Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.34
edited by Xiaoling
on 2022/06/11 09:10
Change comment: There is no comment for this version
To version 173.6
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,799 +12,483 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
24 -
25 -
26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
27 -
28 -
29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 -
31 -
32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
33 -
34 -
35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 -
37 -
38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
24 +(((
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
39 39  )))
40 -)))
41 41  
42 -
43 -[[image:1654847051249-359.png]]
44 -
45 -
46 -
47 -== ​1.2  Features ==
48 -
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Distance Detection by Ultrasonic technology
52 -* Flat object range 280mm - 7500mm
53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
54 -* Cable Length : 25cm
55 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 -* AT Commands to change parameters
57 -* Uplink on periodically
58 -* Downlink to change configure
59 -* IP66 Waterproof Enclosure
60 -* 4000mAh or 8500mAh Battery for long term use
61 -
62 -== 1.3  Specification ==
63 -
64 -=== 1.3.1  Rated environmental conditions ===
65 -
66 -[[image:image-20220610154839-1.png]]
67 -
68 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69 -
70 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 -
72 -
73 -
74 -=== 1.3.2  Effective measurement range Reference beam pattern ===
75 -
76 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
77 -
78 -
79 -
80 -[[image:1654852253176-749.png]]
81 -
82 -
83 -
84 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
85 -
86 -
87 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
88 -
89 -
90 -
91 -== 1.5 ​ Applications ==
92 -
93 -* Horizontal distance measurement
94 -* Liquid level measurement
95 -* Parking management system
96 -* Object proximity and presence detection
97 -* Intelligent trash can management system
98 -* Robot obstacle avoidance
99 -* Automatic control
100 -* Sewer
101 -* Bottom water level monitoring
102 -
103 -== 1.6  Pin mapping and power on ==
104 -
105 -
106 -[[image:1654847583902-256.png]]
107 -
108 -
109 -
110 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
111 -
112 -== 2.1  How it works ==
113 -
114 114  (((
115 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
30 +
116 116  )))
117 117  
118 118  (((
119 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
120 120  )))
121 121  
122 -
123 -
124 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
125 -
126 126  (((
127 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
38 +
128 128  )))
129 129  
130 130  (((
131 -[[image:1654848616367-242.png]]
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
132 132  )))
133 133  
134 134  (((
135 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
46 +
136 136  )))
137 137  
138 138  (((
139 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
140 140  )))
141 141  
142 142  (((
143 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
54 +
144 144  )))
145 145  
146 -[[image:image-20220607170145-1.jpeg]]
147 -
148 -
149 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
150 -
151 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
152 -
153 -**Add APP EUI in the application**
154 -
155 -[[image:image-20220610161353-4.png]]
156 -
157 -[[image:image-20220610161353-5.png]]
158 -
159 -[[image:image-20220610161353-6.png]]
160 -
161 -
162 -[[image:image-20220610161353-7.png]]
163 -
164 -
165 -You can also choose to create the device manually.
166 -
167 - [[image:image-20220610161538-8.png]]
168 -
169 -
170 -
171 -**Add APP KEY and DEV EUI**
172 -
173 -[[image:image-20220610161538-9.png]]
174 -
175 -
176 -
177 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
178 -
179 -
180 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
181 -
182 -[[image:image-20220610161724-10.png]]
183 -
184 -
185 185  (((
186 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
187 187  )))
188 188  
189 -[[image:1654849068701-275.png]]
190 -
191 -
192 -
193 -== 2.3  ​Uplink Payload ==
194 -
195 195  (((
196 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
62 +
63 +)))
197 197  
198 -Uplink payload includes in total 4 bytes.
199 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
65 +(((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
200 200  )))
201 201  
202 202  (((
203 203  
204 204  )))
72 +)))
205 205  
206 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
207 -|=(% style="width: 62.5px;" %)(((
208 -**Size (bytes)**
209 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
210 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
211 -[[Distance>>||anchor="H2.3.2A0Distance"]]
74 +(((
75 +(((
76 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 +)))
78 +)))
79 +)))
80 +)))
212 212  
213 -(unit: mm)
214 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
215 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
216 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
217 217  
218 -[[image:1654850511545-399.png]]
83 +[[image:1655255122126-327.png]]
219 219  
220 220  
221 221  
222 -=== 2.3.Battery Info ===
87 +== 1.2  Features ==
223 223  
89 +* LoRaWAN 1.0.3 Class A
90 +* Ultra low power consumption
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 +* Cable Length : 25cm
96 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 +* AT Commands to change parameters
98 +* Uplink on periodically
99 +* Downlink to change configure
100 +* IP66 Waterproof Enclosure
101 +* 8500mAh Battery for long term use
224 224  
225 -Check the battery voltage for LDDS75.
103 +== 1.3  Suitable Container & Liquid ==
226 226  
227 -Ex1: 0x0B45 = 2885mV
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
228 228  
229 -Ex2: 0x0B49 = 2889mV
112 +== 1.4  Mechanical ==
230 230  
114 +[[image:image-20220615090910-1.png]]
231 231  
232 232  
233 -=== 2.3.2  Distance ===
117 +[[image:image-20220615090910-2.png]]
234 234  
235 -Get the distance. Flat object range 280mm - 7500mm.
236 236  
237 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
238 238  
121 +== 1.5  Install LDDS20 ==
239 239  
240 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
241 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
242 242  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
243 243  
244 -=== 2.3.3  Interrupt Pin ===
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
245 245  
246 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
128 +[[image:image-20220615091045-3.png]]
247 247  
248 -**Example:**
249 249  
250 -0x00: Normal uplink packet.
251 251  
252 -0x01: Interrupt Uplink Packet.
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
253 253  
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
254 254  
136 +[[image:image-20220615092010-11.png]]
255 255  
256 -=== 2.3.4  DS18B20 Temperature sensor ===
257 257  
258 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
259 259  
260 -**Example**:
141 +[[image:image-20220615092044-12.png]]
261 261  
262 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
263 263  
264 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
265 265  
266 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
267 267  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
268 268  
269 269  
270 -=== 2.3.5  Sensor Flag ===
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
271 271  
272 -0x01: Detect Ultrasonic Sensor
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
273 273  
274 -0x00: No Ultrasonic Sensor
275 275  
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
276 276  
277 277  
278 -=== 2.3.6  Decode payload in The Things Network ===
158 +(% style="color:red" %)**LED Status:**
279 279  
280 -While using TTN network, you can add the payload format to decode the payload.
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
281 281  
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
282 282  
283 -[[image:1654850829385-439.png]]
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
284 284  
285 -The payload decoder function for TTN V3 is here:
286 286  
287 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
168 +(% style="color:red" %)**Note 2:**
288 288  
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
289 289  
290 290  
291 -== 2.4  Uplink Interval ==
292 292  
293 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link[[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
174 +(% style="color:blue" %)**Step4  **(%%)Install use Epoxy ab glue.
294 294  
176 +Prepare Eproxy AB glue.
295 295  
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
296 296  
297 -== 2.5  ​Show Data in DataCake IoT Server ==
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
298 298  
299 -(((
300 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
301 -)))
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
302 302  
303 -(((
304 -
305 -)))
306 306  
307 -(((
308 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
309 -)))
185 +(% style="color:red" %)**Note 1:**
310 310  
311 -(((
312 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
313 -)))
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
314 314  
315 315  
316 -[[image:1654592790040-760.png]]
190 +(% style="color:red" %)**Note 2:**
317 317  
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
318 318  
319 -[[image:1654592800389-571.png]]
320 320  
321 321  
322 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
196 +== 1.6 Applications ==
323 323  
324 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
325 325  
326 -[[image:1654851029373-510.png]]
201 +== 1.7  Precautions ==
327 327  
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
328 328  
329 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
207 +== 1.8  Pin mapping and power on ==
330 330  
331 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
332 332  
210 +[[image:1655257026882-201.png]]
333 333  
334 334  
335 -== 2.6  Frequency Plans ==
336 336  
337 -(((
338 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
339 -)))
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
340 340  
341 341  
217 +== 2.1  How it works ==
342 342  
343 -=== 2.6.1  EU863-870 (EU868) ===
344 -
345 345  (((
346 -(% style="color:blue" %)**Uplink:**
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
347 347  )))
348 348  
349 349  (((
350 -868.1 - SF7BW125 to SF12BW125
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
351 351  )))
352 352  
353 -(((
354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
355 -)))
356 356  
357 -(((
358 -868.5 - SF7BW125 to SF12BW125
359 -)))
360 360  
361 -(((
362 -867.1 - SF7BW125 to SF12BW125
363 -)))
229 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
364 364  
365 365  (((
366 -867.3 - SF7BW125 to SF12BW125
232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
367 367  )))
368 368  
369 369  (((
370 -867.5 - SF7BW125 to SF12BW125
236 +[[image:1655257698953-697.png]]
371 371  )))
372 372  
373 373  (((
374 -867.7 - SF7BW125 to SF12BW125
240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
375 375  )))
376 376  
377 377  (((
378 -867.9 - SF7BW125 to SF12BW125
379 -)))
244 +
380 380  
381 -(((
382 -868.8 - FSK
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
383 383  )))
384 384  
385 385  (((
386 -
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
387 387  )))
388 388  
389 -(((
390 -(% style="color:blue" %)**Downlink:**
391 -)))
253 +[[image:image-20220607170145-1.jpeg]]
392 392  
255 +
393 393  (((
394 -Uplink channels 1-9 (RX1)
257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
395 395  )))
396 396  
397 397  (((
398 -869.525 - SF9BW125 (RX2 downlink only)
261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
399 399  )))
400 400  
401 -
402 -
403 -=== 2.6.2  US902-928(US915) ===
404 -
405 405  (((
406 -Used in USA, Canada and South America. Default use CHE=2
265 +
407 407  
408 -(% style="color:blue" %)**Uplink:**
267 +**Add APP EUI in the application**
268 +)))
409 409  
410 -903.9 - SF7BW125 to SF10BW125
270 +[[image:image-20220610161353-4.png]]
411 411  
412 -904.1 - SF7BW125 to SF10BW125
272 +[[image:image-20220610161353-5.png]]
413 413  
414 -904.3 - SF7BW125 to SF10BW125
274 +[[image:image-20220610161353-6.png]]
415 415  
416 -904.5 - SF7BW125 to SF10BW125
417 417  
418 -904.7 - SF7BW125 to SF10BW125
277 +[[image:image-20220610161353-7.png]]
419 419  
420 -904.9 - SF7BW125 to SF10BW125
421 421  
422 -905.1 - SF7BW125 to SF10BW125
423 423  
424 -905.3 - SF7BW125 to SF10BW125
281 +You can also choose to create the device manually.
425 425  
283 + [[image:image-20220610161538-8.png]]
426 426  
427 -(% style="color:blue" %)**Downlink:**
428 428  
429 -923.3 - SF7BW500 to SF12BW500
430 430  
431 -923.9 - SF7BW500 to SF12BW500
287 +**Add APP KEY and DEV EUI**
432 432  
433 -924.5 - SF7BW500 to SF12BW500
289 +[[image:image-20220610161538-9.png]]
434 434  
435 -925.1 - SF7BW500 to SF12BW500
436 436  
437 -925.7 - SF7BW500 to SF12BW500
438 438  
439 -926.3 - SF7BW500 to SF12BW500
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
440 440  
441 -926.9 - SF7BW500 to SF12BW500
442 442  
443 -927.5 - SF7BW500 to SF12BW500
296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
444 444  
445 -923.3 - SF12BW500(RX2 downlink only)
298 +[[image:image-20220615095102-14.png]]
446 446  
447 447  
448 -
449 -)))
450 450  
451 -=== 2.6.3  CN470-510 (CN470) ===
452 -
453 453  (((
454 -Used in China, Default use CHE=1
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
455 455  )))
456 456  
457 -(((
458 -(% style="color:blue" %)**Uplink:**
459 -)))
306 +[[image:1654849068701-275.png]]
460 460  
461 -(((
462 -486.3 - SF7BW125 to SF12BW125
463 -)))
464 464  
465 -(((
466 -486.5 - SF7BW125 to SF12BW125
467 -)))
468 468  
469 -(((
470 -486.7 - SF7BW125 to SF12BW125
471 -)))
310 +== 2.3  ​Uplink Payload ==
472 472  
473 473  (((
474 -486.9 - SF7BW125 to SF12BW125
475 -)))
476 -
477 477  (((
478 -487.1 - SF7BW125 to SF12BW125
479 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
480 480  
481 -(((
482 -487.3 - SF7BW125 to SF12BW125
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
483 483  )))
484 -
485 -(((
486 -487.5 - SF7BW125 to SF12BW125
487 487  )))
488 488  
489 489  (((
490 -487.7 - SF7BW125 to SF12BW125
491 -)))
492 -
493 -(((
494 494  
495 495  )))
496 496  
497 -(((
498 -(% style="color:blue" %)**Downlink:**
499 -)))
325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 +|=(% style="width: 62.5px;" %)(((
327 +**Size (bytes)**
328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 +[[Distance>>||anchor="H2.3.2A0Distance"]]
500 500  
501 -(((
502 -506.7 - SF7BW125 to SF12BW125
503 -)))
332 +(unit: mm)
333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
504 504  
505 -(((
506 -506.9 - SF7BW125 to SF12BW125
507 -)))
337 +[[image:1654850511545-399.png]]
508 508  
509 -(((
510 -507.1 - SF7BW125 to SF12BW125
511 -)))
512 512  
513 -(((
514 -507.3 - SF7BW125 to SF12BW125
515 -)))
516 516  
517 -(((
518 -507.5 - SF7BW125 to SF12BW125
519 -)))
341 +=== 2.3.1  Battery Info ===
520 520  
521 -(((
522 -507.7 - SF7BW125 to SF12BW125
523 -)))
524 524  
525 -(((
526 -507.9 - SF7BW125 to SF12BW125
527 -)))
344 +Check the battery voltage for LDDS20.
528 528  
529 -(((
530 -508.1 - SF7BW125 to SF12BW125
531 -)))
346 +Ex1: 0x0B45 = 2885mV
532 532  
533 -(((
534 -505.3 - SF12BW125 (RX2 downlink only)
535 -)))
348 +Ex2: 0x0B49 = 2889mV
536 536  
537 537  
538 538  
539 -=== 2.6.4  AU915-928(AU915) ===
352 +=== 2.3.2  Distance ===
540 540  
541 541  (((
542 -Default use CHE=2
355 +Get the distance. Flat object range 20mm - 2000mm.
356 +)))
543 543  
544 -(% style="color:blue" %)**Uplink:**
358 +(((
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 +)))
545 545  
546 -916.8 - SF7BW125 to SF12BW125
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
547 547  
548 -917.0 - SF7BW125 to SF12BW125
365 +=== 2.3.3  Interrupt Pin ===
549 549  
550 -917.2 - SF7BW125 to SF12BW125
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
551 551  
552 -917.4 - SF7BW125 to SF12BW125
369 +**Example:**
553 553  
554 -917.6 - SF7BW125 to SF12BW125
371 +0x00: Normal uplink packet.
555 555  
556 -917.8 - SF7BW125 to SF12BW125
373 +0x01: Interrupt Uplink Packet.
557 557  
558 -918.0 - SF7BW125 to SF12BW125
559 559  
560 -918.2 - SF7BW125 to SF12BW125
561 561  
377 +=== 2.3.4  DS18B20 Temperature sensor ===
562 562  
563 -(% style="color:blue" %)**Downlink:**
379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
564 564  
565 -923.3 - SF7BW500 to SF12BW500
381 +**Example**:
566 566  
567 -923.9 - SF7BW500 to SF12BW500
383 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
568 568  
569 -924.5 - SF7BW500 to SF12BW500
385 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
570 570  
571 -925.1 - SF7BW500 to SF12BW500
387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
572 572  
573 -925.7 - SF7BW500 to SF12BW500
574 574  
575 -926.3 - SF7BW500 to SF12BW500
576 576  
577 -926.9 - SF7BW500 to SF12BW500
391 +=== 2.3.5  Sensor Flag ===
578 578  
579 -927.5 - SF7BW500 to SF12BW500
580 -
581 -923.3 - SF12BW500(RX2 downlink only)
582 -
583 -
584 -
585 -)))
586 -
587 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
588 -
589 589  (((
590 -(% style="color:blue" %)**Default Uplink channel:**
394 +0x01: Detect Ultrasonic Sensor
591 591  )))
592 592  
593 593  (((
594 -923.2 - SF7BW125 to SF10BW125
398 +0x00: No Ultrasonic Sensor
595 595  )))
596 596  
597 -(((
598 -923.4 - SF7BW125 to SF10BW125
599 -)))
600 600  
601 -(((
602 -
603 -)))
604 604  
605 -(((
606 -(% style="color:blue" %)**Additional Uplink Channel**:
607 -)))
403 +=== 2.3.6  Decode payload in The Things Network ===
608 608  
609 -(((
610 -(OTAA mode, channel added by JoinAccept message)
611 -)))
405 +While using TTN network, you can add the payload format to decode the payload.
612 612  
613 -(((
614 -
615 -)))
616 616  
617 -(((
618 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
619 -)))
408 +[[image:1654850829385-439.png]]
620 620  
621 -(((
622 -922.2 - SF7BW125 to SF10BW125
623 -)))
410 +The payload decoder function for TTN V3 is here:
624 624  
625 625  (((
626 -922.4 - SF7BW125 to SF10BW125
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
627 627  )))
628 628  
629 -(((
630 -922.6 - SF7BW125 to SF10BW125
631 -)))
632 632  
633 -(((
634 -922.8 - SF7BW125 to SF10BW125
635 -)))
636 636  
637 -(((
638 -923.0 - SF7BW125 to SF10BW125
639 -)))
418 +== 2.4  Downlink Payload ==
640 640  
641 -(((
642 -922.0 - SF7BW125 to SF10BW125
643 -)))
420 +By default, LDDS20 prints the downlink payload to console port.
644 644  
645 -(((
646 -
647 -)))
422 +[[image:image-20220615100930-15.png]]
648 648  
649 -(((
650 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
651 -)))
652 652  
653 -(((
654 -923.6 - SF7BW125 to SF10BW125
655 -)))
425 +**Examples:**
656 656  
657 -(((
658 -923.8 - SF7BW125 to SF10BW125
659 -)))
660 660  
661 -(((
662 -924.0 - SF7BW125 to SF10BW125
663 -)))
428 +* (% style="color:blue" %)**Set TDC**
664 664  
665 -(((
666 -924.2 - SF7BW125 to SF10BW125
667 -)))
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
668 668  
669 -(((
670 -924.4 - SF7BW125 to SF10BW125
671 -)))
432 +Payload:    01 00 00 1E    TDC=30S
672 672  
673 -(((
674 -924.6 - SF7BW125 to SF10BW125
675 -)))
434 +Payload:    01 00 00 3C    TDC=60S
676 676  
677 -(((
678 -
679 -)))
680 680  
681 -(((
682 -(% style="color:blue" %)**Downlink:**
683 -)))
437 +* (% style="color:blue" %)**Reset**
684 684  
685 -(((
686 -Uplink channels 1-8 (RX1)
687 -)))
439 +If payload = 0x04FF, it will reset the LDDS20
688 688  
689 -(((
690 -923.2 - SF10BW125 (RX2)
691 -)))
692 692  
442 +* (% style="color:blue" %)**CFM**
693 693  
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
694 694  
695 -=== 2.6.6  KR920-923 (KR920) ===
696 696  
697 -(((
698 -(% style="color:blue" %)**Default channel:**
699 -)))
700 700  
701 -(((
702 -922.1 - SF7BW125 to SF12BW125
703 -)))
448 +== 2.5  ​Show Data in DataCake IoT Server ==
704 704  
705 705  (((
706 -922.3 - SF7BW125 to SF12BW125
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
707 707  )))
708 708  
709 709  (((
710 -922.5 - SF7BW125 to SF12BW125
711 -)))
712 -
713 -(((
714 714  
715 715  )))
716 716  
717 717  (((
718 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
719 719  )))
720 720  
721 721  (((
722 -922.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
723 723  )))
724 724  
725 -(((
726 -922.3 - SF7BW125 to SF12BW125
727 -)))
728 728  
729 -(((
730 -922.5 - SF7BW125 to SF12BW125
731 -)))
467 +[[image:1654592790040-760.png]]
732 732  
733 -(((
734 -922.7 - SF7BW125 to SF12BW125
735 -)))
736 736  
737 -(((
738 -922.9 - SF7BW125 to SF12BW125
739 -)))
470 +[[image:1654592800389-571.png]]
740 740  
741 -(((
742 -923.1 - SF7BW125 to SF12BW125
743 -)))
744 744  
745 -(((
746 -923.3 - SF7BW125 to SF12BW125
747 -)))
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
748 748  
749 -(((
750 -
751 -)))
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
752 752  
753 -(((
754 -(% style="color:blue" %)**Downlink:**
755 -)))
477 +[[image:1654851029373-510.png]]
756 756  
757 -(((
758 -Uplink channels 1-7(RX1)
759 -)))
760 760  
761 -(((
762 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
763 -)))
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
764 764  
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
765 765  
766 766  
767 -=== 2.6.7  IN865-867 (IN865) ===
768 768  
769 -(((
770 -(% style="color:blue" %)**Uplink:**
771 -)))
486 +== 2.6  LED Indicator ==
772 772  
773 -(((
774 -865.0625 - SF7BW125 to SF12BW125
775 -)))
488 +The LDDS20 has an internal LED which is to show the status of different state.
776 776  
777 -(((
778 -865.4025 - SF7BW125 to SF12BW125
779 -)))
780 780  
781 -(((
782 -865.9850 - SF7BW125 to SF12BW125
783 -)))
784 -
785 -(((
786 -
787 -)))
788 -
789 -(((
790 -(% style="color:blue" %)**Downlink:**
791 -)))
792 -
793 -(((
794 -Uplink channels 1-3 (RX1)
795 -)))
796 -
797 -(((
798 -866.550 - SF10BW125 (RX2)
799 -)))
800 -
801 -
802 -
803 -== 2.7  LED Indicator ==
804 -
805 -The LDDS75 has an internal LED which is to show the status of different state.
806 -
807 -
808 808  * Blink once when device power on.
809 809  * The device detects the sensor and flashes 5 times.
810 810  * Solid ON for 5 seconds once device successful Join the network.
... ... @@ -811,13 +811,21 @@
811 811  * Blink once when device transmit a packet.
812 812  
813 813  
497 +
814 814  == 2.8  ​Firmware Change Log ==
815 815  
816 816  
501 +(((
817 817  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
503 +)))
818 818  
505 +(((
506 +
507 +)))
819 819  
509 +(((
820 820  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
511 +)))
821 821  
822 822  
823 823  
... ... @@ -961,7 +961,9 @@
961 961  [[image:image-20220610172924-5.png]]
962 962  
963 963  
655 +(((
964 964  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
657 +)))
965 965  
966 966  
967 967   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -985,16 +985,19 @@
985 985  (((
986 986  Format: Command Code (0x01) followed by 3 bytes time value.
987 987  
681 +(((
988 988  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
683 +)))
989 989  
990 990  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
991 991  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
992 992  )))
688 +)))
993 993  
994 994  
995 -
996 -)))
997 997  
692 +
693 +
998 998  == 3.3  Set Interrupt Mode ==
999 999  
1000 1000  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1008,13 +1008,13 @@
1008 1008  
1009 1009  Format: Command Code (0x06) followed by 3 bytes.
1010 1010  
707 +(((
1011 1011  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
709 +)))
1012 1012  
1013 1013  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1014 1014  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1015 1015  
1016 -
1017 -
1018 1018  = 4.  FAQ =
1019 1019  
1020 1020  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1074,8 +1074,6 @@
1074 1074  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1075 1075  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1076 1076  
1077 -
1078 -
1079 1079  = 7. ​ Packing Info =
1080 1080  
1081 1081  
... ... @@ -1090,8 +1090,6 @@
1090 1090  * Package Size / pcs : cm
1091 1091  * Weight / pcs : g
1092 1092  
1093 -
1094 -
1095 1095  = 8.  ​Support =
1096 1096  
1097 1097  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content