Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Xiaoling on 2025/04/27 16:45
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 75- LoRaWANDistanceDetectionSensor User Manual1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:1654 846127817-788.png]]2 +[[image:1655254599445-662.png]] 3 3 4 -**Contents:** 5 5 6 -{{toc/}} 7 7 8 8 7 +**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,32 +12,73 @@ 12 12 13 13 14 14 14 + 15 + 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN DistanceDetectionSensor ==18 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 24 +((( 25 +((( 26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 27 +))) 24 24 29 +((( 30 + 31 +))) 25 25 26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 33 +((( 34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 35 +))) 27 27 37 +((( 38 + 39 +))) 28 28 29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 +((( 42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 43 +))) 30 30 45 +((( 46 + 47 +))) 31 31 32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 49 +((( 50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 51 +))) 33 33 53 +((( 54 + 55 +))) 34 34 35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 57 +((( 58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 59 +))) 36 36 61 +((( 62 + 63 +))) 37 37 65 +((( 66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 67 +))) 68 + 69 +((( 70 + 71 +))) 72 +))) 73 + 74 +((( 75 +((( 38 38 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 39 39 ))) 40 40 ))) 79 +))) 80 +))) 41 41 42 42 43 43 [[image:1654847051249-359.png]] ... ... @@ -59,7 +59,6 @@ 59 59 * IP66 Waterproof Enclosure 60 60 * 4000mAh or 8500mAh Battery for long term use 61 61 62 - 63 63 == 1.3 Specification == 64 64 65 65 === 1.3.1 Rated environmental conditions === ... ... @@ -66,9 +66,11 @@ 66 66 67 67 [[image:image-20220610154839-1.png]] 68 68 69 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 108 +((( 109 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing); ** 70 70 71 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 111 +**~ b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 112 +))) 72 72 73 73 74 74 ... ... @@ -82,7 +82,9 @@ 82 82 83 83 84 84 126 +((( 85 85 **(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 128 +))) 86 86 87 87 88 88 [[image:1654852175653-550.png]](% style="display:none" %) ** ** ... ... @@ -101,8 +101,6 @@ 101 101 * Sewer 102 102 * Bottom water level monitoring 103 103 104 - 105 - 106 106 == 1.6 Pin mapping and power on == 107 107 108 108 ... ... @@ -139,6 +139,8 @@ 139 139 ))) 140 140 141 141 ((( 183 + 184 + 142 142 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 143 143 ))) 144 144 ... ... @@ -149,11 +149,19 @@ 149 149 [[image:image-20220607170145-1.jpeg]] 150 150 151 151 195 +((( 152 152 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 197 +))) 153 153 199 +((( 154 154 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 201 +))) 155 155 203 +((( 204 + 205 + 156 156 **Add APP EUI in the application** 207 +))) 157 157 158 158 [[image:image-20220610161353-4.png]] 159 159 ... ... @@ -196,11 +196,15 @@ 196 196 == 2.3 Uplink Payload == 197 197 198 198 ((( 250 +((( 199 199 LDDS75 will uplink payload via LoRaWAN with below payload format: 252 +))) 200 200 254 +((( 201 201 Uplink payload includes in total 4 bytes. 202 202 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 203 203 ))) 258 +))) 204 204 205 205 ((( 206 206 ... ... @@ -235,17 +235,18 @@ 235 235 236 236 === 2.3.2 Distance === 237 237 293 +((( 238 238 Get the distance. Flat object range 280mm - 7500mm. 295 +))) 239 239 297 +((( 240 240 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 299 +))) 241 241 242 242 243 243 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 244 244 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 245 245 246 - 247 - 248 - 249 249 === 2.3.3 Interrupt Pin === 250 250 251 251 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up. ... ... @@ -274,9 +274,13 @@ 274 274 275 275 === 2.3.5 Sensor Flag === 276 276 333 +((( 277 277 0x01: Detect Ultrasonic Sensor 335 +))) 278 278 337 +((( 279 279 0x00: No Ultrasonic Sensor 339 +))) 280 280 281 281 282 282 ... ... @@ -289,7 +289,9 @@ 289 289 290 290 The payload decoder function for TTN V3 is here: 291 291 352 +((( 292 292 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 354 +))) 293 293 294 294 295 295 ... ... @@ -815,16 +815,20 @@ 815 815 * Solid ON for 5 seconds once device successful Join the network. 816 816 * Blink once when device transmit a packet. 817 817 818 - 819 - 820 - 821 821 == 2.8 Firmware Change Log == 822 822 823 823 883 +((( 824 824 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 885 +))) 825 825 887 +((( 888 + 889 +))) 826 826 891 +((( 827 827 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 893 +))) 828 828 829 829 830 830 ... ... @@ -833,9 +833,11 @@ 833 833 834 834 [[image:image-20220610172003-1.png]] 835 835 902 + 836 836 [[image:image-20220610172003-2.png]] 837 837 838 838 906 + 839 839 == 2.10 Battery Analysis == 840 840 841 841 === 2.10.1 Battery Type === ... ... @@ -846,7 +846,7 @@ 846 846 The battery related documents as below: 847 847 848 848 * ((( 849 -[[ 917 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 850 850 ))) 851 851 * ((( 852 852 [[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], ... ... @@ -862,7 +862,7 @@ 862 862 === 2.10.2 Replace the battery === 863 863 864 864 ((( 865 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won ’t be voltage drop between battery and main board.933 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 866 866 ))) 867 867 868 868 ((( ... ... @@ -870,7 +870,7 @@ 870 870 ))) 871 871 872 872 ((( 873 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can ’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)941 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 874 874 ))) 875 875 876 876 ... ... @@ -885,7 +885,7 @@ 885 885 886 886 * ((( 887 887 ((( 888 -AT Command Connection: See [[FAQ>>||anchor="H 7.A0FAQ"]].956 +AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]]. 889 889 ))) 890 890 ))) 891 891 * ((( ... ... @@ -966,7 +966,9 @@ 966 966 [[image:image-20220610172924-5.png]] 967 967 968 968 1037 +((( 969 969 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 1039 +))) 970 970 971 971 972 972 [[image:image-20220610172924-6.png||height="601" width="860"]] ... ... @@ -990,16 +990,19 @@ 990 990 ((( 991 991 Format: Command Code (0x01) followed by 3 bytes time value. 992 992 1063 +((( 993 993 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 1065 +))) 994 994 995 995 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 996 996 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 997 997 ))) 1070 +))) 998 998 999 999 1000 - 1001 -))) 1002 1002 1074 + 1075 + 1003 1003 == 3.3 Set Interrupt Mode == 1004 1004 1005 1005 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -1013,7 +1013,9 @@ 1013 1013 1014 1014 Format: Command Code (0x06) followed by 3 bytes. 1015 1015 1089 +((( 1016 1016 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1091 +))) 1017 1017 1018 1018 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1019 1019 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +117.0 KB - Content