Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 75- LoRaWANDistanceDetectionSensor User Manual1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:1654 846127817-788.png]]2 +[[image:1655254599445-662.png]] 3 3 4 -**Contents:** 5 5 6 -{{toc/}} 7 7 8 8 7 +**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,811 +12,505 @@ 12 12 13 13 14 14 14 + 15 + 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN DistanceDetectionSensor ==18 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 24 - 25 - 26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 27 - 28 - 29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 30 - 31 - 32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 33 - 34 - 35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 36 - 37 - 38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 24 +((( 25 +((( 26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 39 39 ))) 40 -))) 41 41 42 - 43 -[[image:1654847051249-359.png]] 44 - 45 - 46 - 47 -== 1.2 Features == 48 - 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Distance Detection by Ultrasonic technology 52 -* Flat object range 280mm - 7500mm 53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 54 -* Cable Length : 25cm 55 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 56 -* AT Commands to change parameters 57 -* Uplink on periodically 58 -* Downlink to change configure 59 -* IP66 Waterproof Enclosure 60 -* 4000mAh or 8500mAh Battery for long term use 61 - 62 -== 1.3 Specification == 63 - 64 -=== 1.3.1 Rated environmental conditions === 65 - 66 -[[image:image-20220610154839-1.png]] 67 - 68 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 69 - 70 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 71 - 72 - 73 - 74 -=== 1.3.2 Effective measurement range Reference beam pattern === 75 - 76 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 77 - 78 - 79 - 80 -[[image:1654852253176-749.png]] 81 - 82 - 83 - 84 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 85 - 86 - 87 -[[image:1654852175653-550.png]](% style="display:none" %) ** ** 88 - 89 - 90 - 91 -== 1.5 Applications == 92 - 93 -* Horizontal distance measurement 94 -* Liquid level measurement 95 -* Parking management system 96 -* Object proximity and presence detection 97 -* Intelligent trash can management system 98 -* Robot obstacle avoidance 99 -* Automatic control 100 -* Sewer 101 -* Bottom water level monitoring 102 - 103 - 104 -== 1.6 Pin mapping and power on == 105 - 106 - 107 -[[image:1654847583902-256.png]] 108 - 109 - 110 - 111 -= 2. Configure LDDS75 to connect to LoRaWAN network = 112 - 113 -== 2.1 How it works == 114 - 115 115 ((( 116 - TheLDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value30 + 117 117 ))) 118 118 119 119 ((( 120 - Incase youcan'tset theOTAA keysintheLoRaWANOTAAserver,andyouhave tousethekeys fromtheserver,youcan[[useATCommands>>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]toset thekeys intheLDDS75.34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 121 121 ))) 122 122 123 - 124 - 125 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 126 - 127 127 ((( 128 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.38 + 129 129 ))) 130 130 131 131 ((( 132 - [[image:1654848616367-242.png]]42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 133 133 ))) 134 134 135 135 ((( 136 - TheLG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.46 + 137 137 ))) 138 138 139 139 ((( 140 - (%style="color:blue"%)**Step1**(%%):Create a deviceinTTNwith theOTAA keysfromLDDS75.50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 141 141 ))) 142 142 143 143 ((( 144 - EachLDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.54 + 145 145 ))) 146 146 147 -[[image:image-20220607170145-1.jpeg]] 148 - 149 - 150 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 151 - 152 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 153 - 154 -**Add APP EUI in the application** 155 - 156 -[[image:image-20220610161353-4.png]] 157 - 158 -[[image:image-20220610161353-5.png]] 159 - 160 -[[image:image-20220610161353-6.png]] 161 - 162 - 163 -[[image:image-20220610161353-7.png]] 164 - 165 - 166 -You can also choose to create the device manually. 167 - 168 - [[image:image-20220610161538-8.png]] 169 - 170 - 171 - 172 -**Add APP KEY and DEV EUI** 173 - 174 -[[image:image-20220610161538-9.png]] 175 - 176 - 177 - 178 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 179 - 180 - 181 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 182 - 183 -[[image:image-20220610161724-10.png]] 184 - 185 - 186 186 ((( 187 -(% style="color: blue" %)**Step 3**(%%)**:**The LDDS75 will autojointo theTTNnetwork.Afterjoinsuccess, itwill starttoupload messagestoTTNandyou can see the messagesin the panel.58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 188 188 ))) 189 189 190 -[[image:1654849068701-275.png]] 191 - 192 - 193 - 194 -== 2.3 Uplink Payload == 195 - 196 196 ((( 197 -LDDS75 will uplink payload via LoRaWAN with below payload format: 62 + 63 +))) 198 198 199 - Uplink payload includes in total 4 bytes.200 - Payload forfirmwareversionv1.1.4..Beforev1.1.3,there isonfields: BATandDistance65 +((( 66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 201 201 ))) 202 202 203 203 ((( 204 204 205 205 ))) 72 +))) 206 206 207 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 208 -|=(% style="width: 62.5px;" %)((( 209 -**Size (bytes)** 210 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 211 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 212 -[[Distance>>||anchor="H2.3.2A0Distance"]] 74 +((( 75 +((( 76 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 77 +))) 78 +))) 79 +))) 80 +))) 213 213 214 -(unit: mm) 215 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 216 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 217 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 218 218 219 -[[image:165 4850511545-399.png]]83 +[[image:1655255122126-327.png]] 220 220 221 221 222 222 223 -== =2.3.1BatteryInfo===87 +== 1.2 Features == 224 224 89 +* LoRaWAN 1.0.3 Class A 90 +* Ultra low power consumption 91 +* Liquid Level Measurement by Ultrasonic technology 92 +* Measure through container, No need to contact Liquid. 93 +* Valid level range 20mm - 2000mm 94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 95 +* Cable Length : 25cm 96 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 97 +* AT Commands to change parameters 98 +* Uplink on periodically 99 +* Downlink to change configure 100 +* IP66 Waterproof Enclosure 101 +* 8500mAh Battery for long term use 225 225 226 - Checkthebatteryvoltagefor LDDS75.103 +== 1.3 Suitable Container & Liquid == 227 227 228 -Ex1: 0x0B45 = 2885mV 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 229 229 230 - Ex2:0x0B49=2889mV112 +== 1.4 Mechanical == 231 231 114 +[[image:image-20220615090910-1.png]] 232 232 233 233 234 - === 2.3.2 Distance===117 +[[image:image-20220615090910-2.png]] 235 235 236 -Get the distance. Flat object range 280mm - 7500mm. 237 237 238 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 239 239 121 +== 1.5 Install LDDS20 == 240 240 241 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 242 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 243 243 244 - ===2.3.3 InterruptPin===124 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 245 245 246 - Thisdatafieldshows ifthis packet is generated byinterruptornot.[[Clickhere>>||anchor="H3.3A0SetInterruptMode"]]forthehardware andsoftware setup.126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 247 247 248 - **Example:**128 +[[image:image-20220615091045-3.png]] 249 249 250 -0x00: Normal uplink packet. 251 251 252 -0x01: Interrupt Uplink Packet. 253 253 132 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 254 254 134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 255 255 256 - ===2.3.4 DS18B20Temperature sensor ===136 +[[image:image-20220615092010-11.png]] 257 257 258 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 259 259 260 - **Example**:139 +No polish needed if the container is shine metal surface without paint or non-metal container. 261 261 262 - If payloadis:105H: (0105& FC00== 0), temp = 0105H /10 =26.1 degree141 +[[image:image-20220615092044-12.png]] 263 263 264 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 265 265 266 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 267 267 145 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 268 268 147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 269 269 270 -=== 2.3.5 Sensor Flag === 271 271 272 - 0x01:DetectUltrasonicSensor150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 273 273 274 -0 x00:NoUltrasonicSensor152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]] 275 275 276 276 155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 277 277 278 -=== 2.3.6 Decode payload in The Things Network === 279 279 280 - Whileusing TTN network,you can add thepayload format to decodethepayload.158 +(% style="color:red" %)**LED Status:** 281 281 160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 282 282 283 -[[image:1654850829385-439.png]] 162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 284 284 285 - ThepayloaddecoderfunctionforTTNV3ishere:165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 286 286 287 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 288 288 168 +(% style="color:red" %)**Note 2:** 289 289 170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 290 290 291 -== 2.4 Uplink Interval == 292 292 293 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 294 294 174 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 295 295 176 +Prepare Eproxy AB glue. 296 296 297 - ==2.5ShowDatainDataCakeIoT Server==178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 298 298 299 -((( 300 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 301 -))) 180 +Reset LDDS20 and see if the BLUE LED is slowly blinking. 302 302 303 -((( 304 - 305 -))) 182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 306 306 307 -((( 308 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 309 -))) 310 310 311 -((( 312 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 313 -))) 185 +(% style="color:red" %)**Note 1:** 314 314 187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 315 315 316 -[[image:1654592790040-760.png]] 317 317 190 +(% style="color:red" %)**Note 2:** 318 318 319 - [[image:1654592800389-571.png]]192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 320 320 321 321 322 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 323 323 324 - (% style="color:blue"%)**Step4**(%%)**: Searchthe LDDS75andadd DevEUI.**196 +== 1.6 Applications == 325 325 326 -[[image:1654851029373-510.png]] 198 +* Smart liquid control solution. 199 +* Smart liquefied gas solution. 327 327 201 +== 1.7 Precautions == 328 328 329 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 330 330 331 - [[image:image-20220610165129-11.png||height="595"width="1088"]]207 +== 1.8 Pin mapping and power on == 332 332 333 333 210 +[[image:1655257026882-201.png]] 334 334 335 -== 2.6 Frequency Plans == 336 336 337 -((( 338 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 339 -))) 340 340 214 += 2. Configure LDDS20 to connect to LoRaWAN network = 341 341 342 342 343 -== =2.6.1EU863-870(EU868)===217 +== 2.1 How it works == 344 344 345 345 ((( 346 - (%style="color:blue"%)**Uplink:**220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 347 347 ))) 348 348 349 349 ((( 350 - 868.1-SF7BW125to SF12BW125224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20. 351 351 ))) 352 352 353 -((( 354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 355 -))) 356 356 357 -((( 358 -868.5 - SF7BW125 to SF12BW125 359 -))) 360 360 361 -((( 362 -867.1 - SF7BW125 to SF12BW125 363 -))) 229 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 364 364 365 365 ((( 366 - 867.3-SF7BW125toSF12BW125232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 367 367 ))) 368 368 369 369 ((( 370 - 867.5- SF7BW125to SF12BW125236 +[[image:1655257698953-697.png]] 371 371 ))) 372 372 373 373 ((( 374 -8 67.7-SF7BW125toSF12BW125240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 375 375 ))) 376 376 377 377 ((( 378 -867.9 - SF7BW125 to SF12BW125 379 -))) 244 + 380 380 381 -((( 382 -868.8 - FSK 246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 383 383 ))) 384 384 385 385 ((( 386 - 250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 387 387 ))) 388 388 389 -((( 390 -(% style="color:blue" %)**Downlink:** 391 -))) 253 +[[image:image-20220607170145-1.jpeg]] 392 392 255 + 393 393 ((( 394 - Uplinkchannels1-9(RX1)257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 395 395 ))) 396 396 397 397 ((( 398 - 869.525-SF9BW125(RX2downlinkonly)261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 399 399 ))) 400 400 401 - 402 - 403 -=== 2.6.2 US902-928(US915) === 404 - 405 405 ((( 406 - Usedin USA, Canada and South America. Default use CHE=2265 + 407 407 408 -(% style="color:blue" %)**Uplink:** 267 +**Add APP EUI in the application** 268 +))) 409 409 410 - 903.9-SF7BW125 to SF10BW125270 +[[image:image-20220610161353-4.png]] 411 411 412 - 904.1-SF7BW125 to SF10BW125272 +[[image:image-20220610161353-5.png]] 413 413 414 - 904.3-SF7BW125 to SF10BW125274 +[[image:image-20220610161353-6.png]] 415 415 416 -904.5 - SF7BW125 to SF10BW125 417 417 418 - 904.7-SF7BW125 to SF10BW125277 +[[image:image-20220610161353-7.png]] 419 419 420 -904.9 - SF7BW125 to SF10BW125 421 421 422 -905.1 - SF7BW125 to SF10BW125 423 423 424 - 905.3-SF7BW125toSF10BW125281 +You can also choose to create the device manually. 425 425 283 + [[image:image-20220610161538-8.png]] 426 426 427 -(% style="color:blue" %)**Downlink:** 428 428 429 -923.3 - SF7BW500 to SF12BW500 430 430 431 - 923.9-SF7BW500toSF12BW500287 +**Add APP KEY and DEV EUI** 432 432 433 - 924.5-SF7BW500to SF12BW500289 +[[image:image-20220610161538-9.png]] 434 434 435 -925.1 - SF7BW500 to SF12BW500 436 436 437 -925.7 - SF7BW500 to SF12BW500 438 438 439 - 926.3-SF7BW500to SF12BW500293 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 440 440 441 -926.9 - SF7BW500 to SF12BW500 442 442 443 - 927.5-SF7BW500toSF12BW500296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 444 444 445 - 923.3-SF12BW500(RX2downlink only)298 +[[image:image-20220615095102-14.png]] 446 446 447 447 448 - 449 -))) 450 450 451 -=== 2.6.3 CN470-510 (CN470) === 452 - 453 453 ((( 454 - UsedinChina,Default useCHE=1303 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 455 455 ))) 456 456 457 -((( 458 -(% style="color:blue" %)**Uplink:** 459 -))) 306 +[[image:1654849068701-275.png]] 460 460 461 -((( 462 -486.3 - SF7BW125 to SF12BW125 463 -))) 464 464 465 -((( 466 -486.5 - SF7BW125 to SF12BW125 467 -))) 468 468 469 -((( 470 -486.7 - SF7BW125 to SF12BW125 471 -))) 310 +== 2.3 Uplink Payload == 472 472 473 473 ((( 474 -486.9 - SF7BW125 to SF12BW125 475 -))) 476 - 477 477 ((( 478 -487.1 - SF7BW125 to SF12BW125 479 -))) 314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 480 480 481 - (((482 -4 87.3-SF7BW125toSF12BW125316 +Uplink payload includes in total 8 bytes. 317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload). 483 483 ))) 484 - 485 -((( 486 -487.5 - SF7BW125 to SF12BW125 487 487 ))) 488 488 489 489 ((( 490 -487.7 - SF7BW125 to SF12BW125 491 -))) 492 - 493 -((( 494 494 495 495 ))) 496 496 497 -((( 498 -(% style="color:blue" %)**Downlink:** 499 -))) 325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 326 +|=(% style="width: 62.5px;" %)((( 327 +**Size (bytes)** 328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 330 +[[Distance>>||anchor="H2.3.2A0Distance"]] 500 500 501 -((( 502 -506.7 - SF7BW125 to SF12BW125 503 -))) 332 +(unit: mm) 333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 504 504 505 -((( 506 -506.9 - SF7BW125 to SF12BW125 507 -))) 337 +[[image:1654850511545-399.png]] 508 508 509 -((( 510 -507.1 - SF7BW125 to SF12BW125 511 -))) 512 512 513 -((( 514 -507.3 - SF7BW125 to SF12BW125 515 -))) 516 516 517 -((( 518 -507.5 - SF7BW125 to SF12BW125 519 -))) 341 +=== 2.3.1 Battery Info === 520 520 521 -((( 522 -507.7 - SF7BW125 to SF12BW125 523 -))) 524 524 525 -((( 526 -507.9 - SF7BW125 to SF12BW125 527 -))) 344 +Check the battery voltage for LDDS20. 528 528 529 -((( 530 -508.1 - SF7BW125 to SF12BW125 531 -))) 346 +Ex1: 0x0B45 = 2885mV 532 532 533 -((( 534 -505.3 - SF12BW125 (RX2 downlink only) 535 -))) 348 +Ex2: 0x0B49 = 2889mV 536 536 537 537 538 538 539 -=== 2. 6.4AU915-928(AU915)===352 +=== 2.3.2 Distance === 540 540 541 541 ((( 542 -Default use CHE=2 355 +Get the distance. Flat object range 20mm - 2000mm. 356 +))) 543 543 544 -(% style="color:blue" %)**Uplink:** 358 +((( 359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 360 +))) 545 545 546 -916.8 - SF7BW125 to SF12BW125 362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 547 547 548 - 917.0- SF7BW125toSF12BW125365 +=== 2.3.3 Interrupt Pin === 549 549 550 - 917.2-SF7BW125toSF12BW125367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 551 551 552 - 917.4 - SF7BW125 to SF12BW125369 +**Example:** 553 553 554 - 917.6-SF7BW125to SF12BW125371 +0x00: Normal uplink packet. 555 555 556 - 917.8-SF7BW125to SF12BW125373 +0x01: Interrupt Uplink Packet. 557 557 558 -918.0 - SF7BW125 to SF12BW125 559 559 560 -918.2 - SF7BW125 to SF12BW125 561 561 377 +=== 2.3.4 DS18B20 Temperature sensor === 562 562 563 - (%style="color:blue"%)**Downlink:**379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 564 564 565 - 923.3 - SF7BW500 to SF12BW500381 +**Example**: 566 566 567 - 923.9-SF7BW500toSF12BW500383 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 568 568 569 - 924.5-SF7BW500 toSF12BW500385 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 570 570 571 - 925.1-SF7BW500toSF12BW500387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 572 572 573 -925.7 - SF7BW500 to SF12BW500 574 574 575 -926.3 - SF7BW500 to SF12BW500 576 576 577 - 926.9 - SF7BW500toSF12BW500391 +=== 2.3.5 Sensor Flag === 578 578 579 -927.5 - SF7BW500 to SF12BW500 580 - 581 -923.3 - SF12BW500(RX2 downlink only) 582 - 583 - 584 - 585 -))) 586 - 587 -=== 2.6.5 AS920-923 & AS923-925 (AS923) === 588 - 589 589 ((( 590 - (% style="color:blue"%)**Default Uplink channel:**394 +0x01: Detect Ultrasonic Sensor 591 591 ))) 592 592 593 593 ((( 594 - 923.2-SF7BW125to SF10BW125398 +0x00: No Ultrasonic Sensor 595 595 ))) 596 596 597 -((( 598 -923.4 - SF7BW125 to SF10BW125 599 -))) 600 600 601 -((( 602 - 603 -))) 604 604 605 -((( 606 -(% style="color:blue" %)**Additional Uplink Channel**: 607 -))) 403 +=== 2.3.6 Decode payload in The Things Network === 608 608 609 -((( 610 -(OTAA mode, channel added by JoinAccept message) 611 -))) 405 +While using TTN network, you can add the payload format to decode the payload. 612 612 613 -((( 614 - 615 -))) 616 616 617 -((( 618 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 619 -))) 408 +[[image:1654850829385-439.png]] 620 620 621 -((( 622 -922.2 - SF7BW125 to SF10BW125 623 -))) 410 +The payload decoder function for TTN V3 is here: 624 624 625 625 ((( 626 - 922.4-SF7BW125toF10BW125413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 627 627 ))) 628 628 629 -((( 630 -922.6 - SF7BW125 to SF10BW125 631 -))) 632 632 633 -((( 634 -922.8 - SF7BW125 to SF10BW125 635 -))) 636 636 637 -((( 638 -923.0 - SF7BW125 to SF10BW125 639 -))) 418 +== 2.4 Downlink Payload == 640 640 641 -((( 642 -922.0 - SF7BW125 to SF10BW125 643 -))) 420 +By default, LDDS20 prints the downlink payload to console port. 644 644 645 -((( 646 - 647 -))) 422 +[[image:image-20220615100930-15.png]] 648 648 649 -((( 650 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 651 -))) 652 652 653 -((( 654 -923.6 - SF7BW125 to SF10BW125 655 -))) 425 +**Examples:** 656 656 657 -((( 658 -923.8 - SF7BW125 to SF10BW125 659 -))) 660 660 661 -((( 662 -924.0 - SF7BW125 to SF10BW125 663 -))) 428 +* (% style="color:blue" %)**Set TDC** 664 664 665 -((( 666 -924.2 - SF7BW125 to SF10BW125 667 -))) 430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 668 668 669 -((( 670 -924.4 - SF7BW125 to SF10BW125 671 -))) 432 +Payload: 01 00 00 1E TDC=30S 672 672 673 -((( 674 -924.6 - SF7BW125 to SF10BW125 675 -))) 434 +Payload: 01 00 00 3C TDC=60S 676 676 677 -((( 678 - 679 -))) 680 680 681 -((( 682 -(% style="color:blue" %)**Downlink:** 683 -))) 437 +* (% style="color:blue" %)**Reset** 684 684 685 -((( 686 -Uplink channels 1-8 (RX1) 687 -))) 439 +If payload = 0x04FF, it will reset the LDDS20 688 688 689 -((( 690 -923.2 - SF10BW125 (RX2) 691 -))) 692 692 442 +* (% style="color:blue" %)**CFM** 693 693 444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 694 694 695 -=== 2.6.6 KR920-923 (KR920) === 696 696 697 -((( 698 -(% style="color:blue" %)**Default channel:** 699 -))) 700 700 701 -((( 702 -922.1 - SF7BW125 to SF12BW125 703 -))) 448 +== 2.5 Show Data in DataCake IoT Server == 704 704 705 705 ((( 706 - 922.3-SF7BW125toSF12BW125451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 707 707 ))) 708 708 709 709 ((( 710 -922.5 - SF7BW125 to SF12BW125 711 -))) 712 - 713 -((( 714 714 715 715 ))) 716 716 717 717 ((( 718 -(% style="color:blue" %)** Uplink:(OTAAmode,channeladdedbyJoinAcceptmessage)**459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 719 719 ))) 720 720 721 721 ((( 722 - 922.1-SF7BW125toSF12BW125463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 723 723 ))) 724 724 725 -((( 726 -922.3 - SF7BW125 to SF12BW125 727 -))) 728 728 729 -((( 730 -922.5 - SF7BW125 to SF12BW125 731 -))) 467 +[[image:1654592790040-760.png]] 732 732 733 -((( 734 -922.7 - SF7BW125 to SF12BW125 735 -))) 736 736 737 -((( 738 -922.9 - SF7BW125 to SF12BW125 739 -))) 470 +[[image:1654592800389-571.png]] 740 740 741 -((( 742 -923.1 - SF7BW125 to SF12BW125 743 -))) 744 744 745 -((( 746 -923.3 - SF7BW125 to SF12BW125 747 -))) 473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 748 748 749 -((( 750 - 751 -))) 475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 752 752 753 -((( 754 -(% style="color:blue" %)**Downlink:** 755 -))) 477 +[[image:1654851029373-510.png]] 756 756 757 -((( 758 -Uplink channels 1-7(RX1) 759 -))) 760 760 761 -((( 762 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 763 -))) 480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 764 764 482 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 765 765 766 766 767 -=== 2.6.7 IN865-867 (IN865) === 768 768 769 -((( 770 -(% style="color:blue" %)**Uplink:** 771 -))) 486 +== 2.6 LED Indicator == 772 772 773 -((( 774 -865.0625 - SF7BW125 to SF12BW125 775 -))) 488 +The LDDS20 has an internal LED which is to show the status of different state. 776 776 777 -((( 778 -865.4025 - SF7BW125 to SF12BW125 779 -))) 780 780 781 -((( 782 -865.9850 - SF7BW125 to SF12BW125 783 -))) 784 - 785 -((( 786 - 787 -))) 788 - 789 -((( 790 -(% style="color:blue" %)**Downlink:** 791 -))) 792 - 793 -((( 794 -Uplink channels 1-3 (RX1) 795 -))) 796 - 797 -((( 798 -866.550 - SF10BW125 (RX2) 799 -))) 800 - 801 - 802 - 803 -== 2.7 LED Indicator == 804 - 805 -The LDDS75 has an internal LED which is to show the status of different state. 806 - 807 - 808 808 * Blink once when device power on. 809 809 * The device detects the sensor and flashes 5 times. 810 810 * Solid ON for 5 seconds once device successful Join the network. 811 -* Blink once when device transmit a packet. 812 812 495 +Blink once when device transmit a packet. 496 + 497 + 498 + 813 813 == 2.8 Firmware Change Log == 814 814 815 815 502 +((( 816 816 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 504 +))) 817 817 506 +((( 507 + 508 +))) 818 818 510 +((( 819 819 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 512 +))) 820 820 821 821 822 822 ... ... @@ -825,9 +825,11 @@ 825 825 826 826 [[image:image-20220610172003-1.png]] 827 827 521 + 828 828 [[image:image-20220610172003-2.png]] 829 829 830 830 525 + 831 831 == 2.10 Battery Analysis == 832 832 833 833 === 2.10.1 Battery Type === ... ... @@ -838,7 +838,7 @@ 838 838 The battery related documents as below: 839 839 840 840 * ((( 841 -[[ 536 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 842 842 ))) 843 843 * ((( 844 844 [[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], ... ... @@ -854,7 +854,7 @@ 854 854 === 2.10.2 Replace the battery === 855 855 856 856 ((( 857 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won ’t be voltage drop between battery and main board.552 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 858 858 ))) 859 859 860 860 ((( ... ... @@ -862,7 +862,7 @@ 862 862 ))) 863 863 864 864 ((( 865 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can ’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)560 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 866 866 ))) 867 867 868 868 ... ... @@ -877,7 +877,7 @@ 877 877 878 878 * ((( 879 879 ((( 880 -AT Command Connection: See [[FAQ>>||anchor="H 7.A0FAQ"]].575 +AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]]. 881 881 ))) 882 882 ))) 883 883 * ((( ... ... @@ -958,7 +958,9 @@ 958 958 [[image:image-20220610172924-5.png]] 959 959 960 960 656 +((( 961 961 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 658 +))) 962 962 963 963 964 964 [[image:image-20220610172924-6.png||height="601" width="860"]] ... ... @@ -982,16 +982,19 @@ 982 982 ((( 983 983 Format: Command Code (0x01) followed by 3 bytes time value. 984 984 682 +((( 985 985 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 684 +))) 986 986 987 987 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 988 988 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 989 989 ))) 689 +))) 990 990 991 991 992 - 993 -))) 994 994 693 + 694 + 995 995 == 3.3 Set Interrupt Mode == 996 996 997 997 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -1005,7 +1005,9 @@ 1005 1005 1006 1006 Format: Command Code (0x06) followed by 3 bytes. 1007 1007 708 +((( 1008 1008 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 710 +))) 1009 1009 1010 1010 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1011 1011 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.5 KB - Content