Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 75- LoRaWANDistanceDetectionSensor User Manual1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:1654 846127817-788.png]]2 +[[image:1655254599445-662.png]] 3 3 4 -**Contents:** 5 5 6 -{{toc/}} 7 7 8 8 7 +**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,816 +12,505 @@ 12 12 13 13 14 14 14 + 15 + 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN DistanceDetectionSensor ==18 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 24 - 25 - 26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 27 - 28 - 29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 30 - 31 - 32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 33 - 34 - 35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 36 - 37 - 38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 24 +((( 25 +((( 26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 39 39 ))) 40 -))) 41 41 42 - 43 -[[image:1654847051249-359.png]] 44 - 45 - 46 - 47 -== 1.2 Features == 48 - 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Distance Detection by Ultrasonic technology 52 -* Flat object range 280mm - 7500mm 53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 54 -* Cable Length : 25cm 55 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 56 -* AT Commands to change parameters 57 -* Uplink on periodically 58 -* Downlink to change configure 59 -* IP66 Waterproof Enclosure 60 -* 4000mAh or 8500mAh Battery for long term use 61 - 62 - 63 -== 1.3 Specification == 64 - 65 -=== 1.3.1 Rated environmental conditions === 66 - 67 -[[image:image-20220610154839-1.png]] 68 - 69 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 70 - 71 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 72 - 73 - 74 - 75 -=== 1.3.2 Effective measurement range Reference beam pattern === 76 - 77 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 78 - 79 - 80 - 81 -[[image:1654852253176-749.png]] 82 - 83 - 84 - 85 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 86 - 87 - 88 -[[image:1654852175653-550.png]](% style="display:none" %) ** ** 89 - 90 - 91 - 92 -== 1.5 Applications == 93 - 94 -* Horizontal distance measurement 95 -* Liquid level measurement 96 -* Parking management system 97 -* Object proximity and presence detection 98 -* Intelligent trash can management system 99 -* Robot obstacle avoidance 100 -* Automatic control 101 -* Sewer 102 -* Bottom water level monitoring 103 - 104 - 105 - 106 -== 1.6 Pin mapping and power on == 107 - 108 - 109 -[[image:1654847583902-256.png]] 110 - 111 - 112 - 113 -= 2. Configure LDDS75 to connect to LoRaWAN network = 114 - 115 -== 2.1 How it works == 116 - 117 117 ((( 118 - TheLDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value30 + 119 119 ))) 120 120 121 121 ((( 122 - Incase youcan'tset theOTAA keysintheLoRaWANOTAAserver,andyouhave tousethekeys fromtheserver,youcan[[useATCommands>>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]toset thekeys intheLDDS75.34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 123 123 ))) 124 124 125 - 126 - 127 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 128 - 129 129 ((( 130 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.38 + 131 131 ))) 132 132 133 133 ((( 134 - [[image:1654848616367-242.png]]42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 135 135 ))) 136 136 137 137 ((( 138 - TheLG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.46 + 139 139 ))) 140 140 141 141 ((( 142 - (%style="color:blue"%)**Step1**(%%):Create a deviceinTTNwith theOTAA keysfromLDDS75.50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 143 143 ))) 144 144 145 145 ((( 146 - EachLDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.54 + 147 147 ))) 148 148 149 -[[image:image-20220607170145-1.jpeg]] 150 - 151 - 152 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 153 - 154 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 155 - 156 -**Add APP EUI in the application** 157 - 158 -[[image:image-20220610161353-4.png]] 159 - 160 -[[image:image-20220610161353-5.png]] 161 - 162 -[[image:image-20220610161353-6.png]] 163 - 164 - 165 -[[image:image-20220610161353-7.png]] 166 - 167 - 168 -You can also choose to create the device manually. 169 - 170 - [[image:image-20220610161538-8.png]] 171 - 172 - 173 - 174 -**Add APP KEY and DEV EUI** 175 - 176 -[[image:image-20220610161538-9.png]] 177 - 178 - 179 - 180 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 181 - 182 - 183 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 184 - 185 -[[image:image-20220610161724-10.png]] 186 - 187 - 188 188 ((( 189 -(% style="color: blue" %)**Step 3**(%%)**:**The LDDS75 will autojointo theTTNnetwork.Afterjoinsuccess, itwill starttoupload messagestoTTNandyou can see the messagesin the panel.58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 190 190 ))) 191 191 192 -[[image:1654849068701-275.png]] 193 - 194 - 195 - 196 -== 2.3 Uplink Payload == 197 - 198 198 ((( 199 -LDDS75 will uplink payload via LoRaWAN with below payload format: 62 + 63 +))) 200 200 201 - Uplink payload includes in total 4 bytes.202 - Payload forfirmwareversionv1.1.4..Beforev1.1.3,there isonfields: BATandDistance65 +((( 66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 203 203 ))) 204 204 205 205 ((( 206 206 207 207 ))) 72 +))) 208 208 209 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 210 -|=(% style="width: 62.5px;" %)((( 211 -**Size (bytes)** 212 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 213 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 214 -[[Distance>>||anchor="H2.3.2A0Distance"]] 74 +((( 75 +((( 76 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 77 +))) 78 +))) 79 +))) 80 +))) 215 215 216 -(unit: mm) 217 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 218 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 219 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 220 220 221 -[[image:165 4850511545-399.png]]83 +[[image:1655255122126-327.png]] 222 222 223 223 224 224 225 -== =2.3.1BatteryInfo===87 +== 1.2 Features == 226 226 89 +* LoRaWAN 1.0.3 Class A 90 +* Ultra low power consumption 91 +* Liquid Level Measurement by Ultrasonic technology 92 +* Measure through container, No need to contact Liquid. 93 +* Valid level range 20mm - 2000mm 94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 95 +* Cable Length : 25cm 96 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 97 +* AT Commands to change parameters 98 +* Uplink on periodically 99 +* Downlink to change configure 100 +* IP66 Waterproof Enclosure 101 +* 8500mAh Battery for long term use 227 227 228 - Checkthebatteryvoltagefor LDDS75.103 +== 1.3 Suitable Container & Liquid == 229 229 230 -Ex1: 0x0B45 = 2885mV 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 231 231 232 - Ex2:0x0B49=2889mV112 +== 1.4 Mechanical == 233 233 114 +[[image:image-20220615090910-1.png]] 234 234 235 235 236 - === 2.3.2 Distance===117 +[[image:image-20220615090910-2.png]] 237 237 238 -Get the distance. Flat object range 280mm - 7500mm. 239 239 240 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 241 241 121 +== 1.5 Install LDDS20 == 242 242 243 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 244 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 245 245 124 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 246 246 126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 247 247 128 +[[image:image-20220615091045-3.png]] 248 248 249 -=== 2.3.3 Interrupt Pin === 250 250 251 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up. 252 252 253 - **Example:**132 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 254 254 255 - 0x00: Normal uplinkpacket.134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 256 256 257 - 0x01: Interrupt Uplink Packet.136 +[[image:image-20220615092010-11.png]] 258 258 259 259 139 +No polish needed if the container is shine metal surface without paint or non-metal container. 260 260 261 - ===2.3.4 DS18B20Temperature sensor ===141 +[[image:image-20220615092044-12.png]] 262 262 263 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 264 264 265 -**Example**: 266 266 267 - Ifpayload is:0105H: (0105 & FC00 == 0),temp=0105H /10 = 26.1 degree145 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 268 268 269 - Ifpayloadis:FF3FH:(FF3F&FC00==1), temp=(FF3FH-65536)/10=-19.3degrees.147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 270 270 271 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 272 272 150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 273 273 152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]] 274 274 275 -=== 2.3.5 Sensor Flag === 276 276 277 -0 x01:DetectUltrasonicSensor155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 278 278 279 -0x00: No Ultrasonic Sensor 280 280 158 +(% style="color:red" %)**LED Status:** 281 281 160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 282 282 283 -=== 2.3.6 Decode payload in The Things Network === 162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 284 284 285 - Whileusing TTN network,youcanaddthepayload format todecodethepayload.165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 286 286 287 287 288 - [[image:1654850829385-439.png]]168 +(% style="color:red" %)**Note 2:** 289 289 290 - Thepayload decoderfunctionforTTNV3ishere:170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 291 291 292 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 293 293 294 294 174 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 295 295 296 - == 2.4 Uplink Interval==176 +Prepare Eproxy AB glue. 297 297 298 - The LDDS75 by defaultuplinkthe sensordataevery 20 minutes. Usercan change this intervalby AT Command or LoRaWAN DownlinkCommand. Seethislink: [[ChangeUplink Interval>>doc:Main.End Device AT Commandsand Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 299 299 180 +Reset LDDS20 and see if the BLUE LED is slowly blinking. 300 300 182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 301 301 302 -== 2.5 Show Data in DataCake IoT Server == 303 303 304 -((( 305 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 306 -))) 185 +(% style="color:red" %)**Note 1:** 307 307 308 -((( 309 - 310 -))) 187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 311 311 312 -((( 313 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 314 -))) 315 315 316 -((( 317 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 318 -))) 190 +(% style="color:red" %)**Note 2:** 319 319 192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 320 320 321 -[[image:1654592790040-760.png]] 322 322 323 323 324 - [[image:1654592800389-571.png]]196 +== 1.6 Applications == 325 325 198 +* Smart liquid control solution. 199 +* Smart liquefied gas solution. 326 326 327 - (% style="color:blue"%)**Step3**(%%)**: Create an accountor loginDatacake.**201 +== 1.7 Precautions == 328 328 329 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 330 330 331 - [[image:1654851029373-510.png]]207 +== 1.8 Pin mapping and power on == 332 332 333 333 334 - After added, the sensor data arrive TTN V3, it willalso arriveand show in Datacake.210 +[[image:1655257026882-201.png]] 335 335 336 -[[image:image-20220610165129-11.png||height="595" width="1088"]] 337 337 338 338 214 += 2. Configure LDDS20 to connect to LoRaWAN network = 339 339 340 -== 2.6 Frequency Plans == 341 341 342 -((( 343 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 344 -))) 217 +== 2.1 How it works == 345 345 346 - 347 - 348 -=== 2.6.1 EU863-870 (EU868) === 349 - 350 350 ((( 351 - (%style="color:blue"%)**Uplink:**220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 352 352 ))) 353 353 354 354 ((( 355 - 868.1-SF7BW125to SF12BW125224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20. 356 356 ))) 357 357 358 -((( 359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 360 -))) 361 361 362 -((( 363 -868.5 - SF7BW125 to SF12BW125 364 -))) 365 365 366 -((( 367 -867.1 - SF7BW125 to SF12BW125 368 -))) 229 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 369 369 370 370 ((( 371 - 867.3-SF7BW125toSF12BW125232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 372 372 ))) 373 373 374 374 ((( 375 - 867.5- SF7BW125to SF12BW125236 +[[image:1655257698953-697.png]] 376 376 ))) 377 377 378 378 ((( 379 -8 67.7-SF7BW125toSF12BW125240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 380 380 ))) 381 381 382 382 ((( 383 -867.9 - SF7BW125 to SF12BW125 384 -))) 244 + 385 385 386 -((( 387 -868.8 - FSK 246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 388 388 ))) 389 389 390 390 ((( 391 - 250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 392 392 ))) 393 393 394 -((( 395 -(% style="color:blue" %)**Downlink:** 396 -))) 253 +[[image:image-20220607170145-1.jpeg]] 397 397 255 + 398 398 ((( 399 - Uplinkchannels1-9(RX1)257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 400 400 ))) 401 401 402 402 ((( 403 - 869.525-SF9BW125(RX2downlinkonly)261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 404 404 ))) 405 405 406 - 407 - 408 -=== 2.6.2 US902-928(US915) === 409 - 410 410 ((( 411 - Usedin USA, Canada and South America. Default use CHE=2265 + 412 412 413 -(% style="color:blue" %)**Uplink:** 267 +**Add APP EUI in the application** 268 +))) 414 414 415 - 903.9-SF7BW125 to SF10BW125270 +[[image:image-20220610161353-4.png]] 416 416 417 - 904.1-SF7BW125 to SF10BW125272 +[[image:image-20220610161353-5.png]] 418 418 419 - 904.3-SF7BW125 to SF10BW125274 +[[image:image-20220610161353-6.png]] 420 420 421 -904.5 - SF7BW125 to SF10BW125 422 422 423 - 904.7-SF7BW125 to SF10BW125277 +[[image:image-20220610161353-7.png]] 424 424 425 -904.9 - SF7BW125 to SF10BW125 426 426 427 -905.1 - SF7BW125 to SF10BW125 428 428 429 - 905.3-SF7BW125toSF10BW125281 +You can also choose to create the device manually. 430 430 283 + [[image:image-20220610161538-8.png]] 431 431 432 -(% style="color:blue" %)**Downlink:** 433 433 434 -923.3 - SF7BW500 to SF12BW500 435 435 436 - 923.9-SF7BW500toSF12BW500287 +**Add APP KEY and DEV EUI** 437 437 438 - 924.5-SF7BW500to SF12BW500289 +[[image:image-20220610161538-9.png]] 439 439 440 -925.1 - SF7BW500 to SF12BW500 441 441 442 -925.7 - SF7BW500 to SF12BW500 443 443 444 - 926.3-SF7BW500to SF12BW500293 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 445 445 446 -926.9 - SF7BW500 to SF12BW500 447 447 448 - 927.5-SF7BW500toSF12BW500296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 449 449 450 - 923.3-SF12BW500(RX2downlink only)298 +[[image:image-20220615095102-14.png]] 451 451 452 452 453 - 454 -))) 455 455 456 -=== 2.6.3 CN470-510 (CN470) === 457 - 458 458 ((( 459 - UsedinChina,Default useCHE=1303 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 460 460 ))) 461 461 462 -((( 463 -(% style="color:blue" %)**Uplink:** 464 -))) 306 +[[image:1654849068701-275.png]] 465 465 466 -((( 467 -486.3 - SF7BW125 to SF12BW125 468 -))) 469 469 470 -((( 471 -486.5 - SF7BW125 to SF12BW125 472 -))) 473 473 474 -((( 475 -486.7 - SF7BW125 to SF12BW125 476 -))) 310 +== 2.3 Uplink Payload == 477 477 478 478 ((( 479 -486.9 - SF7BW125 to SF12BW125 480 -))) 481 - 482 482 ((( 483 -487.1 - SF7BW125 to SF12BW125 484 -))) 314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 485 485 486 - (((487 -4 87.3-SF7BW125toSF12BW125316 +Uplink payload includes in total 8 bytes. 317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload). 488 488 ))) 489 - 490 -((( 491 -487.5 - SF7BW125 to SF12BW125 492 492 ))) 493 493 494 494 ((( 495 -487.7 - SF7BW125 to SF12BW125 496 -))) 497 - 498 -((( 499 499 500 500 ))) 501 501 502 -((( 503 -(% style="color:blue" %)**Downlink:** 504 -))) 325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 326 +|=(% style="width: 62.5px;" %)((( 327 +**Size (bytes)** 328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 330 +[[Distance>>||anchor="H2.3.2A0Distance"]] 505 505 506 -((( 507 -506.7 - SF7BW125 to SF12BW125 508 -))) 332 +(unit: mm) 333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 509 509 510 -((( 511 -506.9 - SF7BW125 to SF12BW125 512 -))) 337 +[[image:1654850511545-399.png]] 513 513 514 -((( 515 -507.1 - SF7BW125 to SF12BW125 516 -))) 517 517 518 -((( 519 -507.3 - SF7BW125 to SF12BW125 520 -))) 521 521 522 -((( 523 -507.5 - SF7BW125 to SF12BW125 524 -))) 341 +=== 2.3.1 Battery Info === 525 525 526 -((( 527 -507.7 - SF7BW125 to SF12BW125 528 -))) 529 529 530 -((( 531 -507.9 - SF7BW125 to SF12BW125 532 -))) 344 +Check the battery voltage for LDDS20. 533 533 534 -((( 535 -508.1 - SF7BW125 to SF12BW125 536 -))) 346 +Ex1: 0x0B45 = 2885mV 537 537 538 -((( 539 -505.3 - SF12BW125 (RX2 downlink only) 540 -))) 348 +Ex2: 0x0B49 = 2889mV 541 541 542 542 543 543 544 -=== 2. 6.4AU915-928(AU915)===352 +=== 2.3.2 Distance === 545 545 546 546 ((( 547 -Default use CHE=2 355 +Get the distance. Flat object range 20mm - 2000mm. 356 +))) 548 548 549 -(% style="color:blue" %)**Uplink:** 358 +((( 359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 360 +))) 550 550 551 -916.8 - SF7BW125 to SF12BW125 362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 552 552 553 - 917.0- SF7BW125toSF12BW125365 +=== 2.3.3 Interrupt Pin === 554 554 555 - 917.2-SF7BW125toSF12BW125367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 556 556 557 - 917.4 - SF7BW125 to SF12BW125369 +**Example:** 558 558 559 - 917.6-SF7BW125to SF12BW125371 +0x00: Normal uplink packet. 560 560 561 - 917.8-SF7BW125to SF12BW125373 +0x01: Interrupt Uplink Packet. 562 562 563 -918.0 - SF7BW125 to SF12BW125 564 564 565 -918.2 - SF7BW125 to SF12BW125 566 566 377 +=== 2.3.4 DS18B20 Temperature sensor === 567 567 568 - (%style="color:blue"%)**Downlink:**379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 569 569 570 - 923.3 - SF7BW500 to SF12BW500381 +**Example**: 571 571 572 - 923.9-SF7BW500toSF12BW500383 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 573 573 574 - 924.5-SF7BW500 toSF12BW500385 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 575 575 576 - 925.1-SF7BW500toSF12BW500387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 577 577 578 -925.7 - SF7BW500 to SF12BW500 579 579 580 -926.3 - SF7BW500 to SF12BW500 581 581 582 - 926.9 - SF7BW500toSF12BW500391 +=== 2.3.5 Sensor Flag === 583 583 584 -927.5 - SF7BW500 to SF12BW500 585 - 586 -923.3 - SF12BW500(RX2 downlink only) 587 - 588 - 589 - 590 -))) 591 - 592 -=== 2.6.5 AS920-923 & AS923-925 (AS923) === 593 - 594 594 ((( 595 - (% style="color:blue"%)**Default Uplink channel:**394 +0x01: Detect Ultrasonic Sensor 596 596 ))) 597 597 598 598 ((( 599 - 923.2-SF7BW125to SF10BW125398 +0x00: No Ultrasonic Sensor 600 600 ))) 601 601 602 -((( 603 -923.4 - SF7BW125 to SF10BW125 604 -))) 605 605 606 -((( 607 - 608 -))) 609 609 610 -((( 611 -(% style="color:blue" %)**Additional Uplink Channel**: 612 -))) 403 +=== 2.3.6 Decode payload in The Things Network === 613 613 614 -((( 615 -(OTAA mode, channel added by JoinAccept message) 616 -))) 405 +While using TTN network, you can add the payload format to decode the payload. 617 617 618 -((( 619 - 620 -))) 621 621 622 -((( 623 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 624 -))) 408 +[[image:1654850829385-439.png]] 625 625 626 -((( 627 -922.2 - SF7BW125 to SF10BW125 628 -))) 410 +The payload decoder function for TTN V3 is here: 629 629 630 630 ((( 631 - 922.4-SF7BW125toF10BW125413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 632 632 ))) 633 633 634 -((( 635 -922.6 - SF7BW125 to SF10BW125 636 -))) 637 637 638 -((( 639 -922.8 - SF7BW125 to SF10BW125 640 -))) 641 641 642 -((( 643 -923.0 - SF7BW125 to SF10BW125 644 -))) 418 +== 2.4 Downlink Payload == 645 645 646 -((( 647 -922.0 - SF7BW125 to SF10BW125 648 -))) 420 +By default, LDDS20 prints the downlink payload to console port. 649 649 650 -((( 651 - 652 -))) 422 +[[image:image-20220615100930-15.png]] 653 653 654 -((( 655 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 656 -))) 657 657 658 -((( 659 -923.6 - SF7BW125 to SF10BW125 660 -))) 425 +**Examples:** 661 661 662 -((( 663 -923.8 - SF7BW125 to SF10BW125 664 -))) 665 665 666 -((( 667 -924.0 - SF7BW125 to SF10BW125 668 -))) 428 +* (% style="color:blue" %)**Set TDC** 669 669 670 -((( 671 -924.2 - SF7BW125 to SF10BW125 672 -))) 430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 673 673 674 -((( 675 -924.4 - SF7BW125 to SF10BW125 676 -))) 432 +Payload: 01 00 00 1E TDC=30S 677 677 678 -((( 679 -924.6 - SF7BW125 to SF10BW125 680 -))) 434 +Payload: 01 00 00 3C TDC=60S 681 681 682 -((( 683 - 684 -))) 685 685 686 -((( 687 -(% style="color:blue" %)**Downlink:** 688 -))) 437 +* (% style="color:blue" %)**Reset** 689 689 690 -((( 691 -Uplink channels 1-8 (RX1) 692 -))) 439 +If payload = 0x04FF, it will reset the LDDS20 693 693 694 -((( 695 -923.2 - SF10BW125 (RX2) 696 -))) 697 697 442 +* (% style="color:blue" %)**CFM** 698 698 444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 699 699 700 -=== 2.6.6 KR920-923 (KR920) === 701 701 702 -((( 703 -(% style="color:blue" %)**Default channel:** 704 -))) 705 705 706 -((( 707 -922.1 - SF7BW125 to SF12BW125 708 -))) 448 +== 2.5 Show Data in DataCake IoT Server == 709 709 710 710 ((( 711 - 922.3-SF7BW125toSF12BW125451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 712 712 ))) 713 713 714 714 ((( 715 -922.5 - SF7BW125 to SF12BW125 716 -))) 717 - 718 -((( 719 719 720 720 ))) 721 721 722 722 ((( 723 -(% style="color:blue" %)** Uplink:(OTAAmode,channeladdedbyJoinAcceptmessage)**459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 724 724 ))) 725 725 726 726 ((( 727 - 922.1-SF7BW125toSF12BW125463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 728 728 ))) 729 729 730 -((( 731 -922.3 - SF7BW125 to SF12BW125 732 -))) 733 733 734 -((( 735 -922.5 - SF7BW125 to SF12BW125 736 -))) 467 +[[image:1654592790040-760.png]] 737 737 738 -((( 739 -922.7 - SF7BW125 to SF12BW125 740 -))) 741 741 742 -((( 743 -922.9 - SF7BW125 to SF12BW125 744 -))) 470 +[[image:1654592800389-571.png]] 745 745 746 -((( 747 -923.1 - SF7BW125 to SF12BW125 748 -))) 749 749 750 -((( 751 -923.3 - SF7BW125 to SF12BW125 752 -))) 473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 753 753 754 -((( 755 - 756 -))) 475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 757 757 758 -((( 759 -(% style="color:blue" %)**Downlink:** 760 -))) 477 +[[image:1654851029373-510.png]] 761 761 762 -((( 763 -Uplink channels 1-7(RX1) 764 -))) 765 765 766 -((( 767 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 768 -))) 480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 769 769 482 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 770 770 771 771 772 -=== 2.6.7 IN865-867 (IN865) === 773 773 774 -((( 775 -(% style="color:blue" %)**Uplink:** 776 -))) 486 +== 2.6 LED Indicator == 777 777 778 -((( 779 -865.0625 - SF7BW125 to SF12BW125 780 -))) 488 +The LDDS20 has an internal LED which is to show the status of different state. 781 781 782 -((( 783 -865.4025 - SF7BW125 to SF12BW125 784 -))) 785 785 786 -((( 787 -865.9850 - SF7BW125 to SF12BW125 788 -))) 789 - 790 -((( 791 - 792 -))) 793 - 794 -((( 795 -(% style="color:blue" %)**Downlink:** 796 -))) 797 - 798 -((( 799 -Uplink channels 1-3 (RX1) 800 -))) 801 - 802 -((( 803 -866.550 - SF10BW125 (RX2) 804 -))) 805 - 806 - 807 - 808 -== 2.7 LED Indicator == 809 - 810 -The LDDS75 has an internal LED which is to show the status of different state. 811 - 812 - 813 813 * Blink once when device power on. 814 814 * The device detects the sensor and flashes 5 times. 815 815 * Solid ON for 5 seconds once device successful Join the network. 816 -* Blink once when device transmit a packet. 817 817 495 +Blink once when device transmit a packet. 496 + 497 + 498 + 818 818 == 2.8 Firmware Change Log == 819 819 820 820 502 +((( 821 821 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 504 +))) 822 822 506 +((( 507 + 508 +))) 823 823 510 +((( 824 824 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 512 +))) 825 825 826 826 827 827 ... ... @@ -830,9 +830,11 @@ 830 830 831 831 [[image:image-20220610172003-1.png]] 832 832 521 + 833 833 [[image:image-20220610172003-2.png]] 834 834 835 835 525 + 836 836 == 2.10 Battery Analysis == 837 837 838 838 === 2.10.1 Battery Type === ... ... @@ -843,7 +843,7 @@ 843 843 The battery related documents as below: 844 844 845 845 * ((( 846 -[[ 536 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 847 847 ))) 848 848 * ((( 849 849 [[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], ... ... @@ -859,7 +859,7 @@ 859 859 === 2.10.2 Replace the battery === 860 860 861 861 ((( 862 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won ’t be voltage drop between battery and main board.552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 863 863 ))) 864 864 865 865 ((( ... ... @@ -867,7 +867,7 @@ 867 867 ))) 868 868 869 869 ((( 870 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can ’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 871 871 ))) 872 872 873 873 ... ... @@ -882,7 +882,7 @@ 882 882 883 883 * ((( 884 884 ((( 885 -AT Command Connection: See [[FAQ>>||anchor="H 7.A0FAQ"]].575 +AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]]. 886 886 ))) 887 887 ))) 888 888 * ((( ... ... @@ -963,7 +963,9 @@ 963 963 [[image:image-20220610172924-5.png]] 964 964 965 965 656 +((( 966 966 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 658 +))) 967 967 968 968 969 969 [[image:image-20220610172924-6.png||height="601" width="860"]] ... ... @@ -987,16 +987,19 @@ 987 987 ((( 988 988 Format: Command Code (0x01) followed by 3 bytes time value. 989 989 682 +((( 990 990 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 684 +))) 991 991 992 992 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 993 993 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 994 994 ))) 689 +))) 995 995 996 996 997 - 998 -))) 999 999 693 + 694 + 1000 1000 == 3.3 Set Interrupt Mode == 1001 1001 1002 1002 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -1010,7 +1010,9 @@ 1010 1010 1011 1011 Format: Command Code (0x06) followed by 3 bytes. 1012 1012 708 +((( 1013 1013 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 710 +))) 1014 1014 1015 1015 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1016 1016 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.5 KB - Content