Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2025/08/06 17:02
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1655254599445-662.png
- 1655255122126-327.png
- 1655256160324-178.png
- 1655257026882-201.png
- 1655257698953-697.png
- image-20220615090910-1.png
- image-20220615090910-2.png
- image-20220615091045-3.png
- image-20220615091045-4.png
- image-20220615091045-5.png
- image-20220615091045-6.png
- image-20220615091045-7.png
- image-20220615091045-8.png
- image-20220615091045-9.png
- image-20220615091929-10.png
- image-20220615092010-11.png
- image-20220615092044-12.png
- image-20220615092327-13.png
- image-20220615095102-14.png
- image-20220615100930-15.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDDS 75- LoRaWANDistanceDetectionSensor User Manual1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:1654 846127817-788.png]]2 +[[image:1655254599445-662.png]] 3 3 4 -**Contents:** 5 5 6 -{{toc/}} 7 7 8 8 7 +**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,815 +12,504 @@ 12 12 13 13 14 14 14 + 15 + 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN DistanceDetectionSensor ==18 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 24 - 25 - 26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 27 - 28 - 29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 30 - 31 - 32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 33 - 34 - 35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 36 - 37 - 38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 24 +((( 25 +((( 26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server 39 39 ))) 40 -))) 41 41 42 - 43 -[[image:1654847051249-359.png]] 44 - 45 - 46 - 47 -== 1.2 Features == 48 - 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Distance Detection by Ultrasonic technology 52 -* Flat object range 280mm - 7500mm 53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 54 -* Cable Length : 25cm 55 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 56 -* AT Commands to change parameters 57 -* Uplink on periodically 58 -* Downlink to change configure 59 -* IP66 Waterproof Enclosure 60 -* 4000mAh or 8500mAh Battery for long term use 61 - 62 - 63 - 64 -== 1.3 Specification == 65 - 66 -=== 1.3.1 Rated environmental conditions === 67 - 68 -[[image:image-20220610154839-1.png]] 69 - 70 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 71 - 72 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 73 - 74 - 75 - 76 -=== 1.3.2 Effective measurement range Reference beam pattern === 77 - 78 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 79 - 80 - 81 - 82 -[[image:1654852253176-749.png]] 83 - 84 - 85 - 86 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 87 - 88 - 89 -[[image:1654852175653-550.png]](% style="display:none" %) ** ** 90 - 91 - 92 - 93 -== 1.5 Applications == 94 - 95 -* Horizontal distance measurement 96 -* Liquid level measurement 97 -* Parking management system 98 -* Object proximity and presence detection 99 -* Intelligent trash can management system 100 -* Robot obstacle avoidance 101 -* Automatic control 102 -* Sewer 103 -* Bottom water level monitoring 104 - 105 - 106 - 107 - 108 -== 1.6 Pin mapping and power on == 109 - 110 - 111 -[[image:1654847583902-256.png]] 112 - 113 - 114 - 115 -= 2. Configure LDDS75 to connect to LoRaWAN network = 116 - 117 -== 2.1 How it works == 118 - 119 119 ((( 120 - TheLDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value30 + 121 121 ))) 122 122 123 123 ((( 124 - Incase youcan'tset theOTAA keysintheLoRaWANOTAAserver,andyouhave tousethekeys fromtheserver,youcan[[useATCommands>>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]toset thekeys intheLDDS75.34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 125 125 ))) 126 126 127 - 128 - 129 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 130 - 131 131 ((( 132 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.38 + 133 133 ))) 134 134 135 135 ((( 136 - [[image:1654848616367-242.png]]42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 137 137 ))) 138 138 139 139 ((( 140 - TheLG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.46 + 141 141 ))) 142 142 143 143 ((( 144 - (%style="color:blue"%)**Step1**(%%):Create a deviceinTTNwith theOTAA keysfromLDDS75.50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 145 145 ))) 146 146 147 147 ((( 148 - EachLDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.54 + 149 149 ))) 150 150 151 -[[image:image-20220607170145-1.jpeg]] 152 - 153 - 154 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 155 - 156 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 157 - 158 -**Add APP EUI in the application** 159 - 160 -[[image:image-20220610161353-4.png]] 161 - 162 -[[image:image-20220610161353-5.png]] 163 - 164 -[[image:image-20220610161353-6.png]] 165 - 166 - 167 -[[image:image-20220610161353-7.png]] 168 - 169 - 170 -You can also choose to create the device manually. 171 - 172 - [[image:image-20220610161538-8.png]] 173 - 174 - 175 - 176 -**Add APP KEY and DEV EUI** 177 - 178 -[[image:image-20220610161538-9.png]] 179 - 180 - 181 - 182 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 183 - 184 - 185 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 186 - 187 -[[image:image-20220610161724-10.png]] 188 - 189 - 190 190 ((( 191 -(% style="color: blue" %)**Step 3**(%%)**:**The LDDS75 will autojointo theTTNnetwork.Afterjoinsuccess, itwill starttoupload messagestoTTNandyou can see the messagesin the panel.58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 192 192 ))) 193 193 194 -[[image:1654849068701-275.png]] 195 - 196 - 197 - 198 -== 2.3 Uplink Payload == 199 - 200 200 ((( 201 -LDDS75 will uplink payload via LoRaWAN with below payload format: 62 + 63 +))) 202 202 203 - Uplink payload includes in total 4 bytes.204 - Payload forfirmwareversionv1.1.4..Beforev1.1.3,there isonfields: BATandDistance65 +((( 66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 205 205 ))) 206 206 207 207 ((( 208 208 209 209 ))) 72 +))) 210 210 211 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 212 -|=(% style="width: 62.5px;" %)((( 213 -**Size (bytes)** 214 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 215 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 216 -[[Distance>>||anchor="H2.3.3A0Distance"]] 74 +((( 75 +((( 76 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors. 77 +))) 78 +))) 79 +))) 80 +))) 217 217 218 -(unit: mm) 219 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 220 -[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 221 -)))|[[Sensor Flag>>path:#Sensor_Flag]] 222 222 223 -[[image:165 4850511545-399.png]]83 +[[image:1655255122126-327.png]] 224 224 225 225 226 226 227 -== =2.3.1BatteryInfo===87 +== 1.2 Features == 228 228 89 +* LoRaWAN 1.0.3 Class A 90 +* Ultra low power consumption 91 +* Liquid Level Measurement by Ultrasonic technology 92 +* Measure through container, No need to contact Liquid. 93 +* Valid level range 20mm - 2000mm 94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 95 +* Cable Length : 25cm 96 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 97 +* AT Commands to change parameters 98 +* Uplink on periodically 99 +* Downlink to change configure 100 +* IP66 Waterproof Enclosure 101 +* 8500mAh Battery for long term use 229 229 230 - Checkthebatteryvoltagefor LDDS75.103 +== 1.3 Suitable Container & Liquid == 231 231 232 -Ex1: 0x0B45 = 2885mV 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 233 233 234 - Ex2:0x0B49=2889mV112 +== 1.4 Mechanical == 235 235 114 +[[image:image-20220615090910-1.png]] 236 236 237 237 238 - === 2.3.2 Distance===117 +[[image:image-20220615090910-2.png]] 239 239 240 -Get the distance. Flat object range 280mm - 7500mm. 241 241 242 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 243 243 121 +== 1.5 Install LDDS20 == 244 244 245 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 246 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 247 247 248 - ===2.3.3 InterruptPin===124 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 249 249 250 - Thisdatafieldshows ifthis packet is generated byinterruptornot.[[Clickhere>>||anchor="H4.2A0SetInterruptMode"]]forthehardware andsoftware setup.126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 251 251 252 - **Example:**128 +[[image:image-20220615091045-3.png]] 253 253 254 -0x00: Normal uplink packet. 255 255 256 -0x01: Interrupt Uplink Packet. 257 257 132 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 258 258 134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 259 259 260 - ===2.3.4 DS18B20Temperature sensor ===136 +[[image:image-20220615092010-11.png]] 261 261 262 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 263 263 264 - **Example**:139 +No polish needed if the container is shine metal surface without paint or non-metal container. 265 265 266 - If payloadis:105H: (0105& FC00== 0), temp = 0105H /10 =26.1 degree141 +[[image:image-20220615092044-12.png]] 267 267 268 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 269 269 270 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 271 271 145 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 272 272 147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 273 273 274 -=== 2.3.5 Sensor Flag === 275 275 276 - 0x01:DetectUltrasonicSensor150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level. 277 277 278 -0 x00:NoUltrasonicSensor152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]] 279 279 280 280 155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 281 281 282 -=== 2.3.6 Decode payload in The Things Network === 283 283 284 - Whileusing TTN network,you can add thepayload format to decodethepayload.158 +(% style="color:red" %)**LED Status:** 285 285 160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 286 286 287 -[[image:1654850829385-439.png]] 162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point. 163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good. 288 288 289 - ThepayloaddecoderfunctionforTTNV3ishere:165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 290 290 291 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 292 292 168 +(% style="color:red" %)**Note 2:** 293 293 170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 294 294 295 -== 2.4 Uplink Interval == 296 296 297 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 298 298 174 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 299 299 176 +Prepare Eproxy AB glue. 300 300 301 - ==2.5ShowDatainDataCakeIoT Server==178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 302 302 303 -((( 304 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 305 -))) 180 +Reset LDDS20 and see if the BLUE LED is slowly blinking. 306 306 307 -((( 308 - 309 -))) 182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]] 310 310 311 -((( 312 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 313 -))) 314 314 315 -((( 316 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 317 -))) 185 +(% style="color:red" %)**Note 1:** 318 318 187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 319 319 320 -[[image:1654592790040-760.png]] 321 321 190 +(% style="color:red" %)**Note 2:** 322 322 323 - [[image:1654592800389-571.png]]192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally. 324 324 325 325 326 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 327 327 328 - (% style="color:blue"%)**Step4**(%%)**: Searchthe LDDS75andadd DevEUI.**196 +== 1.6 Applications == 329 329 330 -[[image:1654851029373-510.png]] 198 +* Smart liquid control solution. 199 +* Smart liquefied gas solution. 331 331 201 +== 1.7 Precautions == 332 332 333 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 334 334 335 - [[image:image-20220610165129-11.png||height="595"width="1088"]]207 +== 1.8 Pin mapping and power on == 336 336 337 337 210 +[[image:1655257026882-201.png]] 338 338 339 -== 2.6 Frequency Plans == 340 340 341 -((( 342 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 343 -))) 344 344 214 += 2. Configure LDDS20 to connect to LoRaWAN network = 345 345 346 346 347 -== =2.6.1EU863-870(EU868)===217 +== 2.1 How it works == 348 348 349 349 ((( 350 - (%style="color:blue"%)**Uplink:**220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value. 351 351 ))) 352 352 353 353 ((( 354 - 868.1-SF7BW125to SF12BW125224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20. 355 355 ))) 356 356 357 -((( 358 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 359 -))) 360 360 361 -((( 362 -868.5 - SF7BW125 to SF12BW125 363 -))) 364 364 365 -((( 366 -867.1 - SF7BW125 to SF12BW125 367 -))) 229 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 368 368 369 369 ((( 370 - 867.3-SF7BW125toSF12BW125232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 371 371 ))) 372 372 373 373 ((( 374 - 867.5- SF7BW125to SF12BW125236 +[[image:1655257698953-697.png]] 375 375 ))) 376 376 377 377 ((( 378 -8 67.7-SF7BW125toSF12BW125240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 379 379 ))) 380 380 381 381 ((( 382 -867.9 - SF7BW125 to SF12BW125 383 -))) 244 + 384 384 385 -((( 386 -868.8 - FSK 246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20. 387 387 ))) 388 388 389 389 ((( 390 - 250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 391 391 ))) 392 392 393 -((( 394 -(% style="color:blue" %)**Downlink:** 395 -))) 253 +[[image:image-20220607170145-1.jpeg]] 396 396 255 + 397 397 ((( 398 - Uplinkchannels1-9(RX1)257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 399 399 ))) 400 400 401 401 ((( 402 - 869.525-SF9BW125(RX2downlinkonly)261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 403 403 ))) 404 404 405 - 406 - 407 -=== 2.6.2 US902-928(US915) === 408 - 409 409 ((( 410 - Usedin USA, Canada and South America. Default use CHE=2265 + 411 411 412 -(% style="color:blue" %)**Uplink:** 267 +**Add APP EUI in the application** 268 +))) 413 413 414 - 903.9-SF7BW125 to SF10BW125270 +[[image:image-20220610161353-4.png]] 415 415 416 - 904.1-SF7BW125 to SF10BW125272 +[[image:image-20220610161353-5.png]] 417 417 418 - 904.3-SF7BW125 to SF10BW125274 +[[image:image-20220610161353-6.png]] 419 419 420 -904.5 - SF7BW125 to SF10BW125 421 421 422 - 904.7-SF7BW125 to SF10BW125277 +[[image:image-20220610161353-7.png]] 423 423 424 -904.9 - SF7BW125 to SF10BW125 425 425 426 -905.1 - SF7BW125 to SF10BW125 427 427 428 - 905.3-SF7BW125toSF10BW125281 +You can also choose to create the device manually. 429 429 283 + [[image:image-20220610161538-8.png]] 430 430 431 -(% style="color:blue" %)**Downlink:** 432 432 433 -923.3 - SF7BW500 to SF12BW500 434 434 435 - 923.9-SF7BW500toSF12BW500287 +**Add APP KEY and DEV EUI** 436 436 437 - 924.5-SF7BW500to SF12BW500289 +[[image:image-20220610161538-9.png]] 438 438 439 -925.1 - SF7BW500 to SF12BW500 440 440 441 -925.7 - SF7BW500 to SF12BW500 442 442 443 - 926.3-SF7BW500to SF12BW500293 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS20 444 444 445 -926.9 - SF7BW500 to SF12BW500 446 446 447 - 927.5-SF7BW500toSF12BW500296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 448 448 449 - 923.3-SF12BW500(RX2downlink only)298 +[[image:image-20220615095102-14.png]] 450 450 451 451 452 - 453 -))) 454 454 455 -=== 2.6.3 CN470-510 (CN470) === 456 - 457 457 ((( 458 - UsedinChina,Default useCHE=1303 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 459 459 ))) 460 460 461 -((( 462 -(% style="color:blue" %)**Uplink:** 463 -))) 306 +[[image:1654849068701-275.png]] 464 464 465 -((( 466 -486.3 - SF7BW125 to SF12BW125 467 -))) 468 468 469 -((( 470 -486.5 - SF7BW125 to SF12BW125 471 -))) 472 472 473 -((( 474 -486.7 - SF7BW125 to SF12BW125 475 -))) 310 +== 2.3 Uplink Payload == 476 476 477 477 ((( 478 -486.9 - SF7BW125 to SF12BW125 479 -))) 480 - 481 481 ((( 482 -487.1 - SF7BW125 to SF12BW125 483 -))) 314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 484 484 485 - (((486 -4 87.3-SF7BW125toSF12BW125316 +Uplink payload includes in total 8 bytes. 317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload). 487 487 ))) 488 - 489 -((( 490 -487.5 - SF7BW125 to SF12BW125 491 491 ))) 492 492 493 493 ((( 494 -487.7 - SF7BW125 to SF12BW125 495 -))) 496 - 497 -((( 498 498 499 499 ))) 500 500 501 -((( 502 -(% style="color:blue" %)**Downlink:** 503 -))) 325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 326 +|=(% style="width: 62.5px;" %)((( 327 +**Size (bytes)** 328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 330 +[[Distance>>||anchor="H2.3.2A0Distance"]] 504 504 505 -((( 506 -506.7 - SF7BW125 to SF12BW125 507 -))) 332 +(unit: mm) 333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 508 508 509 -((( 510 -506.9 - SF7BW125 to SF12BW125 511 -))) 337 +[[image:1654850511545-399.png]] 512 512 513 -((( 514 -507.1 - SF7BW125 to SF12BW125 515 -))) 516 516 517 -((( 518 -507.3 - SF7BW125 to SF12BW125 519 -))) 520 520 521 -((( 522 -507.5 - SF7BW125 to SF12BW125 523 -))) 341 +=== 2.3.1 Battery Info === 524 524 525 -((( 526 -507.7 - SF7BW125 to SF12BW125 527 -))) 528 528 529 -((( 530 -507.9 - SF7BW125 to SF12BW125 531 -))) 344 +Check the battery voltage for LDDS20. 532 532 533 -((( 534 -508.1 - SF7BW125 to SF12BW125 535 -))) 346 +Ex1: 0x0B45 = 2885mV 536 536 537 -((( 538 -505.3 - SF12BW125 (RX2 downlink only) 539 -))) 348 +Ex2: 0x0B49 = 2889mV 540 540 541 541 542 542 543 -=== 2. 6.4AU915-928(AU915)===352 +=== 2.3.2 Distance === 544 544 545 545 ((( 546 -Default use CHE=2 355 +Get the distance. Flat object range 20mm - 2000mm. 356 +))) 547 547 548 -(% style="color:blue" %)**Uplink:** 358 +((( 359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.** 360 +))) 549 549 550 -916.8 - SF7BW125 to SF12BW125 362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 551 551 552 - 917.0- SF7BW125toSF12BW125365 +=== 2.3.3 Interrupt Pin === 553 553 554 - 917.2-SF7BW125toSF12BW125367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up. 555 555 556 - 917.4 - SF7BW125 to SF12BW125369 +**Example:** 557 557 558 - 917.6-SF7BW125to SF12BW125371 +0x00: Normal uplink packet. 559 559 560 - 917.8-SF7BW125to SF12BW125373 +0x01: Interrupt Uplink Packet. 561 561 562 -918.0 - SF7BW125 to SF12BW125 563 563 564 -918.2 - SF7BW125 to SF12BW125 565 565 377 +=== 2.3.4 DS18B20 Temperature sensor === 566 566 567 - (%style="color:blue"%)**Downlink:**379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 568 568 569 - 923.3 - SF7BW500 to SF12BW500381 +**Example**: 570 570 571 - 923.9-SF7BW500toSF12BW500383 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 572 572 573 - 924.5-SF7BW500 toSF12BW500385 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 574 574 575 - 925.1-SF7BW500toSF12BW500387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 576 576 577 -925.7 - SF7BW500 to SF12BW500 578 578 579 -926.3 - SF7BW500 to SF12BW500 580 580 581 - 926.9 - SF7BW500toSF12BW500391 +=== 2.3.5 Sensor Flag === 582 582 583 -927.5 - SF7BW500 to SF12BW500 584 - 585 -923.3 - SF12BW500(RX2 downlink only) 586 - 587 - 588 - 589 -))) 590 - 591 -=== 2.6.5 AS920-923 & AS923-925 (AS923) === 592 - 593 593 ((( 594 - (% style="color:blue"%)**Default Uplink channel:**394 +0x01: Detect Ultrasonic Sensor 595 595 ))) 596 596 597 597 ((( 598 - 923.2-SF7BW125to SF10BW125398 +0x00: No Ultrasonic Sensor 599 599 ))) 600 600 601 -((( 602 -923.4 - SF7BW125 to SF10BW125 603 -))) 604 604 605 -((( 606 - 607 -))) 608 608 609 -((( 610 -(% style="color:blue" %)**Additional Uplink Channel**: 611 -))) 403 +=== 2.3.6 Decode payload in The Things Network === 612 612 613 -((( 614 -(OTAA mode, channel added by JoinAccept message) 615 -))) 405 +While using TTN network, you can add the payload format to decode the payload. 616 616 617 -((( 618 - 619 -))) 620 620 621 -((( 622 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 623 -))) 408 +[[image:1654850829385-439.png]] 624 624 625 -((( 626 -922.2 - SF7BW125 to SF10BW125 627 -))) 410 +The payload decoder function for TTN V3 is here: 628 628 629 629 ((( 630 - 922.4-SF7BW125toF10BW125413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 631 631 ))) 632 632 633 -((( 634 -922.6 - SF7BW125 to SF10BW125 635 -))) 636 636 637 -((( 638 -922.8 - SF7BW125 to SF10BW125 639 -))) 640 640 641 -((( 642 -923.0 - SF7BW125 to SF10BW125 643 -))) 418 +== 2.4 Downlink Payload == 644 644 645 -((( 646 -922.0 - SF7BW125 to SF10BW125 647 -))) 420 +By default, LDDS20 prints the downlink payload to console port. 648 648 649 -((( 650 - 651 -))) 422 +[[image:image-20220615100930-15.png]] 652 652 653 -((( 654 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 655 -))) 656 656 657 -((( 658 -923.6 - SF7BW125 to SF10BW125 659 -))) 425 +**Examples:** 660 660 661 -((( 662 -923.8 - SF7BW125 to SF10BW125 663 -))) 664 664 665 -((( 666 -924.0 - SF7BW125 to SF10BW125 667 -))) 428 +* (% style="color:blue" %)**Set TDC** 668 668 669 -((( 670 -924.2 - SF7BW125 to SF10BW125 671 -))) 430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 672 672 673 -((( 674 -924.4 - SF7BW125 to SF10BW125 675 -))) 432 +Payload: 01 00 00 1E TDC=30S 676 676 677 -((( 678 -924.6 - SF7BW125 to SF10BW125 679 -))) 434 +Payload: 01 00 00 3C TDC=60S 680 680 681 -((( 682 - 683 -))) 684 684 685 -((( 686 -(% style="color:blue" %)**Downlink:** 687 -))) 437 +* (% style="color:blue" %)**Reset** 688 688 689 -((( 690 -Uplink channels 1-8 (RX1) 691 -))) 439 +If payload = 0x04FF, it will reset the LDDS20 692 692 693 -((( 694 -923.2 - SF10BW125 (RX2) 695 -))) 696 696 442 +* (% style="color:blue" %)**CFM** 697 697 444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 698 698 699 -=== 2.6.6 KR920-923 (KR920) === 700 700 701 -((( 702 -(% style="color:blue" %)**Default channel:** 703 -))) 704 704 705 -((( 706 -922.1 - SF7BW125 to SF12BW125 707 -))) 448 +== 2.5 Show Data in DataCake IoT Server == 708 708 709 709 ((( 710 - 922.3-SF7BW125toSF12BW125451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 711 711 ))) 712 712 713 713 ((( 714 -922.5 - SF7BW125 to SF12BW125 715 -))) 716 - 717 -((( 718 718 719 719 ))) 720 720 721 721 ((( 722 -(% style="color:blue" %)** Uplink:(OTAAmode,channeladdedbyJoinAcceptmessage)**459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 723 723 ))) 724 724 725 725 ((( 726 - 922.1-SF7BW125toSF12BW125463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 727 727 ))) 728 728 729 -((( 730 -922.3 - SF7BW125 to SF12BW125 731 -))) 732 732 733 -((( 734 -922.5 - SF7BW125 to SF12BW125 735 -))) 467 +[[image:1654592790040-760.png]] 736 736 737 -((( 738 -922.7 - SF7BW125 to SF12BW125 739 -))) 740 740 741 -((( 742 -922.9 - SF7BW125 to SF12BW125 743 -))) 470 +[[image:1654592800389-571.png]] 744 744 745 -((( 746 -923.1 - SF7BW125 to SF12BW125 747 -))) 748 748 749 -((( 750 -923.3 - SF7BW125 to SF12BW125 751 -))) 473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 752 752 753 -((( 754 - 755 -))) 475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)** 756 756 757 -((( 758 -(% style="color:blue" %)**Downlink:** 759 -))) 477 +[[image:1654851029373-510.png]] 760 760 761 -((( 762 -Uplink channels 1-7(RX1) 763 -))) 764 764 765 -((( 766 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 767 -))) 480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 768 768 482 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 769 769 770 770 771 -=== 2.6.7 IN865-867 (IN865) === 772 772 773 -((( 774 -(% style="color:blue" %)**Uplink:** 775 -))) 486 +== 2.6 LED Indicator == 776 776 777 -((( 778 -865.0625 - SF7BW125 to SF12BW125 779 -))) 488 +The LDDS20 has an internal LED which is to show the status of different state. 780 780 781 -((( 782 -865.4025 - SF7BW125 to SF12BW125 783 -))) 784 784 785 -((( 786 -865.9850 - SF7BW125 to SF12BW125 787 -))) 788 - 789 -((( 790 - 791 -))) 792 - 793 -((( 794 -(% style="color:blue" %)**Downlink:** 795 -))) 796 - 797 -((( 798 -Uplink channels 1-3 (RX1) 799 -))) 800 - 801 -((( 802 -866.550 - SF10BW125 (RX2) 803 -))) 804 - 805 - 806 - 807 -== 2.7 LED Indicator == 808 - 809 -The LDDS75 has an internal LED which is to show the status of different state. 810 - 811 - 812 812 * Blink once when device power on. 813 813 * The device detects the sensor and flashes 5 times. 814 814 * Solid ON for 5 seconds once device successful Join the network. 815 815 * Blink once when device transmit a packet. 816 816 496 + 497 + 817 817 == 2.8 Firmware Change Log == 818 818 819 819 501 +((( 820 820 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 503 +))) 821 821 505 +((( 506 + 507 +))) 822 822 509 +((( 823 823 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 511 +))) 824 824 825 825 826 826 ... ... @@ -829,9 +829,11 @@ 829 829 830 830 [[image:image-20220610172003-1.png]] 831 831 520 + 832 832 [[image:image-20220610172003-2.png]] 833 833 834 834 524 + 835 835 == 2.10 Battery Analysis == 836 836 837 837 === 2.10.1 Battery Type === ... ... @@ -842,7 +842,7 @@ 842 842 The battery related documents as below: 843 843 844 844 * ((( 845 -[[ 535 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 846 846 ))) 847 847 * ((( 848 848 [[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], ... ... @@ -858,7 +858,7 @@ 858 858 === 2.10.2 Replace the battery === 859 859 860 860 ((( 861 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won ’t be voltage drop between battery and main board.551 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 862 862 ))) 863 863 864 864 ((( ... ... @@ -866,12 +866,12 @@ 866 866 ))) 867 867 868 868 ((( 869 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can ’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)559 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 870 870 ))) 871 871 872 872 873 873 874 -= 3. Configure L LDS12via AT Command or LoRaWAN Downlink =564 += 3. Configure LDDS75 via AT Command or LoRaWAN Downlink = 875 875 876 876 ((( 877 877 ((( ... ... @@ -881,7 +881,7 @@ 881 881 882 882 * ((( 883 883 ((( 884 -AT Command Connection: See [[FAQ>>||anchor="H 7.A0FAQ"]].574 +AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]]. 885 885 ))) 886 886 ))) 887 887 * ((( ... ... @@ -962,7 +962,9 @@ 962 962 [[image:image-20220610172924-5.png]] 963 963 964 964 655 +((( 965 965 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 657 +))) 966 966 967 967 968 968 [[image:image-20220610172924-6.png||height="601" width="860"]] ... ... @@ -986,16 +986,19 @@ 986 986 ((( 987 987 Format: Command Code (0x01) followed by 3 bytes time value. 988 988 681 +((( 989 989 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 683 +))) 990 990 991 991 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 992 992 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 993 993 ))) 688 +))) 994 994 995 995 996 - 997 -))) 998 998 692 + 693 + 999 999 == 3.3 Set Interrupt Mode == 1000 1000 1001 1001 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -1009,7 +1009,9 @@ 1009 1009 1010 1010 Format: Command Code (0x06) followed by 3 bytes. 1011 1011 707 +((( 1012 1012 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 709 +))) 1013 1013 1014 1014 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1015 1015 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
- 1655254599445-662.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +117.0 KB - Content
- 1655255122126-327.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- 1655256160324-178.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +177.0 KB - Content
- 1655257026882-201.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1655257698953-697.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +101.7 KB - Content
- image-20220615090910-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.3 KB - Content
- image-20220615090910-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.7 KB - Content
- image-20220615091045-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.8 KB - Content
- image-20220615091045-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.9 KB - Content
- image-20220615091045-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.5 KB - Content
- image-20220615091045-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +196.0 KB - Content
- image-20220615091045-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +371.1 KB - Content
- image-20220615091045-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +206.3 KB - Content
- image-20220615091045-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +115.0 KB - Content
- image-20220615091929-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.7 KB - Content
- image-20220615092010-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.3 KB - Content
- image-20220615092044-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +63.5 KB - Content
- image-20220615092327-13.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.3 KB - Content
- image-20220615095102-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +179.0 KB - Content
- image-20220615100930-15.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.5 KB - Content