Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.22
edited by Xiaoling
on 2022/06/11 09:03
Change comment: There is no comment for this version
To version 173.6
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,804 +12,483 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
24 -
25 -
26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
27 -
28 -
29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 -
31 -
32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
33 -
34 -
35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 -
37 -
38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
24 +(((
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
39 39  )))
40 -)))
41 41  
42 -
43 -[[image:1654847051249-359.png]]
44 -
45 -
46 -
47 -== ​1.2  Features ==
48 -
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Distance Detection by Ultrasonic technology
52 -* Flat object range 280mm - 7500mm
53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
54 -* Cable Length : 25cm
55 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 -* AT Commands to change parameters
57 -* Uplink on periodically
58 -* Downlink to change configure
59 -* IP66 Waterproof Enclosure
60 -* 4000mAh or 8500mAh Battery for long term use
61 -
62 -
63 -== 1.3  Specification ==
64 -
65 -=== 1.3.1  Rated environmental conditions ===
66 -
67 -[[image:image-20220610154839-1.png]]
68 -
69 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
70 -
71 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
72 -
73 -
74 -
75 -=== 1.3.2  Effective measurement range Reference beam pattern ===
76 -
77 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
78 -
79 -
80 -
81 -[[image:1654852253176-749.png]]
82 -
83 -
84 -
85 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
86 -
87 -
88 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
89 -
90 -
91 -
92 -== 1.5 ​ Applications ==
93 -
94 -* Horizontal distance measurement
95 -* Liquid level measurement
96 -* Parking management system
97 -* Object proximity and presence detection
98 -* Intelligent trash can management system
99 -* Robot obstacle avoidance
100 -* Automatic control
101 -* Sewer
102 -* Bottom water level monitoring
103 -
104 -
105 -
106 -== 1.6  Pin mapping and power on ==
107 -
108 -
109 -[[image:1654847583902-256.png]]
110 -
111 -
112 -
113 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
114 -
115 -== 2.1  How it works ==
116 -
117 117  (((
118 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
30 +
119 119  )))
120 120  
121 121  (((
122 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
123 123  )))
124 124  
125 -
126 -
127 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
128 -
129 129  (((
130 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
38 +
131 131  )))
132 132  
133 133  (((
134 -[[image:1654848616367-242.png]]
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
135 135  )))
136 136  
137 137  (((
138 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
46 +
139 139  )))
140 140  
141 141  (((
142 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
143 143  )))
144 144  
145 145  (((
146 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
54 +
147 147  )))
148 148  
149 -[[image:image-20220607170145-1.jpeg]]
150 -
151 -
152 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
153 -
154 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
155 -
156 -**Add APP EUI in the application**
157 -
158 -[[image:image-20220610161353-4.png]]
159 -
160 -[[image:image-20220610161353-5.png]]
161 -
162 -[[image:image-20220610161353-6.png]]
163 -
164 -
165 -[[image:image-20220610161353-7.png]]
166 -
167 -
168 -You can also choose to create the device manually.
169 -
170 - [[image:image-20220610161538-8.png]]
171 -
172 -
173 -
174 -**Add APP KEY and DEV EUI**
175 -
176 -[[image:image-20220610161538-9.png]]
177 -
178 -
179 -
180 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
181 -
182 -
183 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
184 -
185 -[[image:image-20220610161724-10.png]]
186 -
187 -
188 188  (((
189 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
190 190  )))
191 191  
192 -[[image:1654849068701-275.png]]
193 -
194 -
195 -
196 -== 2.3  ​Uplink Payload ==
197 -
198 198  (((
199 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
62 +
63 +)))
200 200  
201 -Uplink payload includes in total 4 bytes.
202 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
65 +(((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
203 203  )))
204 204  
205 205  (((
206 206  
207 207  )))
72 +)))
208 208  
209 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
210 -|=(% style="width: 62.5px;" %)(((
211 -**Size (bytes)**
212 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
213 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
214 -[[Distance>>||anchor="H2.3.2A0Distance"]]
74 +(((
75 +(((
76 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 +)))
78 +)))
79 +)))
80 +)))
215 215  
216 -(unit: mm)
217 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
218 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
219 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
220 220  
221 -[[image:1654850511545-399.png]]
83 +[[image:1655255122126-327.png]]
222 222  
223 223  
224 224  
225 -=== 2.3.Battery Info ===
87 +== 1.2  Features ==
226 226  
89 +* LoRaWAN 1.0.3 Class A
90 +* Ultra low power consumption
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 +* Cable Length : 25cm
96 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 +* AT Commands to change parameters
98 +* Uplink on periodically
99 +* Downlink to change configure
100 +* IP66 Waterproof Enclosure
101 +* 8500mAh Battery for long term use
227 227  
228 -Check the battery voltage for LDDS75.
103 +== 1.3  Suitable Container & Liquid ==
229 229  
230 -Ex1: 0x0B45 = 2885mV
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
231 231  
232 -Ex2: 0x0B49 = 2889mV
112 +== 1.4  Mechanical ==
233 233  
114 +[[image:image-20220615090910-1.png]]
234 234  
235 235  
236 -=== 2.3.2  Distance ===
117 +[[image:image-20220615090910-2.png]]
237 237  
238 -Get the distance. Flat object range 280mm - 7500mm.
239 239  
240 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
241 241  
121 +== 1.5  Install LDDS20 ==
242 242  
243 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
244 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
245 245  
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
246 246  
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
247 247  
128 +[[image:image-20220615091045-3.png]]
248 248  
249 -=== 2.3.3  Interrupt Pin ===
250 250  
251 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
252 252  
253 -**Example:**
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
254 254  
255 -0x00: Normal uplink packet.
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
256 256  
257 -0x01: Interrupt Uplink Packet.
136 +[[image:image-20220615092010-11.png]]
258 258  
259 259  
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
260 260  
261 -=== 2.3.4  DS18B20 Temperature sensor ===
141 +[[image:image-20220615092044-12.png]]
262 262  
263 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
264 264  
265 -**Example**:
266 266  
267 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
145 +(% style="color:blue" %)**Step3  **(%%)Test the installation point.
268 268  
269 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
270 270  
271 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
272 272  
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
273 273  
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
274 274  
275 -=== 2.3.5  Sensor Flag ===
276 276  
277 -0x01: Detect Ultrasonic Sensor
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
278 278  
279 -0x00: No Ultrasonic Sensor
280 280  
158 +(% style="color:red" %)**LED Status:**
281 281  
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
282 282  
283 -=== 2.3.6  Decode payload in The Things Network ===
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
284 284  
285 -While using TTN network, you can add the payload format to decode the payload.
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
286 286  
287 287  
288 -[[image:1654850829385-439.png]]
168 +(% style="color:red" %)**Note 2:**
289 289  
290 -The payload decoder function for TTN V3 is here:
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
291 291  
292 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
293 293  
294 294  
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
295 295  
296 -== 2.4  Uplink Interval ==
176 +Prepare Eproxy AB glue.
297 297  
298 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
299 299  
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
300 300  
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
301 301  
302 -== 2.5  ​Show Data in DataCake IoT Server ==
303 303  
304 -(((
305 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
306 -)))
185 +(% style="color:red" %)**Note 1:**
307 307  
308 -(((
309 -
310 -)))
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
311 311  
312 -(((
313 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
314 -)))
315 315  
316 -(((
317 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
318 -)))
190 +(% style="color:red" %)**Note 2:**
319 319  
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
320 320  
321 -[[image:1654592790040-760.png]]
322 322  
323 323  
324 -[[image:1654592800389-571.png]]
196 +== 1.6 ​ Applications ==
325 325  
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
326 326  
327 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
201 +== 1.7  Precautions ==
328 328  
329 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
330 330  
331 -[[image:1654851029373-510.png]]
207 +== 1.8  Pin mapping and power on ==
332 332  
333 333  
334 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
210 +[[image:1655257026882-201.png]]
335 335  
336 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
337 337  
338 338  
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
339 339  
340 -== 2.6  Frequency Plans ==
341 341  
342 -(((
343 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
344 -)))
217 +== 2.1  How it works ==
345 345  
346 -
347 -
348 -=== 2.6.1  EU863-870 (EU868) ===
349 -
350 350  (((
351 -(% style="color:blue" %)**Uplink:**
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
352 352  )))
353 353  
354 354  (((
355 -868.1 - SF7BW125 to SF12BW125
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
356 356  )))
357 357  
358 -(((
359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
360 -)))
361 361  
362 -(((
363 -868.5 - SF7BW125 to SF12BW125
364 -)))
365 365  
366 -(((
367 -867.1 - SF7BW125 to SF12BW125
368 -)))
229 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
369 369  
370 370  (((
371 -867.3 - SF7BW125 to SF12BW125
232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
372 372  )))
373 373  
374 374  (((
375 -867.5 - SF7BW125 to SF12BW125
236 +[[image:1655257698953-697.png]]
376 376  )))
377 377  
378 378  (((
379 -867.7 - SF7BW125 to SF12BW125
240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
380 380  )))
381 381  
382 382  (((
383 -867.9 - SF7BW125 to SF12BW125
384 -)))
244 +
385 385  
386 -(((
387 -868.8 - FSK
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
388 388  )))
389 389  
390 390  (((
391 -
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
392 392  )))
393 393  
394 -(((
395 -(% style="color:blue" %)**Downlink:**
396 -)))
253 +[[image:image-20220607170145-1.jpeg]]
397 397  
255 +
398 398  (((
399 -Uplink channels 1-9 (RX1)
257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
400 400  )))
401 401  
402 402  (((
403 -869.525 - SF9BW125 (RX2 downlink only)
261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
404 404  )))
405 405  
406 -
407 -
408 -=== 2.6.2  US902-928(US915) ===
409 -
410 410  (((
411 -Used in USA, Canada and South America. Default use CHE=2
265 +
412 412  
413 -(% style="color:blue" %)**Uplink:**
267 +**Add APP EUI in the application**
268 +)))
414 414  
415 -903.9 - SF7BW125 to SF10BW125
270 +[[image:image-20220610161353-4.png]]
416 416  
417 -904.1 - SF7BW125 to SF10BW125
272 +[[image:image-20220610161353-5.png]]
418 418  
419 -904.3 - SF7BW125 to SF10BW125
274 +[[image:image-20220610161353-6.png]]
420 420  
421 -904.5 - SF7BW125 to SF10BW125
422 422  
423 -904.7 - SF7BW125 to SF10BW125
277 +[[image:image-20220610161353-7.png]]
424 424  
425 -904.9 - SF7BW125 to SF10BW125
426 426  
427 -905.1 - SF7BW125 to SF10BW125
428 428  
429 -905.3 - SF7BW125 to SF10BW125
281 +You can also choose to create the device manually.
430 430  
283 + [[image:image-20220610161538-8.png]]
431 431  
432 -(% style="color:blue" %)**Downlink:**
433 433  
434 -923.3 - SF7BW500 to SF12BW500
435 435  
436 -923.9 - SF7BW500 to SF12BW500
287 +**Add APP KEY and DEV EUI**
437 437  
438 -924.5 - SF7BW500 to SF12BW500
289 +[[image:image-20220610161538-9.png]]
439 439  
440 -925.1 - SF7BW500 to SF12BW500
441 441  
442 -925.7 - SF7BW500 to SF12BW500
443 443  
444 -926.3 - SF7BW500 to SF12BW500
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
445 445  
446 -926.9 - SF7BW500 to SF12BW500
447 447  
448 -927.5 - SF7BW500 to SF12BW500
296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
449 449  
450 -923.3 - SF12BW500(RX2 downlink only)
298 +[[image:image-20220615095102-14.png]]
451 451  
452 452  
453 -
454 -)))
455 455  
456 -=== 2.6.3  CN470-510 (CN470) ===
457 -
458 458  (((
459 -Used in China, Default use CHE=1
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
460 460  )))
461 461  
462 -(((
463 -(% style="color:blue" %)**Uplink:**
464 -)))
306 +[[image:1654849068701-275.png]]
465 465  
466 -(((
467 -486.3 - SF7BW125 to SF12BW125
468 -)))
469 469  
470 -(((
471 -486.5 - SF7BW125 to SF12BW125
472 -)))
473 473  
474 -(((
475 -486.7 - SF7BW125 to SF12BW125
476 -)))
310 +== 2.3  ​Uplink Payload ==
477 477  
478 478  (((
479 -486.9 - SF7BW125 to SF12BW125
480 -)))
481 -
482 482  (((
483 -487.1 - SF7BW125 to SF12BW125
484 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
485 485  
486 -(((
487 -487.3 - SF7BW125 to SF12BW125
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
488 488  )))
489 -
490 -(((
491 -487.5 - SF7BW125 to SF12BW125
492 492  )))
493 493  
494 494  (((
495 -487.7 - SF7BW125 to SF12BW125
496 -)))
497 -
498 -(((
499 499  
500 500  )))
501 501  
502 -(((
503 -(% style="color:blue" %)**Downlink:**
504 -)))
325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 +|=(% style="width: 62.5px;" %)(((
327 +**Size (bytes)**
328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 +[[Distance>>||anchor="H2.3.2A0Distance"]]
505 505  
506 -(((
507 -506.7 - SF7BW125 to SF12BW125
508 -)))
332 +(unit: mm)
333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
509 509  
510 -(((
511 -506.9 - SF7BW125 to SF12BW125
512 -)))
337 +[[image:1654850511545-399.png]]
513 513  
514 -(((
515 -507.1 - SF7BW125 to SF12BW125
516 -)))
517 517  
518 -(((
519 -507.3 - SF7BW125 to SF12BW125
520 -)))
521 521  
522 -(((
523 -507.5 - SF7BW125 to SF12BW125
524 -)))
341 +=== 2.3.1  Battery Info ===
525 525  
526 -(((
527 -507.7 - SF7BW125 to SF12BW125
528 -)))
529 529  
530 -(((
531 -507.9 - SF7BW125 to SF12BW125
532 -)))
344 +Check the battery voltage for LDDS20.
533 533  
534 -(((
535 -508.1 - SF7BW125 to SF12BW125
536 -)))
346 +Ex1: 0x0B45 = 2885mV
537 537  
538 -(((
539 -505.3 - SF12BW125 (RX2 downlink only)
540 -)))
348 +Ex2: 0x0B49 = 2889mV
541 541  
542 542  
543 543  
544 -=== 2.6.4  AU915-928(AU915) ===
352 +=== 2.3.2  Distance ===
545 545  
546 546  (((
547 -Default use CHE=2
355 +Get the distance. Flat object range 20mm - 2000mm.
356 +)))
548 548  
549 -(% style="color:blue" %)**Uplink:**
358 +(((
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 +)))
550 550  
551 -916.8 - SF7BW125 to SF12BW125
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
552 552  
553 -917.0 - SF7BW125 to SF12BW125
365 +=== 2.3.3  Interrupt Pin ===
554 554  
555 -917.2 - SF7BW125 to SF12BW125
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
556 556  
557 -917.4 - SF7BW125 to SF12BW125
369 +**Example:**
558 558  
559 -917.6 - SF7BW125 to SF12BW125
371 +0x00: Normal uplink packet.
560 560  
561 -917.8 - SF7BW125 to SF12BW125
373 +0x01: Interrupt Uplink Packet.
562 562  
563 -918.0 - SF7BW125 to SF12BW125
564 564  
565 -918.2 - SF7BW125 to SF12BW125
566 566  
377 +=== 2.3.4  DS18B20 Temperature sensor ===
567 567  
568 -(% style="color:blue" %)**Downlink:**
379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
569 569  
570 -923.3 - SF7BW500 to SF12BW500
381 +**Example**:
571 571  
572 -923.9 - SF7BW500 to SF12BW500
383 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
573 573  
574 -924.5 - SF7BW500 to SF12BW500
385 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
575 575  
576 -925.1 - SF7BW500 to SF12BW500
387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
577 577  
578 -925.7 - SF7BW500 to SF12BW500
579 579  
580 -926.3 - SF7BW500 to SF12BW500
581 581  
582 -926.9 - SF7BW500 to SF12BW500
391 +=== 2.3.5  Sensor Flag ===
583 583  
584 -927.5 - SF7BW500 to SF12BW500
585 -
586 -923.3 - SF12BW500(RX2 downlink only)
587 -
588 -
589 -
590 -)))
591 -
592 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
593 -
594 594  (((
595 -(% style="color:blue" %)**Default Uplink channel:**
394 +0x01: Detect Ultrasonic Sensor
596 596  )))
597 597  
598 598  (((
599 -923.2 - SF7BW125 to SF10BW125
398 +0x00: No Ultrasonic Sensor
600 600  )))
601 601  
602 -(((
603 -923.4 - SF7BW125 to SF10BW125
604 -)))
605 605  
606 -(((
607 -
608 -)))
609 609  
610 -(((
611 -(% style="color:blue" %)**Additional Uplink Channel**:
612 -)))
403 +=== 2.3.6  Decode payload in The Things Network ===
613 613  
614 -(((
615 -(OTAA mode, channel added by JoinAccept message)
616 -)))
405 +While using TTN network, you can add the payload format to decode the payload.
617 617  
618 -(((
619 -
620 -)))
621 621  
622 -(((
623 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
624 -)))
408 +[[image:1654850829385-439.png]]
625 625  
626 -(((
627 -922.2 - SF7BW125 to SF10BW125
628 -)))
410 +The payload decoder function for TTN V3 is here:
629 629  
630 630  (((
631 -922.4 - SF7BW125 to SF10BW125
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
632 632  )))
633 633  
634 -(((
635 -922.6 - SF7BW125 to SF10BW125
636 -)))
637 637  
638 -(((
639 -922.8 - SF7BW125 to SF10BW125
640 -)))
641 641  
642 -(((
643 -923.0 - SF7BW125 to SF10BW125
644 -)))
418 +== 2.4  Downlink Payload ==
645 645  
646 -(((
647 -922.0 - SF7BW125 to SF10BW125
648 -)))
420 +By default, LDDS20 prints the downlink payload to console port.
649 649  
650 -(((
651 -
652 -)))
422 +[[image:image-20220615100930-15.png]]
653 653  
654 -(((
655 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
656 -)))
657 657  
658 -(((
659 -923.6 - SF7BW125 to SF10BW125
660 -)))
425 +**Examples:**
661 661  
662 -(((
663 -923.8 - SF7BW125 to SF10BW125
664 -)))
665 665  
666 -(((
667 -924.0 - SF7BW125 to SF10BW125
668 -)))
428 +* (% style="color:blue" %)**Set TDC**
669 669  
670 -(((
671 -924.2 - SF7BW125 to SF10BW125
672 -)))
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
673 673  
674 -(((
675 -924.4 - SF7BW125 to SF10BW125
676 -)))
432 +Payload:    01 00 00 1E    TDC=30S
677 677  
678 -(((
679 -924.6 - SF7BW125 to SF10BW125
680 -)))
434 +Payload:    01 00 00 3C    TDC=60S
681 681  
682 -(((
683 -
684 -)))
685 685  
686 -(((
687 -(% style="color:blue" %)**Downlink:**
688 -)))
437 +* (% style="color:blue" %)**Reset**
689 689  
690 -(((
691 -Uplink channels 1-8 (RX1)
692 -)))
439 +If payload = 0x04FF, it will reset the LDDS20
693 693  
694 -(((
695 -923.2 - SF10BW125 (RX2)
696 -)))
697 697  
442 +* (% style="color:blue" %)**CFM**
698 698  
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
699 699  
700 -=== 2.6.6  KR920-923 (KR920) ===
701 701  
702 -(((
703 -(% style="color:blue" %)**Default channel:**
704 -)))
705 705  
706 -(((
707 -922.1 - SF7BW125 to SF12BW125
708 -)))
448 +== 2.5  ​Show Data in DataCake IoT Server ==
709 709  
710 710  (((
711 -922.3 - SF7BW125 to SF12BW125
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
712 712  )))
713 713  
714 714  (((
715 -922.5 - SF7BW125 to SF12BW125
716 -)))
717 -
718 -(((
719 719  
720 720  )))
721 721  
722 722  (((
723 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
724 724  )))
725 725  
726 726  (((
727 -922.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
728 728  )))
729 729  
730 -(((
731 -922.3 - SF7BW125 to SF12BW125
732 -)))
733 733  
734 -(((
735 -922.5 - SF7BW125 to SF12BW125
736 -)))
467 +[[image:1654592790040-760.png]]
737 737  
738 -(((
739 -922.7 - SF7BW125 to SF12BW125
740 -)))
741 741  
742 -(((
743 -922.9 - SF7BW125 to SF12BW125
744 -)))
470 +[[image:1654592800389-571.png]]
745 745  
746 -(((
747 -923.1 - SF7BW125 to SF12BW125
748 -)))
749 749  
750 -(((
751 -923.3 - SF7BW125 to SF12BW125
752 -)))
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
753 753  
754 -(((
755 -
756 -)))
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
757 757  
758 -(((
759 -(% style="color:blue" %)**Downlink:**
760 -)))
477 +[[image:1654851029373-510.png]]
761 761  
762 -(((
763 -Uplink channels 1-7(RX1)
764 -)))
765 765  
766 -(((
767 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
768 -)))
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
769 769  
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
770 770  
771 771  
772 -=== 2.6.7  IN865-867 (IN865) ===
773 773  
774 -(((
775 -(% style="color:blue" %)**Uplink:**
776 -)))
486 +== 2.6  LED Indicator ==
777 777  
778 -(((
779 -865.0625 - SF7BW125 to SF12BW125
780 -)))
488 +The LDDS20 has an internal LED which is to show the status of different state.
781 781  
782 -(((
783 -865.4025 - SF7BW125 to SF12BW125
784 -)))
785 785  
786 -(((
787 -865.9850 - SF7BW125 to SF12BW125
788 -)))
789 -
790 -(((
791 -
792 -)))
793 -
794 -(((
795 -(% style="color:blue" %)**Downlink:**
796 -)))
797 -
798 -(((
799 -Uplink channels 1-3 (RX1)
800 -)))
801 -
802 -(((
803 -866.550 - SF10BW125 (RX2)
804 -)))
805 -
806 -
807 -
808 -== 2.7  LED Indicator ==
809 -
810 -The LDDS75 has an internal LED which is to show the status of different state.
811 -
812 -
813 813  * Blink once when device power on.
814 814  * The device detects the sensor and flashes 5 times.
815 815  * Solid ON for 5 seconds once device successful Join the network.
... ... @@ -817,14 +817,20 @@
817 817  
818 818  
819 819  
820 -
821 821  == 2.8  ​Firmware Change Log ==
822 822  
823 823  
501 +(((
824 824  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
503 +)))
825 825  
505 +(((
506 +
507 +)))
826 826  
509 +(((
827 827  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
511 +)))
828 828  
829 829  
830 830  
... ... @@ -833,9 +833,11 @@
833 833  
834 834  [[image:image-20220610172003-1.png]]
835 835  
520 +
836 836  [[image:image-20220610172003-2.png]]
837 837  
838 838  
524 +
839 839  == 2.10  Battery Analysis ==
840 840  
841 841  === 2.10.1  Battery Type ===
... ... @@ -846,7 +846,7 @@
846 846  The battery related documents as below:
847 847  
848 848  * (((
849 -[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
535 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
850 850  )))
851 851  * (((
852 852  [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
... ... @@ -862,7 +862,7 @@
862 862  === 2.10.2  Replace the battery ===
863 863  
864 864  (((
865 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there wont be voltage drop between battery and main board.
551 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
866 866  )))
867 867  
868 868  (((
... ... @@ -870,7 +870,7 @@
870 870  )))
871 871  
872 872  (((
873 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
559 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
874 874  )))
875 875  
876 876  
... ... @@ -885,7 +885,7 @@
885 885  
886 886  * (((
887 887  (((
888 -AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
574 +AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
889 889  )))
890 890  )))
891 891  * (((
... ... @@ -966,7 +966,9 @@
966 966  [[image:image-20220610172924-5.png]]
967 967  
968 968  
655 +(((
969 969  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
657 +)))
970 970  
971 971  
972 972   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -990,16 +990,19 @@
990 990  (((
991 991  Format: Command Code (0x01) followed by 3 bytes time value.
992 992  
681 +(((
993 993  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
683 +)))
994 994  
995 995  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
996 996  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
997 997  )))
688 +)))
998 998  
999 999  
1000 -
1001 -)))
1002 1002  
692 +
693 +
1003 1003  == 3.3  Set Interrupt Mode ==
1004 1004  
1005 1005  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1013,7 +1013,9 @@
1013 1013  
1014 1014  Format: Command Code (0x06) followed by 3 bytes.
1015 1015  
707 +(((
1016 1016  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
709 +)))
1017 1017  
1018 1018  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1019 1019  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content