Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.33
edited by Xiaoling
on 2022/06/11 09:10
Change comment: There is no comment for this version
To version 173.5
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,815 +12,505 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
24 -
25 -
26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
27 -
28 -
29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 -
31 -
32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
33 -
34 -
35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 -
37 -
38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
24 +(((
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
39 39  )))
40 -)))
41 41  
42 -
43 -[[image:1654847051249-359.png]]
44 -
45 -
46 -
47 -== ​1.2  Features ==
48 -
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Distance Detection by Ultrasonic technology
52 -* Flat object range 280mm - 7500mm
53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
54 -* Cable Length : 25cm
55 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 -* AT Commands to change parameters
57 -* Uplink on periodically
58 -* Downlink to change configure
59 -* IP66 Waterproof Enclosure
60 -* 4000mAh or 8500mAh Battery for long term use
61 -
62 -== 1.3  Specification ==
63 -
64 -=== 1.3.1  Rated environmental conditions ===
65 -
66 -[[image:image-20220610154839-1.png]]
67 -
68 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69 -
70 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 -
72 -
73 -
74 -=== 1.3.2  Effective measurement range Reference beam pattern ===
75 -
76 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
77 -
78 -
79 -
80 -[[image:1654852253176-749.png]]
81 -
82 -
83 -
84 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
85 -
86 -
87 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
88 -
89 -
90 -
91 -== 1.5 ​ Applications ==
92 -
93 -* Horizontal distance measurement
94 -* Liquid level measurement
95 -* Parking management system
96 -* Object proximity and presence detection
97 -* Intelligent trash can management system
98 -* Robot obstacle avoidance
99 -* Automatic control
100 -* Sewer
101 -* Bottom water level monitoring
102 -
103 -
104 -== 1.6  Pin mapping and power on ==
105 -
106 -
107 -[[image:1654847583902-256.png]]
108 -
109 -
110 -
111 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
112 -
113 -== 2.1  How it works ==
114 -
115 115  (((
116 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
30 +
117 117  )))
118 118  
119 119  (((
120 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
121 121  )))
122 122  
123 -
124 -
125 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126 -
127 127  (((
128 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
38 +
129 129  )))
130 130  
131 131  (((
132 -[[image:1654848616367-242.png]]
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
133 133  )))
134 134  
135 135  (((
136 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
46 +
137 137  )))
138 138  
139 139  (((
140 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
141 141  )))
142 142  
143 143  (((
144 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
54 +
145 145  )))
146 146  
147 -[[image:image-20220607170145-1.jpeg]]
148 -
149 -
150 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
151 -
152 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
153 -
154 -**Add APP EUI in the application**
155 -
156 -[[image:image-20220610161353-4.png]]
157 -
158 -[[image:image-20220610161353-5.png]]
159 -
160 -[[image:image-20220610161353-6.png]]
161 -
162 -
163 -[[image:image-20220610161353-7.png]]
164 -
165 -
166 -You can also choose to create the device manually.
167 -
168 - [[image:image-20220610161538-8.png]]
169 -
170 -
171 -
172 -**Add APP KEY and DEV EUI**
173 -
174 -[[image:image-20220610161538-9.png]]
175 -
176 -
177 -
178 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
179 -
180 -
181 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182 -
183 -[[image:image-20220610161724-10.png]]
184 -
185 -
186 186  (((
187 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
188 188  )))
189 189  
190 -[[image:1654849068701-275.png]]
191 -
192 -
193 -
194 -== 2.3  ​Uplink Payload ==
195 -
196 196  (((
197 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
62 +
63 +)))
198 198  
199 -Uplink payload includes in total 4 bytes.
200 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
65 +(((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
201 201  )))
202 202  
203 203  (((
204 204  
205 205  )))
72 +)))
206 206  
207 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
208 -|=(% style="width: 62.5px;" %)(((
209 -**Size (bytes)**
210 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
211 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
212 -[[Distance>>||anchor="H2.3.2A0Distance"]]
74 +(((
75 +(((
76 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 +)))
78 +)))
79 +)))
80 +)))
213 213  
214 -(unit: mm)
215 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
216 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
217 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
218 218  
219 -[[image:1654850511545-399.png]]
83 +[[image:1655255122126-327.png]]
220 220  
221 221  
222 222  
223 -=== 2.3.Battery Info ===
87 +== 1.2  Features ==
224 224  
89 +* LoRaWAN 1.0.3 Class A
90 +* Ultra low power consumption
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 +* Cable Length : 25cm
96 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 +* AT Commands to change parameters
98 +* Uplink on periodically
99 +* Downlink to change configure
100 +* IP66 Waterproof Enclosure
101 +* 8500mAh Battery for long term use
225 225  
226 -Check the battery voltage for LDDS75.
103 +== 1.3  Suitable Container & Liquid ==
227 227  
228 -Ex1: 0x0B45 = 2885mV
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
229 229  
230 -Ex2: 0x0B49 = 2889mV
112 +== 1.4  Mechanical ==
231 231  
114 +[[image:image-20220615090910-1.png]]
232 232  
233 233  
234 -=== 2.3.2  Distance ===
117 +[[image:image-20220615090910-2.png]]
235 235  
236 -Get the distance. Flat object range 280mm - 7500mm.
237 237  
238 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
239 239  
121 +== 1.5  Install LDDS20 ==
240 240  
241 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
242 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
243 243  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
244 244  
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
245 245  
246 -=== 2.3.3  Interrupt Pin ===
128 +[[image:image-20220615091045-3.png]]
247 247  
248 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
249 249  
250 -**Example:**
251 251  
252 -0x00: Normal uplink packet.
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
253 253  
254 -0x01: Interrupt Uplink Packet.
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
255 255  
136 +[[image:image-20220615092010-11.png]]
256 256  
257 257  
258 -=== 2.3.4  DS18B20 Temperature sensor ===
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
259 259  
260 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
141 +[[image:image-20220615092044-12.png]]
261 261  
262 -**Example**:
263 263  
264 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
265 265  
266 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
267 267  
268 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
269 269  
270 270  
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
271 271  
272 -=== 2.3.5  Sensor Flag ===
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
273 273  
274 -0x01: Detect Ultrasonic Sensor
275 275  
276 -0x00: No Ultrasonic Sensor
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
277 277  
278 278  
158 +(% style="color:red" %)**LED Status:**
279 279  
280 -=== 2.3.6  Decode payload in The Things Network ===
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
281 281  
282 -While using TTN network, you can add the payload format to decode the payload.
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
283 283  
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
284 284  
285 -[[image:1654850829385-439.png]]
286 286  
287 -The payload decoder function for TTN V3 is here:
168 +(% style="color:red" %)**Note 2:**
288 288  
289 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
290 290  
291 291  
292 292  
293 -== 2.Uplink Interval ==
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
294 294  
295 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
176 +Prepare Eproxy AB glue.
296 296  
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
297 297  
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
298 298  
299 -== 2.5  ​Show Data in DataCake IoT Server ==
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
300 300  
301 -(((
302 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
303 -)))
304 304  
305 -(((
306 -
307 -)))
185 +(% style="color:red" %)**Note 1:**
308 308  
309 -(((
310 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
311 -)))
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
312 312  
313 -(((
314 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
315 -)))
316 316  
190 +(% style="color:red" %)**Note 2:**
317 317  
318 -[[image:1654592790040-760.png]]
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
319 319  
320 320  
321 -[[image:1654592800389-571.png]]
322 322  
196 +== 1.6 ​ Applications ==
323 323  
324 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
325 325  
326 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
201 +== 1.7  Precautions ==
327 327  
328 -[[image:1654851029373-510.png]]
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
329 329  
207 +== 1.8  Pin mapping and power on ==
330 330  
331 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
332 332  
333 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
210 +[[image:1655257026882-201.png]]
334 334  
335 335  
336 336  
337 -== 2.6  Frequency Plans ==
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
338 338  
339 -(((
340 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
341 -)))
342 342  
217 +== 2.1  How it works ==
343 343  
344 -
345 -=== 2.6.1  EU863-870 (EU868) ===
346 -
347 347  (((
348 -(% style="color:blue" %)**Uplink:**
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
349 349  )))
350 350  
351 351  (((
352 -868.1 - SF7BW125 to SF12BW125
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
353 353  )))
354 354  
355 -(((
356 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
357 -)))
358 358  
359 -(((
360 -868.5 - SF7BW125 to SF12BW125
361 -)))
362 362  
363 -(((
364 -867.1 - SF7BW125 to SF12BW125
365 -)))
229 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
366 366  
367 367  (((
368 -867.3 - SF7BW125 to SF12BW125
232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
369 369  )))
370 370  
371 371  (((
372 -867.5 - SF7BW125 to SF12BW125
236 +[[image:1655257698953-697.png]]
373 373  )))
374 374  
375 375  (((
376 -867.7 - SF7BW125 to SF12BW125
240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
377 377  )))
378 378  
379 379  (((
380 -867.9 - SF7BW125 to SF12BW125
381 -)))
244 +
382 382  
383 -(((
384 -868.8 - FSK
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
385 385  )))
386 386  
387 387  (((
388 -
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
389 389  )))
390 390  
391 -(((
392 -(% style="color:blue" %)**Downlink:**
393 -)))
253 +[[image:image-20220607170145-1.jpeg]]
394 394  
255 +
395 395  (((
396 -Uplink channels 1-9 (RX1)
257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
397 397  )))
398 398  
399 399  (((
400 -869.525 - SF9BW125 (RX2 downlink only)
261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
401 401  )))
402 402  
403 -
404 -
405 -=== 2.6.2  US902-928(US915) ===
406 -
407 407  (((
408 -Used in USA, Canada and South America. Default use CHE=2
265 +
409 409  
410 -(% style="color:blue" %)**Uplink:**
267 +**Add APP EUI in the application**
268 +)))
411 411  
412 -903.9 - SF7BW125 to SF10BW125
270 +[[image:image-20220610161353-4.png]]
413 413  
414 -904.1 - SF7BW125 to SF10BW125
272 +[[image:image-20220610161353-5.png]]
415 415  
416 -904.3 - SF7BW125 to SF10BW125
274 +[[image:image-20220610161353-6.png]]
417 417  
418 -904.5 - SF7BW125 to SF10BW125
419 419  
420 -904.7 - SF7BW125 to SF10BW125
277 +[[image:image-20220610161353-7.png]]
421 421  
422 -904.9 - SF7BW125 to SF10BW125
423 423  
424 -905.1 - SF7BW125 to SF10BW125
425 425  
426 -905.3 - SF7BW125 to SF10BW125
281 +You can also choose to create the device manually.
427 427  
283 + [[image:image-20220610161538-8.png]]
428 428  
429 -(% style="color:blue" %)**Downlink:**
430 430  
431 -923.3 - SF7BW500 to SF12BW500
432 432  
433 -923.9 - SF7BW500 to SF12BW500
287 +**Add APP KEY and DEV EUI**
434 434  
435 -924.5 - SF7BW500 to SF12BW500
289 +[[image:image-20220610161538-9.png]]
436 436  
437 -925.1 - SF7BW500 to SF12BW500
438 438  
439 -925.7 - SF7BW500 to SF12BW500
440 440  
441 -926.3 - SF7BW500 to SF12BW500
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
442 442  
443 -926.9 - SF7BW500 to SF12BW500
444 444  
445 -927.5 - SF7BW500 to SF12BW500
296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
446 446  
447 -923.3 - SF12BW500(RX2 downlink only)
298 +[[image:image-20220615095102-14.png]]
448 448  
449 449  
450 -
451 -)))
452 452  
453 -=== 2.6.3  CN470-510 (CN470) ===
454 -
455 455  (((
456 -Used in China, Default use CHE=1
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
457 457  )))
458 458  
459 -(((
460 -(% style="color:blue" %)**Uplink:**
461 -)))
306 +[[image:1654849068701-275.png]]
462 462  
463 -(((
464 -486.3 - SF7BW125 to SF12BW125
465 -)))
466 466  
467 -(((
468 -486.5 - SF7BW125 to SF12BW125
469 -)))
470 470  
471 -(((
472 -486.7 - SF7BW125 to SF12BW125
473 -)))
310 +== 2.3  ​Uplink Payload ==
474 474  
475 475  (((
476 -486.9 - SF7BW125 to SF12BW125
477 -)))
478 -
479 479  (((
480 -487.1 - SF7BW125 to SF12BW125
481 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
482 482  
483 -(((
484 -487.3 - SF7BW125 to SF12BW125
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
485 485  )))
486 -
487 -(((
488 -487.5 - SF7BW125 to SF12BW125
489 489  )))
490 490  
491 491  (((
492 -487.7 - SF7BW125 to SF12BW125
493 -)))
494 -
495 -(((
496 496  
497 497  )))
498 498  
499 -(((
500 -(% style="color:blue" %)**Downlink:**
501 -)))
325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 +|=(% style="width: 62.5px;" %)(((
327 +**Size (bytes)**
328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 +[[Distance>>||anchor="H2.3.2A0Distance"]]
502 502  
503 -(((
504 -506.7 - SF7BW125 to SF12BW125
505 -)))
332 +(unit: mm)
333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
506 506  
507 -(((
508 -506.9 - SF7BW125 to SF12BW125
509 -)))
337 +[[image:1654850511545-399.png]]
510 510  
511 -(((
512 -507.1 - SF7BW125 to SF12BW125
513 -)))
514 514  
515 -(((
516 -507.3 - SF7BW125 to SF12BW125
517 -)))
518 518  
519 -(((
520 -507.5 - SF7BW125 to SF12BW125
521 -)))
341 +=== 2.3.1  Battery Info ===
522 522  
523 -(((
524 -507.7 - SF7BW125 to SF12BW125
525 -)))
526 526  
527 -(((
528 -507.9 - SF7BW125 to SF12BW125
529 -)))
344 +Check the battery voltage for LDDS20.
530 530  
531 -(((
532 -508.1 - SF7BW125 to SF12BW125
533 -)))
346 +Ex1: 0x0B45 = 2885mV
534 534  
535 -(((
536 -505.3 - SF12BW125 (RX2 downlink only)
537 -)))
348 +Ex2: 0x0B49 = 2889mV
538 538  
539 539  
540 540  
541 -=== 2.6.4  AU915-928(AU915) ===
352 +=== 2.3.2  Distance ===
542 542  
543 543  (((
544 -Default use CHE=2
355 +Get the distance. Flat object range 20mm - 2000mm.
356 +)))
545 545  
546 -(% style="color:blue" %)**Uplink:**
358 +(((
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 +)))
547 547  
548 -916.8 - SF7BW125 to SF12BW125
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
549 549  
550 -917.0 - SF7BW125 to SF12BW125
365 +=== 2.3.3  Interrupt Pin ===
551 551  
552 -917.2 - SF7BW125 to SF12BW125
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
553 553  
554 -917.4 - SF7BW125 to SF12BW125
369 +**Example:**
555 555  
556 -917.6 - SF7BW125 to SF12BW125
371 +0x00: Normal uplink packet.
557 557  
558 -917.8 - SF7BW125 to SF12BW125
373 +0x01: Interrupt Uplink Packet.
559 559  
560 -918.0 - SF7BW125 to SF12BW125
561 561  
562 -918.2 - SF7BW125 to SF12BW125
563 563  
377 +=== 2.3.4  DS18B20 Temperature sensor ===
564 564  
565 -(% style="color:blue" %)**Downlink:**
379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
566 566  
567 -923.3 - SF7BW500 to SF12BW500
381 +**Example**:
568 568  
569 -923.9 - SF7BW500 to SF12BW500
383 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
570 570  
571 -924.5 - SF7BW500 to SF12BW500
385 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
572 572  
573 -925.1 - SF7BW500 to SF12BW500
387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
574 574  
575 -925.7 - SF7BW500 to SF12BW500
576 576  
577 -926.3 - SF7BW500 to SF12BW500
578 578  
579 -926.9 - SF7BW500 to SF12BW500
391 +=== 2.3.5  Sensor Flag ===
580 580  
581 -927.5 - SF7BW500 to SF12BW500
582 -
583 -923.3 - SF12BW500(RX2 downlink only)
584 -
585 -
586 -
587 -)))
588 -
589 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
590 -
591 591  (((
592 -(% style="color:blue" %)**Default Uplink channel:**
394 +0x01: Detect Ultrasonic Sensor
593 593  )))
594 594  
595 595  (((
596 -923.2 - SF7BW125 to SF10BW125
398 +0x00: No Ultrasonic Sensor
597 597  )))
598 598  
599 -(((
600 -923.4 - SF7BW125 to SF10BW125
601 -)))
602 602  
603 -(((
604 -
605 -)))
606 606  
607 -(((
608 -(% style="color:blue" %)**Additional Uplink Channel**:
609 -)))
403 +=== 2.3.6  Decode payload in The Things Network ===
610 610  
611 -(((
612 -(OTAA mode, channel added by JoinAccept message)
613 -)))
405 +While using TTN network, you can add the payload format to decode the payload.
614 614  
615 -(((
616 -
617 -)))
618 618  
619 -(((
620 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
621 -)))
408 +[[image:1654850829385-439.png]]
622 622  
623 -(((
624 -922.2 - SF7BW125 to SF10BW125
625 -)))
410 +The payload decoder function for TTN V3 is here:
626 626  
627 627  (((
628 -922.4 - SF7BW125 to SF10BW125
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
629 629  )))
630 630  
631 -(((
632 -922.6 - SF7BW125 to SF10BW125
633 -)))
634 634  
635 -(((
636 -922.8 - SF7BW125 to SF10BW125
637 -)))
638 638  
639 -(((
640 -923.0 - SF7BW125 to SF10BW125
641 -)))
418 +== 2.4  Downlink Payload ==
642 642  
643 -(((
644 -922.0 - SF7BW125 to SF10BW125
645 -)))
420 +By default, LDDS20 prints the downlink payload to console port.
646 646  
647 -(((
648 -
649 -)))
422 +[[image:image-20220615100930-15.png]]
650 650  
651 -(((
652 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
653 -)))
654 654  
655 -(((
656 -923.6 - SF7BW125 to SF10BW125
657 -)))
425 +**Examples:**
658 658  
659 -(((
660 -923.8 - SF7BW125 to SF10BW125
661 -)))
662 662  
663 -(((
664 -924.0 - SF7BW125 to SF10BW125
665 -)))
428 +* (% style="color:blue" %)**Set TDC**
666 666  
667 -(((
668 -924.2 - SF7BW125 to SF10BW125
669 -)))
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
670 670  
671 -(((
672 -924.4 - SF7BW125 to SF10BW125
673 -)))
432 +Payload:    01 00 00 1E    TDC=30S
674 674  
675 -(((
676 -924.6 - SF7BW125 to SF10BW125
677 -)))
434 +Payload:    01 00 00 3C    TDC=60S
678 678  
679 -(((
680 -
681 -)))
682 682  
683 -(((
684 -(% style="color:blue" %)**Downlink:**
685 -)))
437 +* (% style="color:blue" %)**Reset**
686 686  
687 -(((
688 -Uplink channels 1-8 (RX1)
689 -)))
439 +If payload = 0x04FF, it will reset the LDDS20
690 690  
691 -(((
692 -923.2 - SF10BW125 (RX2)
693 -)))
694 694  
442 +* (% style="color:blue" %)**CFM**
695 695  
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
696 696  
697 -=== 2.6.6  KR920-923 (KR920) ===
698 698  
699 -(((
700 -(% style="color:blue" %)**Default channel:**
701 -)))
702 702  
703 -(((
704 -922.1 - SF7BW125 to SF12BW125
705 -)))
448 +== 2.5  ​Show Data in DataCake IoT Server ==
706 706  
707 707  (((
708 -922.3 - SF7BW125 to SF12BW125
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
709 709  )))
710 710  
711 711  (((
712 -922.5 - SF7BW125 to SF12BW125
713 -)))
714 -
715 -(((
716 716  
717 717  )))
718 718  
719 719  (((
720 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
721 721  )))
722 722  
723 723  (((
724 -922.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
725 725  )))
726 726  
727 -(((
728 -922.3 - SF7BW125 to SF12BW125
729 -)))
730 730  
731 -(((
732 -922.5 - SF7BW125 to SF12BW125
733 -)))
467 +[[image:1654592790040-760.png]]
734 734  
735 -(((
736 -922.7 - SF7BW125 to SF12BW125
737 -)))
738 738  
739 -(((
740 -922.9 - SF7BW125 to SF12BW125
741 -)))
470 +[[image:1654592800389-571.png]]
742 742  
743 -(((
744 -923.1 - SF7BW125 to SF12BW125
745 -)))
746 746  
747 -(((
748 -923.3 - SF7BW125 to SF12BW125
749 -)))
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
750 750  
751 -(((
752 -
753 -)))
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
754 754  
755 -(((
756 -(% style="color:blue" %)**Downlink:**
757 -)))
477 +[[image:1654851029373-510.png]]
758 758  
759 -(((
760 -Uplink channels 1-7(RX1)
761 -)))
762 762  
763 -(((
764 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
765 -)))
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
766 766  
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
767 767  
768 768  
769 -=== 2.6.7  IN865-867 (IN865) ===
770 770  
771 -(((
772 -(% style="color:blue" %)**Uplink:**
773 -)))
486 +== 2.6  LED Indicator ==
774 774  
775 -(((
776 -865.0625 - SF7BW125 to SF12BW125
777 -)))
488 +The LDDS20 has an internal LED which is to show the status of different state.
778 778  
779 -(((
780 -865.4025 - SF7BW125 to SF12BW125
781 -)))
782 782  
783 -(((
784 -865.9850 - SF7BW125 to SF12BW125
785 -)))
786 -
787 -(((
788 -
789 -)))
790 -
791 -(((
792 -(% style="color:blue" %)**Downlink:**
793 -)))
794 -
795 -(((
796 -Uplink channels 1-3 (RX1)
797 -)))
798 -
799 -(((
800 -866.550 - SF10BW125 (RX2)
801 -)))
802 -
803 -
804 -
805 -== 2.7  LED Indicator ==
806 -
807 -The LDDS75 has an internal LED which is to show the status of different state.
808 -
809 -
810 810  * Blink once when device power on.
811 811  * The device detects the sensor and flashes 5 times.
812 812  * Solid ON for 5 seconds once device successful Join the network.
813 -* Blink once when device transmit a packet.
814 814  
495 +Blink once when device transmit a packet.
815 815  
816 816  
498 +
817 817  == 2.8  ​Firmware Change Log ==
818 818  
819 819  
502 +(((
820 820  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
504 +)))
821 821  
506 +(((
507 +
508 +)))
822 822  
510 +(((
823 823  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
512 +)))
824 824  
825 825  
826 826  
... ... @@ -964,7 +964,9 @@
964 964  [[image:image-20220610172924-5.png]]
965 965  
966 966  
656 +(((
967 967  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
658 +)))
968 968  
969 969  
970 970   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -988,16 +988,19 @@
988 988  (((
989 989  Format: Command Code (0x01) followed by 3 bytes time value.
990 990  
682 +(((
991 991  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
684 +)))
992 992  
993 993  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
994 994  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
995 995  )))
689 +)))
996 996  
997 997  
998 -
999 -)))
1000 1000  
693 +
694 +
1001 1001  == 3.3  Set Interrupt Mode ==
1002 1002  
1003 1003  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1011,14 +1011,13 @@
1011 1011  
1012 1012  Format: Command Code (0x06) followed by 3 bytes.
1013 1013  
708 +(((
1014 1014  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
710 +)))
1015 1015  
1016 1016  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1017 1017  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1018 1018  
1019 -
1020 -
1021 -
1022 1022  = 4.  FAQ =
1023 1023  
1024 1024  == 4.1  What is the frequency plan for LDDS75? ==
... ... @@ -1078,9 +1078,6 @@
1078 1078  * (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1079 1079  * (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1080 1080  
1081 -
1082 -
1083 -
1084 1084  = 7. ​ Packing Info =
1085 1085  
1086 1086  
... ... @@ -1095,9 +1095,6 @@
1095 1095  * Package Size / pcs : cm
1096 1096  * Weight / pcs : g
1097 1097  
1098 -
1099 -
1100 -
1101 1101  = 8.  ​Support =
1102 1102  
1103 1103  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content