<
From version < 150.20 >
edited by Xiaoling
on 2022/06/11 08:50
To version < 121.1 >
edited by Xiaoling
on 2022/06/10 15:48
>
Change comment: Uploaded new attachment "image-20220610154839-1.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -3,7 +3,6 @@
3 3  
4 4  **Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -11,7 +11,6 @@
11 11  
12 12  
13 13  
14 -
15 15  = 1.  Introduction =
16 16  
17 17  == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
... ... @@ -35,7 +35,7 @@
35 35  Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 36  
37 37  
38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
36 +(% style="color:#4472c4" %) ***** (%%)Actually lifetime depends on network coverage and uplink interval and other factors
39 39  )))
40 40  )))
41 41  
... ... @@ -60,39 +60,30 @@
60 60  * 4000mAh or 8500mAh Battery for long term use
61 61  
62 62  
63 -== 1.3  Specification ==
61 +== 1.3  Probe Specification ==
64 64  
65 -=== 1.3.1  Rated environmental conditions ===
63 +* Storage temperature :-20℃~~75℃
64 +* Operating temperature - -20℃~~60℃
65 +* Operating Range - 0.1m~~12m①
66 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
67 +* Distance resolution - 5mm
68 +* Ambient light immunity - 70klux
69 +* Enclosure rating - IP65
70 +* Light source - LED
71 +* Central wavelength - 850nm
72 +* FOV - 3.6°
73 +* Material of enclosure - ABS+PC
74 +* Wire length - 25cm
66 66  
67 -[[image:image-20220610154839-1.png]]
76 +== 1.4  Probe Dimension ==
68 68  
69 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
70 70  
71 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
79 +[[image:1654827224480-952.png]]
72 72  
73 73  
74 -
75 -=== 1.3.2  Effective measurement range Reference beam pattern ===
76 -
77 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
78 -
79 -
80 -
81 -[[image:1654852253176-749.png]]
82 -
83 -
84 -
85 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
86 -
87 -
88 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
89 -
90 -
91 -
92 92  == 1.5 ​ Applications ==
93 93  
94 94  * Horizontal distance measurement
95 -* Liquid level measurement
96 96  * Parking management system
97 97  * Object proximity and presence detection
98 98  * Intelligent trash can management system
... ... @@ -99,31 +99,26 @@
99 99  * Robot obstacle avoidance
100 100  * Automatic control
101 101  * Sewer
102 -* Bottom water level monitoring
103 103  
104 -
105 -
106 106  == 1.6  Pin mapping and power on ==
107 107  
108 108  
109 -[[image:1654847583902-256.png]]
95 +[[image:1654827332142-133.png]]
110 110  
111 111  
98 += 2.  Configure LLDS12 to connect to LoRaWAN network =
112 112  
113 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
114 -
115 115  == 2.1  How it works ==
116 116  
117 117  (((
118 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
103 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
119 119  )))
120 120  
121 121  (((
122 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
107 +In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
123 123  )))
124 124  
125 125  
126 -
127 127  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
128 128  
129 129  (((
... ... @@ -131,7 +131,7 @@
131 131  )))
132 132  
133 133  (((
134 -[[image:1654848616367-242.png]]
118 +[[image:1654827857527-556.png]]
135 135  )))
136 136  
137 137  (((
... ... @@ -139,57 +139,57 @@
139 139  )))
140 140  
141 141  (((
142 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
126 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
143 143  )))
144 144  
145 145  (((
146 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
130 +Each LSPH01 is shipped with a sticker with the default device EUI as below:
147 147  )))
148 148  
149 149  [[image:image-20220607170145-1.jpeg]]
150 150  
151 151  
152 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
153 153  
154 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
137 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
155 155  
156 -**Add APP EUI in the application**
157 157  
158 -[[image:image-20220610161353-4.png]]
140 +**Register the device**
159 159  
160 -[[image:image-20220610161353-5.png]]
161 161  
162 -[[image:image-20220610161353-6.png]]
143 +[[image:1654592600093-601.png]]
163 163  
164 164  
165 -[[image:image-20220610161353-7.png]]
166 166  
147 +**Add APP EUI and DEV EUI**
167 167  
168 -You can also choose to create the device manually.
149 +[[image:1654592619856-881.png]]
169 169  
170 - [[image:image-20220610161538-8.png]]
171 171  
172 172  
153 +**Add APP EUI in the application**
173 173  
174 -**Add APP KEY and DEV EUI**
155 +[[image:1654592632656-512.png]]
175 175  
176 -[[image:image-20220610161538-9.png]]
177 177  
178 178  
159 +**Add APP KEY**
179 179  
180 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
161 +[[image:1654592653453-934.png]]
181 181  
182 182  
164 +(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
165 +
166 +
183 183  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
184 184  
185 -[[image:image-20220610161724-10.png]]
169 +[[image:image-20220607170442-2.png]]
186 186  
187 187  
188 188  (((
189 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
173 +(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
190 190  )))
191 191  
192 -[[image:1654849068701-275.png]]
176 +[[image:1654833501679-968.png]]
193 193  
194 194  
195 195  
... ... @@ -196,10 +196,11 @@
196 196  == 2.3  ​Uplink Payload ==
197 197  
198 198  (((
199 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
183 +LLDS12 will uplink payload via LoRaWAN with below payload format: 
184 +)))
200 200  
201 -Uplink payload includes in total 4 bytes.
202 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
186 +(((
187 +Uplink payload includes in total 11 bytes.
203 203  )))
204 204  
205 205  (((
... ... @@ -209,23 +209,23 @@
209 209  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
210 210  |=(% style="width: 62.5px;" %)(((
211 211  **Size (bytes)**
212 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
213 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
214 -[[Distance>>||anchor="H2.3.2A0Distance"]]
197 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
198 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
199 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
200 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
201 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
202 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
203 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
204 +)))
215 215  
216 -(unit: mm)
217 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
218 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
219 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
206 +[[image:1654833689380-972.png]]
220 220  
221 -[[image:1654850511545-399.png]]
222 222  
223 223  
224 -
225 225  === 2.3.1  Battery Info ===
226 226  
227 227  
228 -Check the battery voltage for LDDS75.
213 +Check the battery voltage for LLDS12.
229 229  
230 230  Ex1: 0x0B45 = 2885mV
231 231  
... ... @@ -233,69 +233,103 @@
233 233  
234 234  
235 235  
236 -=== 2.3.2  Distance ===
221 +=== 2.3.2  DS18B20 Temperature sensor ===
237 237  
238 -Get the distance. Flat object range 280mm - 7500mm.
223 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
239 239  
240 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
241 241  
226 +**Example**:
242 242  
243 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
244 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
228 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
245 245  
230 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
246 246  
247 247  
248 248  
249 -=== 2.3.3  Interrupt Pin ===
234 +=== 2.3.3  Distance ===
250 250  
251 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
236 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
252 252  
253 -**Example:**
254 254  
255 -0x00: Normal uplink packet.
239 +**Example**:
256 256  
257 -0x01: Interrupt Uplink Packet.
241 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
258 258  
259 259  
260 260  
261 -=== 2.3.4  DS18B20 Temperature sensor ===
245 +=== 2.3.4  Distance signal strength ===
262 262  
263 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
247 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
264 264  
249 +
265 265  **Example**:
266 266  
267 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
252 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
268 268  
269 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
254 +Customers can judge whether they need to adjust the environment based on the signal strength.
270 270  
271 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
272 272  
273 273  
258 +=== 2.3.5  Interrupt Pin ===
274 274  
275 -=== 2.3.5  Sensor Flag ===
260 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
276 276  
277 -0x01: Detect Ultrasonic Sensor
262 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
278 278  
279 -0x00: No Ultrasonic Sensor
264 +**Example:**
280 280  
266 +0x00: Normal uplink packet.
281 281  
268 +0x01: Interrupt Uplink Packet.
282 282  
283 -=== 2.3.6  Decode payload in The Things Network ===
284 284  
271 +
272 +=== 2.3.6  LiDAR temp ===
273 +
274 +Characterize the internal temperature value of the sensor.
275 +
276 +**Example: **
277 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
278 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
279 +
280 +
281 +
282 +=== 2.3.7  Message Type ===
283 +
284 +(((
285 +For a normal uplink payload, the message type is always 0x01.
286 +)))
287 +
288 +(((
289 +Valid Message Type:
290 +)))
291 +
292 +
293 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
294 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
295 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
296 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
297 +
298 +=== 2.3.8  Decode payload in The Things Network ===
299 +
285 285  While using TTN network, you can add the payload format to decode the payload.
286 286  
287 287  
288 -[[image:1654850829385-439.png]]
303 +[[image:1654592762713-715.png]]
289 289  
290 -The payload decoder function for TTN V3 is here:
305 +(((
306 +The payload decoder function for TTN is here:
307 +)))
291 291  
292 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
309 +(((
310 +LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
311 +)))
293 293  
294 294  
295 295  
296 296  == 2.4  Uplink Interval ==
297 297  
298 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
317 +The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
299 299  
300 300  
301 301  
... ... @@ -326,25 +326,47 @@
326 326  
327 327  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
328 328  
329 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
348 +(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
330 330  
331 -[[image:1654851029373-510.png]]
350 +[[image:1654832691989-514.png]]
332 332  
333 333  
334 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
353 +[[image:1654592833877-762.png]]
335 335  
336 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
337 337  
356 +[[image:1654832740634-933.png]]
338 338  
339 339  
340 -== 2.6  Frequency Plans ==
341 341  
342 342  (((
343 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
361 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
344 344  )))
345 345  
364 +(((
365 +
366 +)))
346 346  
368 +[[image:1654833065139-942.png]]
347 347  
370 +
371 +
372 +[[image:1654833092678-390.png]]
373 +
374 +
375 +
376 +After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
377 +
378 +[[image:1654833163048-332.png]]
379 +
380 +
381 +
382 +== 2.6  Frequency Plans ==
383 +
384 +(((
385 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
386 +)))
387 +
388 +
348 348  === 2.6.1  EU863-870 (EU868) ===
349 349  
350 350  (((
... ... @@ -408,51 +408,20 @@
408 408  === 2.6.2  US902-928(US915) ===
409 409  
410 410  (((
411 -Used in USA, Canada and South America. Default use CHE=2
452 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
453 +)))
412 412  
413 -(% style="color:blue" %)**Uplink:**
455 +(((
456 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
457 +)))
414 414  
415 -903.9 - SF7BW125 to SF10BW125
416 -
417 -904.1 - SF7BW125 to SF10BW125
418 -
419 -904.3 - SF7BW125 to SF10BW125
420 -
421 -904.5 - SF7BW125 to SF10BW125
422 -
423 -904.7 - SF7BW125 to SF10BW125
424 -
425 -904.9 - SF7BW125 to SF10BW125
426 -
427 -905.1 - SF7BW125 to SF10BW125
428 -
429 -905.3 - SF7BW125 to SF10BW125
430 -
431 -
432 -(% style="color:blue" %)**Downlink:**
433 -
434 -923.3 - SF7BW500 to SF12BW500
435 -
436 -923.9 - SF7BW500 to SF12BW500
437 -
438 -924.5 - SF7BW500 to SF12BW500
439 -
440 -925.1 - SF7BW500 to SF12BW500
441 -
442 -925.7 - SF7BW500 to SF12BW500
443 -
444 -926.3 - SF7BW500 to SF12BW500
445 -
446 -926.9 - SF7BW500 to SF12BW500
447 -
448 -927.5 - SF7BW500 to SF12BW500
449 -
450 -923.3 - SF12BW500(RX2 downlink only)
451 -
452 -
453 -
459 +(((
460 +After Join success, the end node will switch to the correct sub band by:
454 454  )))
455 455  
463 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
464 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
465 +
456 456  === 2.6.3  CN470-510 (CN470) ===
457 457  
458 458  (((
... ... @@ -541,54 +541,28 @@
541 541  
542 542  
543 543  
554 +
544 544  === 2.6.4  AU915-928(AU915) ===
545 545  
546 546  (((
547 -Default use CHE=2
558 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
559 +)))
548 548  
549 -(% style="color:blue" %)**Uplink:**
561 +(((
562 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
563 +)))
550 550  
551 -916.8 - SF7BW125 to SF12BW125
552 -
553 -917.0 - SF7BW125 to SF12BW125
554 -
555 -917.2 - SF7BW125 to SF12BW125
556 -
557 -917.4 - SF7BW125 to SF12BW125
558 -
559 -917.6 - SF7BW125 to SF12BW125
560 -
561 -917.8 - SF7BW125 to SF12BW125
562 -
563 -918.0 - SF7BW125 to SF12BW125
564 -
565 -918.2 - SF7BW125 to SF12BW125
566 -
567 -
568 -(% style="color:blue" %)**Downlink:**
569 -
570 -923.3 - SF7BW500 to SF12BW500
571 -
572 -923.9 - SF7BW500 to SF12BW500
573 -
574 -924.5 - SF7BW500 to SF12BW500
575 -
576 -925.1 - SF7BW500 to SF12BW500
577 -
578 -925.7 - SF7BW500 to SF12BW500
579 -
580 -926.3 - SF7BW500 to SF12BW500
581 -
582 -926.9 - SF7BW500 to SF12BW500
583 -
584 -927.5 - SF7BW500 to SF12BW500
585 -
586 -923.3 - SF12BW500(RX2 downlink only)
587 -
588 -
565 +(((
589 589  
590 590  )))
591 591  
569 +(((
570 +After Join success, the end node will switch to the correct sub band by:
571 +)))
572 +
573 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
574 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
575 +
592 592  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
593 593  
594 594  (((
... ... @@ -697,6 +697,7 @@
697 697  
698 698  
699 699  
684 +
700 700  === 2.6.6  KR920-923 (KR920) ===
701 701  
702 702  (((
... ... @@ -769,6 +769,7 @@
769 769  
770 770  
771 771  
757 +
772 772  === 2.6.7  IN865-867 (IN865) ===
773 773  
774 774  (((
... ... @@ -805,20 +805,18 @@
805 805  
806 806  
807 807  
794 +
808 808  == 2.7  LED Indicator ==
809 809  
810 -The LDDS75 has an internal LED which is to show the status of different state.
797 +The LLDS12 has an internal LED which is to show the status of different state.
811 811  
812 -
813 -* Blink once when device power on.
814 -* The device detects the sensor and flashes 5 times.
815 -* Solid ON for 5 seconds once device successful Join the network.
799 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
816 816  * Blink once when device transmit a packet.
817 817  
818 818  == 2.8  ​Firmware Change Log ==
819 819  
820 820  
821 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
805 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
822 822  
823 823  
824 824  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -825,58 +825,71 @@
825 825  
826 826  
827 827  
828 -== 2.9  Mechanical ==
812 += 3LiDAR ToF Measurement =
829 829  
814 +== 3.1 Principle of Distance Measurement ==
830 830  
831 -[[image:image-20220610172003-1.png]]
816 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
832 832  
833 -[[image:image-20220610172003-2.png]]
818 +[[image:1654831757579-263.png]]
834 834  
835 835  
836 -== 2.10  Battery Analysis ==
837 837  
838 -=== 2.10.1  Battery Type ===
822 +== 3.2 Distance Measurement Characteristics ==
839 839  
840 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
824 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
841 841  
826 +[[image:1654831774373-275.png]]
842 842  
843 -The battery related documents as below:
844 844  
845 -* (((
846 -[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
829 +(((
830 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
847 847  )))
848 -* (((
849 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
832 +
833 +(((
834 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
850 850  )))
851 -* (((
852 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
836 +
837 +(((
838 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
853 853  )))
854 854  
855 - [[image:image-20220610172400-3.png]]
856 856  
842 +(((
843 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
844 +)))
857 857  
858 858  
859 -=== 2.10.2  Replace the battery ===
847 +[[image:1654831797521-720.png]]
860 860  
861 -(((
862 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
863 -)))
864 864  
865 865  (((
866 -
851 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
867 867  )))
868 868  
854 +[[image:1654831810009-716.png]]
855 +
856 +
869 869  (((
870 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
858 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
871 871  )))
872 872  
873 873  
874 874  
875 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
863 +== 3.3 Notice of usage: ==
876 876  
865 +Possible invalid /wrong reading for LiDAR ToF tech:
866 +
867 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
868 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
869 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
870 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
871 +
872 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
873 +
877 877  (((
878 878  (((
879 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
876 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
880 880  )))
881 881  )))
882 882  
... ... @@ -897,7 +897,7 @@
897 897  )))
898 898  
899 899  (((
900 -There are two kinds of commands to configure LDDS75, they are:
897 +There are two kinds of commands to configure LLDS12, they are:
901 901  )))
902 902  )))
903 903  
... ... @@ -938,148 +938,352 @@
938 938  
939 939  * (((
940 940  (((
941 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
938 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
942 942  )))
943 943  )))
944 944  
945 945  (((
946 946  (((
947 -These commands only valid for LDDS75, as below:
944 +These commands only valid for LLDS12, as below:
948 948  )))
949 949  )))
950 950  
951 951  
952 952  
953 -== 3.1  Access AT Commands ==
950 +== 4.1  Set Transmit Interval Time ==
954 954  
955 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
952 +Feature: Change LoRaWAN End Node Transmit Interval.
956 956  
957 -[[image:image-20220610172924-4.png||height="483" width="988"]]
954 +(% style="color:#037691" %)**AT Command: AT+TDC**
958 958  
956 +[[image:image-20220607171554-8.png]]
959 959  
960 -Or if you have below board, use below connection:
961 961  
959 +(((
960 +(% style="color:#037691" %)**Downlink Command: 0x01**
961 +)))
962 962  
963 -[[image:image-20220610172924-5.png]]
963 +(((
964 +Format: Command Code (0x01) followed by 3 bytes time value.
965 +)))
964 964  
967 +(((
968 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
969 +)))
965 965  
966 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
971 +* (((
972 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
973 +)))
974 +* (((
975 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
976 +)))
967 967  
978 +== 4.2  Set Interrupt Mode ==
968 968  
969 - [[image:image-20220610172924-6.png||height="601" width="860"]]
980 +Feature, Set Interrupt mode for GPIO_EXIT.
970 970  
982 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
971 971  
984 +[[image:image-20220610105806-2.png]]
972 972  
973 -== 3.2  Set Transmit Interval Time ==
974 974  
975 -Feature: Change LoRaWAN End Node Transmit Interval.
987 +(((
988 +(% style="color:#037691" %)**Downlink Command: 0x06**
989 +)))
976 976  
977 -(% style="color:#037691" %)**AT Command: AT+TDC**
991 +(((
992 +Format: Command Code (0x06) followed by 3 bytes.
993 +)))
978 978  
979 -[[image:image-20220610173409-7.png]]
995 +(((
996 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
997 +)))
980 980  
999 +* (((
1000 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1001 +)))
1002 +* (((
1003 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1004 +)))
981 981  
1006 +== 4.3  Get Firmware Version Info ==
1007 +
1008 +Feature: use downlink to get firmware version.
1009 +
1010 +(% style="color:#037691" %)**Downlink Command: 0x26**
1011 +
1012 +[[image:image-20220607171917-10.png]]
1013 +
1014 +* Reply to the confirmation package: 26 01
1015 +* Reply to non-confirmed packet: 26 00
1016 +
1017 +Device will send an uplink after got this downlink command. With below payload:
1018 +
1019 +Configures info payload:
1020 +
1021 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1022 +|=(((
1023 +**Size(bytes)**
1024 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1025 +|**Value**|Software Type|(((
1026 +Frequency
1027 +
1028 +Band
1029 +)))|Sub-band|(((
1030 +Firmware
1031 +
1032 +Version
1033 +)))|Sensor Type|Reserve|(((
1034 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1035 +Always 0x02
1036 +)))
1037 +
1038 +**Software Type**: Always 0x03 for LLDS12
1039 +
1040 +
1041 +**Frequency Band**:
1042 +
1043 +*0x01: EU868
1044 +
1045 +*0x02: US915
1046 +
1047 +*0x03: IN865
1048 +
1049 +*0x04: AU915
1050 +
1051 +*0x05: KZ865
1052 +
1053 +*0x06: RU864
1054 +
1055 +*0x07: AS923
1056 +
1057 +*0x08: AS923-1
1058 +
1059 +*0x09: AS923-2
1060 +
1061 +*0xa0: AS923-3
1062 +
1063 +
1064 +**Sub-Band**: value 0x00 ~~ 0x08
1065 +
1066 +
1067 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1068 +
1069 +
1070 +**Sensor Type**:
1071 +
1072 +0x01: LSE01
1073 +
1074 +0x02: LDDS75
1075 +
1076 +0x03: LDDS20
1077 +
1078 +0x04: LLMS01
1079 +
1080 +0x05: LSPH01
1081 +
1082 +0x06: LSNPK01
1083 +
1084 +0x07: LLDS12
1085 +
1086 +
1087 +
1088 += 5.  Battery & How to replace =
1089 +
1090 +== 5.1  Battery Type ==
1091 +
982 982  (((
983 -(% style="color:#037691" %)**Downlink Command: 0x01**
1093 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
984 984  )))
985 985  
986 986  (((
1097 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1098 +)))
1099 +
1100 +[[image:1654593587246-335.png]]
1101 +
1102 +
1103 +Minimum Working Voltage for the LLDS12:
1104 +
1105 +LLDS12:  2.45v ~~ 3.6v
1106 +
1107 +
1108 +
1109 +== 5.2  Replace Battery ==
1110 +
987 987  (((
988 -Format: Command Code (0x01) followed by 3 bytes time value.
1112 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1113 +)))
989 989  
990 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1115 +(((
1116 +And make sure the positive and negative pins match.
1117 +)))
991 991  
992 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
993 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1119 +
1120 +
1121 +== 5.3  Power Consumption Analyze ==
1122 +
1123 +(((
1124 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
994 994  )))
995 995  
1127 +(((
1128 +Instruction to use as below:
1129 +)))
996 996  
997 -
1131 +
1132 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1133 +
1134 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1135 +
1136 +
1137 +**Step 2**: Open it and choose
1138 +
1139 +* Product Model
1140 +* Uplink Interval
1141 +* Working Mode
1142 +
1143 +And the Life expectation in difference case will be shown on the right.
1144 +
1145 +[[image:1654593605679-189.png]]
1146 +
1147 +
1148 +The battery related documents as below:
1149 +
1150 +* (((
1151 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
998 998  )))
1153 +* (((
1154 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1155 +)))
1156 +* (((
1157 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1158 +)))
999 999  
1000 -== 3.3  Set Interrupt Mode ==
1160 +[[image:image-20220607172042-11.png]]
1001 1001  
1002 -Feature, Set Interrupt mode for GPIO_EXIT.
1003 1003  
1004 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1005 1005  
1006 -[[image:image-20220610174917-9.png]]
1164 +=== 5.3.1  ​Battery Note ===
1007 1007  
1166 +(((
1167 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1168 +)))
1008 1008  
1009 -(% style="color:#037691" %)**Downlink Command: 0x06**
1010 1010  
1011 -Format: Command Code (0x06) followed by 3 bytes.
1012 1012  
1013 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1172 +=== ​5.3.2  Replace the battery ===
1014 1014  
1015 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1016 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1174 +(((
1175 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1176 +)))
1017 1017  
1018 -= 4.  FAQ =
1178 +(((
1179 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1180 +)))
1019 1019  
1020 -== 4.1  What is the frequency plan for LDDS75? ==
1021 1021  
1022 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1023 1023  
1184 += 6.  Use AT Command =
1024 1024  
1186 +== 6.1  Access AT Commands ==
1025 1025  
1026 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1188 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1027 1027  
1028 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1029 -When downloading the images, choose the required image file for download. ​
1190 +[[image:1654593668970-604.png]]
1030 1030  
1192 +**Connection:**
1031 1031  
1194 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1032 1032  
1033 -== 4.3  Can I use LDDS75 in condensation environment? ==
1196 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1034 1034  
1035 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1198 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1036 1036  
1037 1037  
1201 +(((
1202 +(((
1203 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1204 +)))
1038 1038  
1039 -= 5.  Trouble Shooting =
1206 +(((
1207 +LLDS12 will output system info once power on as below:
1208 +)))
1209 +)))
1040 1040  
1041 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1042 1042  
1043 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1212 + [[image:1654593712276-618.png]]
1044 1044  
1214 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1045 1045  
1046 -== 5.2  AT Command input doesn't work ==
1047 1047  
1217 += 7.  FAQ =
1218 +
1219 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1220 +
1221 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1222 +When downloading the images, choose the required image file for download. ​
1223 +
1224 +
1225 += 8.  Trouble Shooting =
1226 +
1227 +== 8.1  AT Commands input doesn’t work ==
1228 +
1229 +
1230 +(((
1048 1048  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1232 +)))
1049 1049  
1234 +
1235 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1236 +
1237 +
1050 1050  (((
1239 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1240 +)))
1241 +
1242 +(((
1243 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1244 +)))
1245 +
1246 +(((
1051 1051  
1052 1052  )))
1053 1053  
1250 +(((
1251 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1252 +)))
1054 1054  
1055 -= 6.  Order Info =
1254 +(((
1255 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1256 +)))
1056 1056  
1057 1057  
1058 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1059 1059  
1260 += 9.  Order Info =
1060 1060  
1061 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1062 1062  
1063 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1064 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1065 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1066 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1067 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1068 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1069 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1070 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1263 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1071 1071  
1072 -(% style="color:blue" %)**YY**(%%): Battery Option
1073 1073  
1074 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1075 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1266 +(% style="color:blue" %)**XX**(%%): The default frequency band
1076 1076  
1077 -= 7. ​ Packing Info =
1268 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1269 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1270 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1271 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1272 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1273 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1274 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1275 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1078 1078  
1079 1079  
1278 += 10. ​ Packing Info =
1279 +
1280 +
1080 1080  **Package Includes**:
1081 1081  
1082 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1283 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1083 1083  
1084 1084  **Dimension and weight**:
1085 1085  
... ... @@ -1088,7 +1088,8 @@
1088 1088  * Package Size / pcs : cm
1089 1089  * Weight / pcs : g
1090 1090  
1091 -= 8.  ​Support =
1092 1092  
1293 += 11.  ​Support =
1294 +
1093 1093  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1094 1094  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654847583902-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.6 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0