Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
- image-20220615102527-16.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 75- LoRaWANDistanceDetectionSensor User Manual1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:1654 846127817-788.png]]2 +[[image:1655254599445-662.png]] 3 3 4 -**Contents:** 5 5 6 -{{toc/}} 7 7 8 8 7 +**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,35 +12,76 @@ 12 12 13 13 14 14 14 + 15 + 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN DistanceDetectionSensor ==18 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 24 +((( 25 +((( 26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 27 +))) 24 24 29 +((( 30 + 31 +))) 25 25 26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 33 +((( 34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 35 +))) 27 27 37 +((( 38 + 39 +))) 28 28 29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 +((( 42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 43 +))) 30 30 45 +((( 46 + 47 +))) 31 31 32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 49 +((( 50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 51 +))) 33 33 53 +((( 54 + 55 +))) 34 34 35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 57 +((( 58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 59 +))) 36 36 61 +((( 62 + 63 +))) 37 37 65 +((( 66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 67 +))) 68 + 69 +((( 70 + 71 +))) 72 +))) 73 + 74 +((( 75 +((( 38 38 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 39 39 ))) 40 40 ))) 79 +))) 80 +))) 41 41 42 42 43 -[[image:165 4847051249-359.png]]83 +[[image:1655255122126-327.png]] 44 44 45 45 46 46 ... ... @@ -48,9 +48,10 @@ 48 48 49 49 * LoRaWAN 1.0.3 Class A 50 50 * Ultra low power consumption 51 -* Distance Detection by Ultrasonic technology 52 -* Flat object range 280mm - 7500mm 53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 91 +* Liquid Level Measurement by Ultrasonic technology 92 +* Measure through container, No need to contact Liquid. 93 +* Valid level range 20mm - 2000mm 94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 54 54 * Cable Length : 25cm 55 55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 56 56 * AT Commands to change parameters ... ... @@ -57,67 +57,130 @@ 57 57 * Uplink on periodically 58 58 * Downlink to change configure 59 59 * IP66 Waterproof Enclosure 60 -* 4000mAh or8500mAh Battery for long term use101 +* 8500mAh Battery for long term use 61 61 62 -== 1.3 S pecification ==103 +== 1.3 Suitable Container & Liquid == 63 63 64 -=== 1.3.1 Rated environmental conditions === 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 65 65 66 - [[image:image-20220610154839-1.png]]112 +== 1.4 Mechanical == 67 67 68 - **Remarks: (1) a. When the ambient temperatureis 0-39℃, the maximum humidity is90% (non-condensing);**114 +[[image:image-20220615090910-1.png]] 69 69 70 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 71 71 117 +[[image:image-20220615090910-2.png]] 72 72 73 73 74 -=== 1.3.2 Effective measurement range Reference beam pattern === 75 75 76 - **(1)The tested object isawhite cylindricaltube made of PVC, with a height of 100cmand a diameter of 7.5cm.**121 +== 1.5 Install LDDS20 == 77 77 78 78 124 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 79 79 80 - [[image:1654852253176-749.png]]126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 81 81 128 +[[image:image-20220615091045-3.png]] 82 82 83 83 84 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 85 85 132 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 86 86 87 - [[image:1654852175653-550.png]](%style="display:none"%)****134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 88 88 136 +[[image:image-20220615092010-11.png]] 89 89 90 90 91 - ==1.5 Applications==139 +No polish needed if the container is shine metal surface without paint or non-metal container. 92 92 93 -* Horizontal distance measurement 94 -* Liquid level measurement 95 -* Parking management system 96 -* Object proximity and presence detection 97 -* Intelligent trash can management system 98 -* Robot obstacle avoidance 99 -* Automatic control 100 -* Sewer 101 -* Bottom water level monitoring 141 +[[image:image-20220615092044-12.png]] 102 102 103 103 104 -== 1.6 Pin mapping and power on == 105 105 145 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 106 106 107 - [[image:1654847583902-256.png]]147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 108 108 109 109 150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 110 110 111 - =2.ConfigureLDDS75to connecttoLoRaWANnetwork=152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]] 112 112 154 + 155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 156 + 157 + 158 +(% style="color:red" %)**LED Status:** 159 + 160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 161 + 162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 164 + 165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 166 + 167 + 168 +(% style="color:red" %)**Note 2:** 169 + 170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 171 + 172 + 173 + 174 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 175 + 176 +Prepare Eproxy AB glue. 177 + 178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 179 + 180 +Reset LDDS20 and see if the BLUE LED is slowly blinking. 181 + 182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 183 + 184 + 185 +(% style="color:red" %)**Note 1:** 186 + 187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 188 + 189 + 190 +(% style="color:red" %)**Note 2:** 191 + 192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 193 + 194 + 195 + 196 +== 1.6 Applications == 197 + 198 +* Smart liquid control solution. 199 +* Smart liquefied gas solution. 200 + 201 +== 1.7 Precautions == 202 + 203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 206 + 207 +== 1.8 Pin mapping and power on == 208 + 209 + 210 +[[image:1655257026882-201.png]] 211 + 212 + 213 + 214 += 2. Configure LDDS20 to connect to LoRaWAN network = 215 + 216 + 113 113 == 2.1 How it works == 114 114 115 115 ((( 116 -The LDDS 75is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 117 117 ))) 118 118 119 119 ((( 120 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0 ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20. 121 121 ))) 122 122 123 123 ... ... @@ -129,7 +129,7 @@ 129 129 ))) 130 130 131 131 ((( 132 -[[image:165 4848616367-242.png]]236 +[[image:1655257698953-697.png]] 133 133 ))) 134 134 135 135 ((( ... ... @@ -137,21 +137,31 @@ 137 137 ))) 138 138 139 139 ((( 140 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 244 + 245 + 246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 141 141 ))) 142 142 143 143 ((( 144 -Each LDDS 75is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 145 145 ))) 146 146 147 147 [[image:image-20220607170145-1.jpeg]] 148 148 149 149 256 +((( 150 150 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 258 +))) 151 151 260 +((( 152 152 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 262 +))) 153 153 264 +((( 265 + 266 + 154 154 **Add APP EUI in the application** 268 +))) 155 155 156 156 [[image:image-20220610161353-4.png]] 157 157 ... ... @@ -163,6 +163,7 @@ 163 163 [[image:image-20220610161353-7.png]] 164 164 165 165 280 + 166 166 You can also choose to create the device manually. 167 167 168 168 [[image:image-20220610161538-8.png]] ... ... @@ -175,16 +175,17 @@ 175 175 176 176 177 177 178 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS 75293 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 179 179 180 180 181 181 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 182 182 183 -[[image:image-202206101 61724-10.png]]298 +[[image:image-20220615095102-14.png]] 184 184 185 185 301 + 186 186 ((( 187 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS 75will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.303 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 188 188 ))) 189 189 190 190 [[image:1654849068701-275.png]] ... ... @@ -194,11 +194,13 @@ 194 194 == 2.3 Uplink Payload == 195 195 196 196 ((( 197 -LDDS75 will uplink payload via LoRaWAN with below payload format: 313 +((( 314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 198 198 199 -Uplink payload includes in total 4bytes.200 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on twofields: BAT and Distance316 +Uplink payload includes in total 8 bytes. 317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload). 201 201 ))) 319 +))) 202 202 203 203 ((( 204 204 ... ... @@ -223,7 +223,7 @@ 223 223 === 2.3.1 Battery Info === 224 224 225 225 226 -Check the battery voltage for LDDS 75.344 +Check the battery voltage for LDDS20. 227 227 228 228 Ex1: 0x0B45 = 2885mV 229 229 ... ... @@ -233,19 +233,22 @@ 233 233 234 234 === 2.3.2 Distance === 235 235 236 -Get the distance. Flat object range 280mm - 7500mm. 354 +((( 355 +Get the distance. Flat object range 20mm - 2000mm. 356 +))) 237 237 238 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 358 +((( 359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 360 +))) 239 239 362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 240 240 241 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 242 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 243 243 244 244 245 - 246 246 === 2.3.3 Interrupt Pin === 247 247 248 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3. 3A0SetInterruptMode"]] for the hardware and software set up.369 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 249 249 250 250 **Example:** 251 251 ... ... @@ -271,9 +271,13 @@ 271 271 272 272 === 2.3.5 Sensor Flag === 273 273 395 +((( 274 274 0x01: Detect Ultrasonic Sensor 397 +))) 275 275 399 +((( 276 276 0x00: No Ultrasonic Sensor 401 +))) 277 277 278 278 279 279 ... ... @@ -286,691 +286,301 @@ 286 286 287 287 The payload decoder function for TTN V3 is here: 288 288 289 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 290 - 291 - 292 - 293 -== 2.4 Uplink Interval == 294 - 295 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 296 - 297 - 298 - 299 -== 2.5 Show Data in DataCake IoT Server == 300 - 301 301 ((( 302 - [[DATACAKE>>url:https://datacake.co/]] providesa human friendly interface toshow the sensordata,once we havedata in TTN, wean use[[DATACAKE>>url:https://datacake.co/]] toconnect toTTNande thedatain DATACAKE. Belowarethesteps:415 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 303 303 ))) 304 304 305 -((( 306 - 307 -))) 308 308 309 -((( 310 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 311 -))) 312 312 313 -((( 314 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 315 -))) 420 +== 2.4 Downlink Payload == 316 316 422 +By default, LDDS20 prints the downlink payload to console port. 317 317 318 -[[image: 1654592790040-760.png]]424 +[[image:image-20220615100930-15.png]] 319 319 320 320 321 - [[image:1654592800389-571.png]]427 +**Examples:** 322 322 323 323 324 -(% style="color:blue" %)**S tep 3**(%%)**: Createan account or log inDatacake.**430 +* (% style="color:blue" %)**Set TDC** 325 325 326 - (%style="color:blue"%)**Step4**(%%)**: SearchtheLDDS75andaddDevEUI.**432 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 327 327 328 - [[image:1654851029373-510.png]]434 +Payload: 01 00 00 1E TDC=30S 329 329 436 +Payload: 01 00 00 3C TDC=60S 330 330 331 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 332 332 333 - [[image:image-20220610165129-11.png||height="595"width="1088"]]439 +* (% style="color:blue" %)**Reset** 334 334 441 +If payload = 0x04FF, it will reset the LDDS20 335 335 336 336 337 - ==2.6FrequencyPlans ==444 +* (% style="color:blue" %)**CFM** 338 338 339 -((( 340 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 341 -))) 446 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 342 342 343 343 344 344 345 -== =2.6.1EU863-870(EU868)===450 +== 2.5 Show Data in DataCake IoT Server == 346 346 347 347 ((( 348 - (%style="color:blue"%)**Uplink:**453 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 349 349 ))) 350 350 351 351 ((( 352 -868.1 - SF7BW125 to SF12BW125 353 -))) 354 - 355 -((( 356 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 357 -))) 358 - 359 -((( 360 -868.5 - SF7BW125 to SF12BW125 361 -))) 362 - 363 -((( 364 -867.1 - SF7BW125 to SF12BW125 365 -))) 366 - 367 -((( 368 -867.3 - SF7BW125 to SF12BW125 369 -))) 370 - 371 -((( 372 -867.5 - SF7BW125 to SF12BW125 373 -))) 374 - 375 -((( 376 -867.7 - SF7BW125 to SF12BW125 377 -))) 378 - 379 -((( 380 -867.9 - SF7BW125 to SF12BW125 381 -))) 382 - 383 -((( 384 -868.8 - FSK 385 -))) 386 - 387 -((( 388 388 389 389 ))) 390 390 391 391 ((( 392 -(% style="color:blue" %)** Downlink:**461 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 393 393 ))) 394 394 395 395 ((( 396 - Uplinkchannels1-9(RX1)465 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 397 397 ))) 398 398 399 -((( 400 -869.525 - SF9BW125 (RX2 downlink only) 401 -))) 402 402 469 +[[image:1654592790040-760.png]] 403 403 404 404 405 - === 2.6.2 US902-928(US915) ===472 +[[image:1654592800389-571.png]] 406 406 407 -((( 408 -Used in USA, Canada and South America. Default use CHE=2 409 409 410 -(% style="color:blue" %)** Uplink:**475 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 411 411 412 - 903.9-SF7BW125 to SF10BW125477 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 413 413 414 - 904.1- SF7BW125to SF10BW125479 +[[image:1654851029373-510.png]] 415 415 416 -904.3 - SF7BW125 to SF10BW125 417 417 418 - 904.5-SF7BW125toSF10BW125482 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 419 419 420 - 904.7-SF7BW125 to SF10BW125484 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 421 421 422 -904.9 - SF7BW125 to SF10BW125 423 423 424 -905.1 - SF7BW125 to SF10BW125 425 425 426 - 905.3- SF7BW125toSF10BW125488 +== 2.6 LED Indicator == 427 427 490 +The LDDS20 has an internal LED which is to show the status of different state. 428 428 429 -(% style="color:blue" %)**Downlink:** 430 430 431 -923.3 - SF7BW500 to SF12BW500 493 +* Blink once when device power on. 494 +* The device detects the sensor and flashes 5 times. 495 +* Solid ON for 5 seconds once device successful Join the network. 496 +* Blink once when device transmit a packet. 432 432 433 -923.9 - SF7BW500 to SF12BW500 434 434 435 -924.5 - SF7BW500 to SF12BW500 436 436 437 - 925.1- SF7BW500toSF12BW500500 +== 2.7 Firmware Change Log == 438 438 439 -925.7 - SF7BW500 to SF12BW500 440 440 441 -926.3 - SF7BW500 to SF12BW500 442 - 443 -926.9 - SF7BW500 to SF12BW500 444 - 445 -927.5 - SF7BW500 to SF12BW500 446 - 447 -923.3 - SF12BW500(RX2 downlink only) 448 - 449 - 450 - 451 -))) 452 - 453 -=== 2.6.3 CN470-510 (CN470) === 454 - 455 455 ((( 456 - Used inChina, DefaultuseCHE=1504 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 457 457 ))) 458 458 459 459 ((( 460 -(% style="color:blue" %)**Uplink:** 461 -))) 462 - 463 -((( 464 -486.3 - SF7BW125 to SF12BW125 465 -))) 466 - 467 -((( 468 -486.5 - SF7BW125 to SF12BW125 469 -))) 470 - 471 -((( 472 -486.7 - SF7BW125 to SF12BW125 473 -))) 474 - 475 -((( 476 -486.9 - SF7BW125 to SF12BW125 477 -))) 478 - 479 -((( 480 -487.1 - SF7BW125 to SF12BW125 481 -))) 482 - 483 -((( 484 -487.3 - SF7BW125 to SF12BW125 485 -))) 486 - 487 -((( 488 -487.5 - SF7BW125 to SF12BW125 489 -))) 490 - 491 -((( 492 -487.7 - SF7BW125 to SF12BW125 493 -))) 494 - 495 -((( 496 496 497 497 ))) 498 498 499 499 ((( 500 - (%style="color:blue"%)**Downlink:**512 +**Firmware Upgrade Method: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]** 501 501 ))) 502 502 503 -((( 504 -506.7 - SF7BW125 to SF12BW125 505 -))) 506 506 507 -((( 508 -506.9 - SF7BW125 to SF12BW125 509 -))) 510 510 511 -((( 512 -507.1 - SF7BW125 to SF12BW125 513 -))) 517 +== 2.8 Battery Analysis == 514 514 515 -((( 516 -507.3 - SF7BW125 to SF12BW125 517 -))) 518 518 519 -((( 520 -507.5 - SF7BW125 to SF12BW125 521 -))) 522 522 523 -((( 524 -507.7 - SF7BW125 to SF12BW125 525 -))) 526 526 527 -((( 528 -507.9 - SF7BW125 to SF12BW125 529 -))) 522 +=== 2.8.1 Battery Type === 530 530 531 -((( 532 -508.1 - SF7BW125 to SF12BW125 533 -))) 524 +The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 534 534 535 -((( 536 -505.3 - SF12BW125 (RX2 downlink only) 537 -))) 538 538 527 +The battery related documents as below: 539 539 540 - 541 -=== 2.6.4 AU915-928(AU915) === 542 - 543 -((( 544 -Default use CHE=2 545 - 546 -(% style="color:blue" %)**Uplink:** 547 - 548 -916.8 - SF7BW125 to SF12BW125 549 - 550 -917.0 - SF7BW125 to SF12BW125 551 - 552 -917.2 - SF7BW125 to SF12BW125 553 - 554 -917.4 - SF7BW125 to SF12BW125 555 - 556 -917.6 - SF7BW125 to SF12BW125 557 - 558 -917.8 - SF7BW125 to SF12BW125 559 - 560 -918.0 - SF7BW125 to SF12BW125 561 - 562 -918.2 - SF7BW125 to SF12BW125 563 - 564 - 565 -(% style="color:blue" %)**Downlink:** 566 - 567 -923.3 - SF7BW500 to SF12BW500 568 - 569 -923.9 - SF7BW500 to SF12BW500 570 - 571 -924.5 - SF7BW500 to SF12BW500 572 - 573 -925.1 - SF7BW500 to SF12BW500 574 - 575 -925.7 - SF7BW500 to SF12BW500 576 - 577 -926.3 - SF7BW500 to SF12BW500 578 - 579 -926.9 - SF7BW500 to SF12BW500 580 - 581 -927.5 - SF7BW500 to SF12BW500 582 - 583 -923.3 - SF12BW500(RX2 downlink only) 584 - 585 - 586 - 529 +* ((( 530 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 587 587 ))) 588 - 589 -=== 2.6.5 AS920-923 & AS923-925 (AS923) === 590 - 591 -((( 592 -(% style="color:blue" %)**Default Uplink channel:** 532 +* ((( 533 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]], 593 593 ))) 594 - 595 -((( 596 -923.2 - SF7BW125 to SF10BW125 535 +* ((( 536 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 597 ))) 598 598 599 -((( 600 -923.4 - SF7BW125 to SF10BW125 601 -))) 539 + [[image:image-20220615102527-16.png]] 602 602 603 -((( 604 - 605 -))) 606 606 607 -((( 608 -(% style="color:blue" %)**Additional Uplink Channel**: 609 -))) 610 610 611 -((( 612 -(OTAA mode, channel added by JoinAccept message) 613 -))) 543 +== 2.8.2 Battery Note == 614 614 615 -((( 616 - 617 -))) 545 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased. 618 618 619 -((( 620 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 621 -))) 622 622 623 -((( 624 -922.2 - SF7BW125 to SF10BW125 625 -))) 626 626 627 -((( 628 -922.4 - SF7BW125 to SF10BW125 629 -))) 549 +=== 2.8.3 Replace the battery === 630 630 631 631 ((( 632 - 922.6-SF7BW125 toSF10BW125552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 633 633 ))) 634 634 635 635 ((( 636 -922.8 - SF7BW125 to SF10BW125 637 -))) 638 - 639 -((( 640 -923.0 - SF7BW125 to SF10BW125 641 -))) 642 - 643 -((( 644 -922.0 - SF7BW125 to SF10BW125 645 -))) 646 - 647 -((( 648 648 649 649 ))) 650 650 651 651 ((( 652 - (%style="color:blue"%)**AS923~~ AS925forBrunei,Cambodia,HongKong,Indonesia,Laos,Taiwan,Thailand,Vietnam**:560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 653 653 ))) 654 654 655 -((( 656 -923.6 - SF7BW125 to SF10BW125 657 -))) 658 658 659 -((( 660 -923.8 - SF7BW125 to SF10BW125 661 -))) 662 662 663 -((( 664 -924.0 - SF7BW125 to SF10BW125 665 -))) 565 +== 2.8.4 Battery Life Analyze == 666 666 667 -((( 668 -924.2 - SF7BW125 to SF10BW125 669 -))) 567 +Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life: 670 670 671 -((( 672 -924.4 - SF7BW125 to SF10BW125 673 -))) 569 +[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]] 674 674 675 -((( 676 -924.6 - SF7BW125 to SF10BW125 677 -))) 678 678 679 -((( 680 - 681 -))) 682 682 683 -((( 684 -(% style="color:blue" %)**Downlink:** 685 -))) 573 += 3. Using the AT Commands = 686 686 687 687 ((( 688 -Uplink channels 1-8 (RX1) 689 -))) 690 - 691 691 ((( 692 -923.2 - SF10BW125 (RX2) 693 -))) 694 - 695 - 696 - 697 -=== 2.6.6 KR920-923 (KR920) === 698 - 699 -((( 700 -(% style="color:blue" %)**Default channel:** 701 -))) 702 - 703 -((( 704 -922.1 - SF7BW125 to SF12BW125 705 -))) 706 - 707 -((( 708 -922.3 - SF7BW125 to SF12BW125 709 -))) 710 - 711 -((( 712 -922.5 - SF7BW125 to SF12BW125 713 -))) 714 - 715 -((( 716 716 717 717 ))) 718 - 719 -((( 720 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 721 721 ))) 722 722 723 -((( 724 -922.1 - SF7BW125 to SF12BW125 725 -))) 581 +== 3.1 Access AT Commands == 726 726 727 -((( 728 -922.3 - SF7BW125 to SF12BW125 729 -))) 583 +LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below. 730 730 731 -((( 732 -922.5 - SF7BW125 to SF12BW125 733 -))) 734 734 735 -((( 736 -922.7 - SF7BW125 to SF12BW125 737 -))) 586 +[[image:image-20220610172924-4.png||height="483" width="988"]] 738 738 739 -((( 740 -922.9 - SF7BW125 to SF12BW125 741 -))) 742 742 743 -((( 744 -923.1 - SF7BW125 to SF12BW125 745 -))) 589 +Or if you have below board, use below connection: 746 746 747 -((( 748 -923.3 - SF7BW125 to SF12BW125 749 -))) 750 750 751 -((( 752 - 753 -))) 592 +[[image:image-20220610172924-5.png]] 754 754 755 -((( 756 -(% style="color:blue" %)**Downlink:** 757 -))) 758 758 759 759 ((( 760 - Uplinkchannels1-7(RX1)596 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below: 761 761 ))) 762 762 763 -((( 764 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 765 -))) 766 766 600 + [[image:image-20220610172924-6.png||height="601" width="860"]] 767 767 602 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]. 768 768 769 -=== 2.6.7 IN865-867 (IN865) === 770 770 771 -((( 772 -(% style="color:blue" %)**Uplink:** 773 -))) 605 +AT+<CMD>? : Help on <CMD> 774 774 775 -((( 776 -865.0625 - SF7BW125 to SF12BW125 777 -))) 607 +AT+<CMD> : Run <CMD> 778 778 779 -((( 780 -865.4025 - SF7BW125 to SF12BW125 781 -))) 609 +AT+<CMD>=<value> : Set the value 782 782 783 -((( 784 -865.9850 - SF7BW125 to SF12BW125 785 -))) 611 +AT+<CMD>=? : Get the value 786 786 787 -((( 788 - 789 -))) 790 790 791 -((( 792 -(% style="color:blue" %)**Downlink:** 793 -))) 614 +**General Commands** 794 794 795 -((( 796 -Uplink channels 1-3 (RX1) 797 -))) 616 +AT : Attention 798 798 799 -((( 800 -866.550 - SF10BW125 (RX2) 801 -))) 618 +AT? : Short Help 802 802 620 +ATZ : MCU Reset 803 803 622 +AT+TDC : Application Data Transmission Interval 804 804 805 -== 2.7 LED Indicator == 806 806 807 - TheLDDS75 has aninternal LED which isto show the status of differentstate.625 +**Keys, IDs and EUIs management** 808 808 627 +AT+APPEUI : Application EUI 809 809 810 -* Blink once when device power on. 811 -* The device detects the sensor and flashes 5 times. 812 -* Solid ON for 5 seconds once device successful Join the network. 813 -* Blink once when device transmit a packet. 629 +AT+APPKEY : Application Key 814 814 631 +AT+APPSKEY : Application Session Key 815 815 633 +AT+DADDR : Device Address 816 816 817 - == 2.8FirmwareChangeLog ==635 +AT+DEUI : Device EUI 818 818 637 +AT+NWKID : Network ID (You can enter this command change only after successful network connection) 819 819 820 - **Firmwaredownload link:**[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]639 +AT+NWKSKEY : Network Session Key Joining and sending date on LoRa network 821 821 641 +AT+CFM : Confirm Mode 822 822 823 - **FirmwareUpgrade Method:**[[Firmware Upgrade Instruction>>doc:Main.FirmwareUpgrade Instruction for STM32 baseproducts.WebHome]]643 +AT+CFS : Confirm Status 824 824 645 +AT+JOIN : Join LoRa? Network 825 825 647 +AT+NJM : LoRa? Network Join Mode 826 826 827 - == 2.9Mechanical==649 +AT+NJS : LoRa? Network Join Status 828 828 651 +AT+RECV : Print Last Received Data in Raw Format 829 829 830 - [[image:image-20220610172003-1.png]]653 +AT+RECVB : Print Last Received Data in Binary Format 831 831 655 +AT+SEND : Send Text Data 832 832 833 - [[image:image-20220610172003-2.png]]657 +AT+SENB : Send Hexadecimal Data 834 834 835 835 660 +**LoRa Network Management** 836 836 837 - == 2.10BatteryAnalysis==662 +AT+ADR : Adaptive Rate 838 838 839 - === 2.10.1BatteryType===664 +AT+CLASS : LoRa Class(Currently only support class A 840 840 841 -T he LDDS75batteryis a combination of a 4000mAh or 8500mAh Li/SOCI2 Batteryand a SuperCapacitor. The batteryis non-rechargeablebatterytype with a low dischargerate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.666 +AT+DCS : Duty Cycle Setting 842 842 668 +AT+DR : Data Rate (Can Only be Modified after ADR=0) 843 843 844 -T hebatteryrelateddocuments as below:670 +AT+FCD : Frame Counter Downlink 845 845 846 -* ((( 847 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 848 -))) 849 -* ((( 850 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 851 -))) 852 -* ((( 853 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 854 -))) 672 +AT+FCU : Frame Counter Uplink 855 855 856 - [[image:image-20220610172400-3.png]]674 +AT+JN1DL : Join Accept Delay1 857 857 676 +AT+JN2DL : Join Accept Delay2 858 858 678 +AT+PNM : Public Network Mode 859 859 860 - === 2.10.2Replacethebattery===680 +AT+RX1DL : Receive Delay1 861 861 862 -((( 863 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 864 -))) 682 +AT+RX2DL : Receive Delay2 865 865 866 -((( 867 - 868 -))) 684 +AT+RX2DR : Rx2 Window Data Rate 869 869 870 -((( 871 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 872 -))) 686 +AT+RX2FQ : Rx2 Window Frequency 873 873 688 +AT+TXP : Transmit Power 874 874 875 875 876 - = 3. Configure LDDS75 via AT Commandor LoRaWAN Downlink=691 +**Information** 877 877 878 -((( 879 -((( 880 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink. 881 -))) 882 -))) 693 +AT+RSSI : RSSI of the Last Received Packet 883 883 884 -* ((( 885 -((( 886 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]]. 887 -))) 888 -))) 889 -* ((( 890 -((( 891 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 892 -))) 893 -))) 695 +AT+SNR : SNR of the Last Received Packet 894 894 895 -((( 896 -((( 897 - 898 -))) 697 +AT+VER : Image Version and Frequency Band 899 899 900 -((( 901 -There are two kinds of commands to configure LDDS75, they are: 902 -))) 903 -))) 699 +AT+FDR : Factory Data Reset 904 904 905 -* ((( 906 -((( 907 -(% style="color:#4f81bd" %)** General Commands**. 908 -))) 909 -))) 701 +AT+PORT : Application Port 910 910 911 -((( 912 -((( 913 -These commands are to configure: 914 -))) 915 -))) 703 +AT+CHS : Get or Set Frequency (Unit: Hz) for Single Channel Mode 916 916 917 -* ((( 918 -((( 919 -General system settings like: uplink interval. 920 -))) 921 -))) 922 -* ((( 923 -((( 924 -LoRaWAN protocol & radio related command. 925 -))) 926 -))) 705 + AT+CHE : Get or Set eight channels mode, Only for US915, AU915, CN470 927 927 928 -((( 929 -((( 930 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 931 -))) 932 -))) 933 933 934 -((( 935 -((( 936 - 937 -))) 938 -))) 939 939 940 -* ((( 941 -((( 942 -(% style="color:#4f81bd" %)** Commands special design for LDDS75** 943 -))) 944 -))) 945 - 946 -((( 947 -((( 948 -These commands only valid for LDDS75, as below: 949 -))) 950 -))) 951 - 952 - 953 - 954 -== 3.1 Access AT Commands == 955 - 956 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below. 957 - 958 -[[image:image-20220610172924-4.png||height="483" width="988"]] 959 - 960 - 961 -Or if you have below board, use below connection: 962 - 963 - 964 -[[image:image-20220610172924-5.png]] 965 - 966 - 967 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 968 - 969 - 970 - [[image:image-20220610172924-6.png||height="601" width="860"]] 971 - 972 - 973 - 974 974 == 3.2 Set Transmit Interval Time == 975 975 976 976 Feature: Change LoRaWAN End Node Transmit Interval. ... ... @@ -988,16 +988,19 @@ 988 988 ((( 989 989 Format: Command Code (0x01) followed by 3 bytes time value. 990 990 726 +((( 991 991 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 728 +))) 992 992 993 993 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 994 994 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 995 995 ))) 733 +))) 996 996 997 997 998 - 999 -))) 1000 1000 737 + 738 + 1001 1001 == 3.3 Set Interrupt Mode == 1002 1002 1003 1003 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -1011,14 +1011,13 @@ 1011 1011 1012 1012 Format: Command Code (0x06) followed by 3 bytes. 1013 1013 752 +((( 1014 1014 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 754 +))) 1015 1015 1016 1016 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1017 1017 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1018 1018 1019 - 1020 - 1021 - 1022 1022 = 4. FAQ = 1023 1023 1024 1024 == 4.1 What is the frequency plan for LDDS75? ==
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.5 KB - Content
- image-20220615102527-16.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +182.9 KB - Content