(((
945 -These commands only valid for LDDS75, as below:
946 -)))
947 -)))
948 -
949 -
950 -
951 -== 3.1  Access AT Commands ==
952 -
953 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
954 -
955 -[[image:image-20220610172924-4.png||height="483" width="988"]]
956 -
957 -
958 -Or if you have below board, use below connection:
959 -
960 -
961 -[[image:image-20220610172924-5.png]]
962 -
963 -
964 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
965 -
966 -
967 - [[image:image-20220610172924-6.png||height="601" width="860"]]
968 -
969 -
970 -
971 971  == 3.2  Set Transmit Interval Time ==
972 972  
973 973  Feature: Change LoRaWAN End Node Transmit Interval.
... ... @@ -985,16 +985,19 @@
985 985  (((
986 986  Format: Command Code (0x01) followed by 3 bytes time value.
987 987  
726 +(((
988 988  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
728 +)))
989 989  
990 990  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
991 991  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
992 992  )))
733 +)))
993 993  
994 994  
995 -
996 -)))
997 997  
737 +
738 +
998 998  == 3.3  Set Interrupt Mode ==
999 999  
1000 1000  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1008,13 +1008,13 @@
1008 1008  
1009 1009  Format: Command Code (0x06) followed by 3 bytes.
1010 1010  
752 +(((
1011 1011  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
754 +)))
1012 1012  
1013 1013  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1014 1014  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1015 1015  
1016 -
1017 -
1018 1018  = 4.  FAQ =
1019 1019  
1020 1020  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1074,8 +1074,6 @@
1074 1074  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1075 1075  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1076 1076  
1077 -
1078 -
1079 1079  = 7. ​ Packing Info =
1080 1080  
1081 1081  
... ... @@ -1090,8 +1090,6 @@
1090 1090  * Package Size / pcs : cm
1091 1091  * Weight / pcs : g
1092 1092  
1093 -
1094 -
1095 1095  = 8.  ​Support =
1096 1096  
1097 1097  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +182.9 KB
Content