Last modified by Mengting Qiu on 2025/08/06 17:02

From version 150.11
edited by Xiaoling
on 2022/06/11 08:40
Change comment: There is no comment for this version
To version 173.6
edited by Xiaoling
on 2022/06/15 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:1655254599445-662.png]]
3 3  
4 -**Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
7 +**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,815 +12,504 @@
12 12  
13 13  
14 14  
14 +
15 +
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 +== 1.1 ​ What is LoRaWAN Ultrasonic liquid level Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
24 -
25 -
26 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
27 -
28 -
29 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 -
31 -
32 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
33 -
34 -
35 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 -
37 -
38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
24 +(((
25 +(((
26 +The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
39 39  )))
40 -)))
41 41  
42 -
43 -[[image:1654847051249-359.png]]
44 -
45 -
46 -
47 -== ​1.2  Features ==
48 -
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Distance Detection by Ultrasonic technology
52 -* Flat object range 280mm - 7500mm
53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
54 -* Cable Length : 25cm
55 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 -* AT Commands to change parameters
57 -* Uplink on periodically
58 -* Downlink to change configure
59 -* IP66 Waterproof Enclosure
60 -* 4000mAh or 8500mAh Battery for long term use
61 -
62 -
63 -
64 -== 1.3  Specification ==
65 -
66 -=== 1.3.1  Rated environmental conditions ===
67 -
68 -[[image:image-20220610154839-1.png]]
69 -
70 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
71 -
72 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
73 -
74 -
75 -
76 -=== 1.3.2  Effective measurement range Reference beam pattern ===
77 -
78 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
79 -
80 -
81 -
82 -[[image:1654852253176-749.png]]
83 -
84 -
85 -
86 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
87 -
88 -
89 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
90 -
91 -
92 -
93 -== 1.5 ​ Applications ==
94 -
95 -* Horizontal distance measurement
96 -* Liquid level measurement
97 -* Parking management system
98 -* Object proximity and presence detection
99 -* Intelligent trash can management system
100 -* Robot obstacle avoidance
101 -* Automatic control
102 -* Sewer
103 -* Bottom water level monitoring
104 -
105 -
106 -
107 -
108 -== 1.6  Pin mapping and power on ==
109 -
110 -
111 -[[image:1654847583902-256.png]]
112 -
113 -
114 -
115 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
116 -
117 -== 2.1  How it works ==
118 -
119 119  (((
120 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
30 +
121 121  )))
122 122  
123 123  (((
124 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
34 +The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
125 125  )))
126 126  
127 -
128 -
129 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
130 -
131 131  (((
132 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
38 +
133 133  )))
134 134  
135 135  (((
136 -[[image:1654848616367-242.png]]
42 +LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
137 137  )))
138 138  
139 139  (((
140 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
46 +
141 141  )))
142 142  
143 143  (((
144 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
50 +The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
145 145  )))
146 146  
147 147  (((
148 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
54 +
149 149  )))
150 150  
151 -[[image:image-20220607170145-1.jpeg]]
152 -
153 -
154 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
155 -
156 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
157 -
158 -**Add APP EUI in the application**
159 -
160 -[[image:image-20220610161353-4.png]]
161 -
162 -[[image:image-20220610161353-5.png]]
163 -
164 -[[image:image-20220610161353-6.png]]
165 -
166 -
167 -[[image:image-20220610161353-7.png]]
168 -
169 -
170 -You can also choose to create the device manually.
171 -
172 - [[image:image-20220610161538-8.png]]
173 -
174 -
175 -
176 -**Add APP KEY and DEV EUI**
177 -
178 -[[image:image-20220610161538-9.png]]
179 -
180 -
181 -
182 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
183 -
184 -
185 -Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
186 -
187 -[[image:image-20220610161724-10.png]]
188 -
189 -
190 190  (((
191 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
58 +LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
192 192  )))
193 193  
194 -[[image:1654849068701-275.png]]
195 -
196 -
197 -
198 -== 2.3  ​Uplink Payload ==
199 -
200 200  (((
201 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
62 +
63 +)))
202 202  
203 -Uplink payload includes in total 4 bytes.
204 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
65 +(((
66 +Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
205 205  )))
206 206  
207 207  (((
208 208  
209 209  )))
72 +)))
210 210  
211 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
212 -|=(% style="width: 62.5px;" %)(((
213 -**Size (bytes)**
214 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
215 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
216 -[[Distance>>||anchor="H2.3.3A0Distance"]]
74 +(((
75 +(((
76 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 +)))
78 +)))
79 +)))
80 +)))
217 217  
218 -(unit: mm)
219 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
220 -[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
221 -)))|[[Sensor Flag>>path:#Sensor_Flag]]
222 222  
223 -[[image:1654850511545-399.png]]
83 +[[image:1655255122126-327.png]]
224 224  
225 225  
226 226  
227 -=== 2.3.Battery Info ===
87 +== 1.2  Features ==
228 228  
89 +* LoRaWAN 1.0.3 Class A
90 +* Ultra low power consumption
91 +* Liquid Level Measurement by Ultrasonic technology
92 +* Measure through container, No need to contact Liquid.
93 +* Valid level range 20mm - 2000mm
94 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
95 +* Cable Length : 25cm
96 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 +* AT Commands to change parameters
98 +* Uplink on periodically
99 +* Downlink to change configure
100 +* IP66 Waterproof Enclosure
101 +* 8500mAh Battery for long term use
229 229  
230 -Check the battery voltage for LDDS75.
103 +== 1.3  Suitable Container & Liquid ==
231 231  
232 -Ex1: 0x0B45 = 2885mV
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
233 233  
234 -Ex2: 0x0B49 = 2889mV
112 +== 1.4  Mechanical ==
235 235  
114 +[[image:image-20220615090910-1.png]]
236 236  
237 237  
238 -=== 2.3.2  Distance ===
117 +[[image:image-20220615090910-2.png]]
239 239  
240 -Get the distance. Flat object range 280mm - 7500mm.
241 241  
242 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
243 243  
121 +== 1.5  Install LDDS20 ==
244 244  
245 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
246 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
247 247  
248 -=== 2.3.3  Interrupt Pin ===
124 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
249 249  
250 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
126 +LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
251 251  
252 -**Example:**
128 +[[image:image-20220615091045-3.png]]
253 253  
254 -0x00: Normal uplink packet.
255 255  
256 -0x01: Interrupt Uplink Packet.
257 257  
132 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
258 258  
134 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
259 259  
260 -=== 2.3.4  DS18B20 Temperature sensor ===
136 +[[image:image-20220615092010-11.png]]
261 261  
262 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
263 263  
264 -**Example**:
139 +No polish needed if the container is shine metal surface without paint or non-metal container.
265 265  
266 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
141 +[[image:image-20220615092044-12.png]]
267 267  
268 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
269 269  
270 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
271 271  
145 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
272 272  
147 +Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
273 273  
274 -=== 2.3.5  Sensor Flag ===
275 275  
276 -0x01: Detect Ultrasonic Sensor
150 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
277 277  
278 -0x00: No Ultrasonic Sensor
152 +[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
279 279  
280 280  
155 +After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
281 281  
282 -=== 2.3.6  Decode payload in The Things Network ===
283 283  
284 -While using TTN network, you can add the payload format to decode the payload.
158 +(% style="color:red" %)**LED Status:**
285 285  
160 +* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
286 286  
287 -[[image:1654850829385-439.png]]
162 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 +* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
288 288  
289 -The payload decoder function for TTN V3 is here:
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
290 290  
291 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
292 292  
168 +(% style="color:red" %)**Note 2:**
293 293  
170 +(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
294 294  
295 -== 2.4  Uplink Interval ==
296 296  
297 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
298 298  
174 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
299 299  
176 +Prepare Eproxy AB glue.
300 300  
301 -== 2.5  ​Show Data in DataCake IoT Server ==
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
302 302  
303 -(((
304 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
305 -)))
180 +Reset LDDS20 and see if the BLUE LED is slowly blinking.
306 306  
307 -(((
308 -
309 -)))
182 +[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
310 310  
311 -(((
312 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
313 -)))
314 314  
315 -(((
316 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
317 -)))
185 +(% style="color:red" %)**Note 1:**
318 318  
187 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
319 319  
320 -[[image:1654592790040-760.png]]
321 321  
190 +(% style="color:red" %)**Note 2:**
322 322  
323 -[[image:1654592800389-571.png]]
192 +(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
324 324  
325 325  
326 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
327 327  
328 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
196 +== 1.6 Applications ==
329 329  
330 -[[image:1654851029373-510.png]]
198 +* Smart liquid control solution.
199 +* Smart liquefied gas solution.
331 331  
201 +== 1.7  Precautions ==
332 332  
333 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
203 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
334 334  
335 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
207 +== 1.8  Pin mapping and power on ==
336 336  
337 337  
210 +[[image:1655257026882-201.png]]
338 338  
339 -== 2.6  Frequency Plans ==
340 340  
341 -(((
342 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
343 -)))
344 344  
214 += 2.  Configure LDDS20 to connect to LoRaWAN network =
345 345  
346 346  
347 -=== 2.6.EU863-870 (EU868) ===
217 +== 2.1  How it works ==
348 348  
349 349  (((
350 -(% style="color:blue" %)**Uplink:**
220 +The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
351 351  )))
352 352  
353 353  (((
354 -868.1 - SF7BW125 to SF12BW125
224 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
355 355  )))
356 356  
357 -(((
358 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
359 -)))
360 360  
361 -(((
362 -868.5 - SF7BW125 to SF12BW125
363 -)))
364 364  
365 -(((
366 -867.1 - SF7BW125 to SF12BW125
367 -)))
229 +== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
368 368  
369 369  (((
370 -867.3 - SF7BW125 to SF12BW125
232 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
371 371  )))
372 372  
373 373  (((
374 -867.5 - SF7BW125 to SF12BW125
236 +[[image:1655257698953-697.png]]
375 375  )))
376 376  
377 377  (((
378 -867.7 - SF7BW125 to SF12BW125
240 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
379 379  )))
380 380  
381 381  (((
382 -867.9 - SF7BW125 to SF12BW125
383 -)))
244 +
384 384  
385 -(((
386 -868.8 - FSK
246 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
387 387  )))
388 388  
389 389  (((
390 -
250 +Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
391 391  )))
392 392  
393 -(((
394 -(% style="color:blue" %)**Downlink:**
395 -)))
253 +[[image:image-20220607170145-1.jpeg]]
396 396  
255 +
397 397  (((
398 -Uplink channels 1-9 (RX1)
257 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
399 399  )))
400 400  
401 401  (((
402 -869.525 - SF9BW125 (RX2 downlink only)
261 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
403 403  )))
404 404  
405 -
406 -
407 -=== 2.6.2  US902-928(US915) ===
408 -
409 409  (((
410 -Used in USA, Canada and South America. Default use CHE=2
265 +
411 411  
412 -(% style="color:blue" %)**Uplink:**
267 +**Add APP EUI in the application**
268 +)))
413 413  
414 -903.9 - SF7BW125 to SF10BW125
270 +[[image:image-20220610161353-4.png]]
415 415  
416 -904.1 - SF7BW125 to SF10BW125
272 +[[image:image-20220610161353-5.png]]
417 417  
418 -904.3 - SF7BW125 to SF10BW125
274 +[[image:image-20220610161353-6.png]]
419 419  
420 -904.5 - SF7BW125 to SF10BW125
421 421  
422 -904.7 - SF7BW125 to SF10BW125
277 +[[image:image-20220610161353-7.png]]
423 423  
424 -904.9 - SF7BW125 to SF10BW125
425 425  
426 -905.1 - SF7BW125 to SF10BW125
427 427  
428 -905.3 - SF7BW125 to SF10BW125
281 +You can also choose to create the device manually.
429 429  
283 + [[image:image-20220610161538-8.png]]
430 430  
431 -(% style="color:blue" %)**Downlink:**
432 432  
433 -923.3 - SF7BW500 to SF12BW500
434 434  
435 -923.9 - SF7BW500 to SF12BW500
287 +**Add APP KEY and DEV EUI**
436 436  
437 -924.5 - SF7BW500 to SF12BW500
289 +[[image:image-20220610161538-9.png]]
438 438  
439 -925.1 - SF7BW500 to SF12BW500
440 440  
441 -925.7 - SF7BW500 to SF12BW500
442 442  
443 -926.3 - SF7BW500 to SF12BW500
293 +(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
444 444  
445 -926.9 - SF7BW500 to SF12BW500
446 446  
447 -927.5 - SF7BW500 to SF12BW500
296 +Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
448 448  
449 -923.3 - SF12BW500(RX2 downlink only)
298 +[[image:image-20220615095102-14.png]]
450 450  
451 451  
452 -
453 -)))
454 454  
455 -=== 2.6.3  CN470-510 (CN470) ===
456 -
457 457  (((
458 -Used in China, Default use CHE=1
303 +(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
459 459  )))
460 460  
461 -(((
462 -(% style="color:blue" %)**Uplink:**
463 -)))
306 +[[image:1654849068701-275.png]]
464 464  
465 -(((
466 -486.3 - SF7BW125 to SF12BW125
467 -)))
468 468  
469 -(((
470 -486.5 - SF7BW125 to SF12BW125
471 -)))
472 472  
473 -(((
474 -486.7 - SF7BW125 to SF12BW125
475 -)))
310 +== 2.3  ​Uplink Payload ==
476 476  
477 477  (((
478 -486.9 - SF7BW125 to SF12BW125
479 -)))
480 -
481 481  (((
482 -487.1 - SF7BW125 to SF12BW125
483 -)))
314 +LDDS20 will uplink payload via LoRaWAN with below payload format: 
484 484  
485 -(((
486 -487.3 - SF7BW125 to SF12BW125
316 +Uplink payload includes in total 8 bytes.
317 +Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
487 487  )))
488 -
489 -(((
490 -487.5 - SF7BW125 to SF12BW125
491 491  )))
492 492  
493 493  (((
494 -487.7 - SF7BW125 to SF12BW125
495 -)))
496 -
497 -(((
498 498  
499 499  )))
500 500  
501 -(((
502 -(% style="color:blue" %)**Downlink:**
503 -)))
325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
326 +|=(% style="width: 62.5px;" %)(((
327 +**Size (bytes)**
328 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
329 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
330 +[[Distance>>||anchor="H2.3.2A0Distance"]]
504 504  
505 -(((
506 -506.7 - SF7BW125 to SF12BW125
507 -)))
332 +(unit: mm)
333 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
334 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
335 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
508 508  
509 -(((
510 -506.9 - SF7BW125 to SF12BW125
511 -)))
337 +[[image:1654850511545-399.png]]
512 512  
513 -(((
514 -507.1 - SF7BW125 to SF12BW125
515 -)))
516 516  
517 -(((
518 -507.3 - SF7BW125 to SF12BW125
519 -)))
520 520  
521 -(((
522 -507.5 - SF7BW125 to SF12BW125
523 -)))
341 +=== 2.3.1  Battery Info ===
524 524  
525 -(((
526 -507.7 - SF7BW125 to SF12BW125
527 -)))
528 528  
529 -(((
530 -507.9 - SF7BW125 to SF12BW125
531 -)))
344 +Check the battery voltage for LDDS20.
532 532  
533 -(((
534 -508.1 - SF7BW125 to SF12BW125
535 -)))
346 +Ex1: 0x0B45 = 2885mV
536 536  
537 -(((
538 -505.3 - SF12BW125 (RX2 downlink only)
539 -)))
348 +Ex2: 0x0B49 = 2889mV
540 540  
541 541  
542 542  
543 -=== 2.6.4  AU915-928(AU915) ===
352 +=== 2.3.2  Distance ===
544 544  
545 545  (((
546 -Default use CHE=2
355 +Get the distance. Flat object range 20mm - 2000mm.
356 +)))
547 547  
548 -(% style="color:blue" %)**Uplink:**
358 +(((
359 +For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 +)))
549 549  
550 -916.8 - SF7BW125 to SF12BW125
362 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
551 551  
552 -917.0 - SF7BW125 to SF12BW125
365 +=== 2.3.3  Interrupt Pin ===
553 553  
554 -917.2 - SF7BW125 to SF12BW125
367 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
555 555  
556 -917.4 - SF7BW125 to SF12BW125
369 +**Example:**
557 557  
558 -917.6 - SF7BW125 to SF12BW125
371 +0x00: Normal uplink packet.
559 559  
560 -917.8 - SF7BW125 to SF12BW125
373 +0x01: Interrupt Uplink Packet.
561 561  
562 -918.0 - SF7BW125 to SF12BW125
563 563  
564 -918.2 - SF7BW125 to SF12BW125
565 565  
377 +=== 2.3.4  DS18B20 Temperature sensor ===
566 566  
567 -(% style="color:blue" %)**Downlink:**
379 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
568 568  
569 -923.3 - SF7BW500 to SF12BW500
381 +**Example**:
570 570  
571 -923.9 - SF7BW500 to SF12BW500
383 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
572 572  
573 -924.5 - SF7BW500 to SF12BW500
385 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
574 574  
575 -925.1 - SF7BW500 to SF12BW500
387 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
576 576  
577 -925.7 - SF7BW500 to SF12BW500
578 578  
579 -926.3 - SF7BW500 to SF12BW500
580 580  
581 -926.9 - SF7BW500 to SF12BW500
391 +=== 2.3.5  Sensor Flag ===
582 582  
583 -927.5 - SF7BW500 to SF12BW500
584 -
585 -923.3 - SF12BW500(RX2 downlink only)
586 -
587 -
588 -
589 -)))
590 -
591 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
592 -
593 593  (((
594 -(% style="color:blue" %)**Default Uplink channel:**
394 +0x01: Detect Ultrasonic Sensor
595 595  )))
596 596  
597 597  (((
598 -923.2 - SF7BW125 to SF10BW125
398 +0x00: No Ultrasonic Sensor
599 599  )))
600 600  
601 -(((
602 -923.4 - SF7BW125 to SF10BW125
603 -)))
604 604  
605 -(((
606 -
607 -)))
608 608  
609 -(((
610 -(% style="color:blue" %)**Additional Uplink Channel**:
611 -)))
403 +=== 2.3.6  Decode payload in The Things Network ===
612 612  
613 -(((
614 -(OTAA mode, channel added by JoinAccept message)
615 -)))
405 +While using TTN network, you can add the payload format to decode the payload.
616 616  
617 -(((
618 -
619 -)))
620 620  
621 -(((
622 -(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
623 -)))
408 +[[image:1654850829385-439.png]]
624 624  
625 -(((
626 -922.2 - SF7BW125 to SF10BW125
627 -)))
410 +The payload decoder function for TTN V3 is here:
628 628  
629 629  (((
630 -922.4 - SF7BW125 to SF10BW125
413 +LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
631 631  )))
632 632  
633 -(((
634 -922.6 - SF7BW125 to SF10BW125
635 -)))
636 636  
637 -(((
638 -922.8 - SF7BW125 to SF10BW125
639 -)))
640 640  
641 -(((
642 -923.0 - SF7BW125 to SF10BW125
643 -)))
418 +== 2.4  Downlink Payload ==
644 644  
645 -(((
646 -922.0 - SF7BW125 to SF10BW125
647 -)))
420 +By default, LDDS20 prints the downlink payload to console port.
648 648  
649 -(((
650 -
651 -)))
422 +[[image:image-20220615100930-15.png]]
652 652  
653 -(((
654 -(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
655 -)))
656 656  
657 -(((
658 -923.6 - SF7BW125 to SF10BW125
659 -)))
425 +**Examples:**
660 660  
661 -(((
662 -923.8 - SF7BW125 to SF10BW125
663 -)))
664 664  
665 -(((
666 -924.0 - SF7BW125 to SF10BW125
667 -)))
428 +* (% style="color:blue" %)**Set TDC**
668 668  
669 -(((
670 -924.2 - SF7BW125 to SF10BW125
671 -)))
430 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
672 672  
673 -(((
674 -924.4 - SF7BW125 to SF10BW125
675 -)))
432 +Payload:    01 00 00 1E    TDC=30S
676 676  
677 -(((
678 -924.6 - SF7BW125 to SF10BW125
679 -)))
434 +Payload:    01 00 00 3C    TDC=60S
680 680  
681 -(((
682 -
683 -)))
684 684  
685 -(((
686 -(% style="color:blue" %)**Downlink:**
687 -)))
437 +* (% style="color:blue" %)**Reset**
688 688  
689 -(((
690 -Uplink channels 1-8 (RX1)
691 -)))
439 +If payload = 0x04FF, it will reset the LDDS20
692 692  
693 -(((
694 -923.2 - SF10BW125 (RX2)
695 -)))
696 696  
442 +* (% style="color:blue" %)**CFM**
697 697  
444 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
698 698  
699 -=== 2.6.6  KR920-923 (KR920) ===
700 700  
701 -(((
702 -(% style="color:blue" %)**Default channel:**
703 -)))
704 704  
705 -(((
706 -922.1 - SF7BW125 to SF12BW125
707 -)))
448 +== 2.5  ​Show Data in DataCake IoT Server ==
708 708  
709 709  (((
710 -922.3 - SF7BW125 to SF12BW125
451 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
711 711  )))
712 712  
713 713  (((
714 -922.5 - SF7BW125 to SF12BW125
715 -)))
716 -
717 -(((
718 718  
719 719  )))
720 720  
721 721  (((
722 -(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
459 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
723 723  )))
724 724  
725 725  (((
726 -922.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
727 727  )))
728 728  
729 -(((
730 -922.3 - SF7BW125 to SF12BW125
731 -)))
732 732  
733 -(((
734 -922.5 - SF7BW125 to SF12BW125
735 -)))
467 +[[image:1654592790040-760.png]]
736 736  
737 -(((
738 -922.7 - SF7BW125 to SF12BW125
739 -)))
740 740  
741 -(((
742 -922.9 - SF7BW125 to SF12BW125
743 -)))
470 +[[image:1654592800389-571.png]]
744 744  
745 -(((
746 -923.1 - SF7BW125 to SF12BW125
747 -)))
748 748  
749 -(((
750 -923.3 - SF7BW125 to SF12BW125
751 -)))
473 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
752 752  
753 -(((
754 -
755 -)))
475 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
756 756  
757 -(((
758 -(% style="color:blue" %)**Downlink:**
759 -)))
477 +[[image:1654851029373-510.png]]
760 760  
761 -(((
762 -Uplink channels 1-7(RX1)
763 -)))
764 764  
765 -(((
766 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
767 -)))
480 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
768 768  
482 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
769 769  
770 770  
771 -=== 2.6.7  IN865-867 (IN865) ===
772 772  
773 -(((
774 -(% style="color:blue" %)**Uplink:**
775 -)))
486 +== 2.6  LED Indicator ==
776 776  
777 -(((
778 -865.0625 - SF7BW125 to SF12BW125
779 -)))
488 +The LDDS20 has an internal LED which is to show the status of different state.
780 780  
781 -(((
782 -865.4025 - SF7BW125 to SF12BW125
783 -)))
784 784  
785 -(((
786 -865.9850 - SF7BW125 to SF12BW125
787 -)))
788 -
789 -(((
790 -
791 -)))
792 -
793 -(((
794 -(% style="color:blue" %)**Downlink:**
795 -)))
796 -
797 -(((
798 -Uplink channels 1-3 (RX1)
799 -)))
800 -
801 -(((
802 -866.550 - SF10BW125 (RX2)
803 -)))
804 -
805 -
806 -
807 -== 2.7  LED Indicator ==
808 -
809 -The LDDS75 has an internal LED which is to show the status of different state.
810 -
811 -
812 812  * Blink once when device power on.
813 813  * The device detects the sensor and flashes 5 times.
814 814  * Solid ON for 5 seconds once device successful Join the network.
815 815  * Blink once when device transmit a packet.
816 816  
496 +
497 +
817 817  == 2.8  ​Firmware Change Log ==
818 818  
819 819  
501 +(((
820 820  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
503 +)))
821 821  
505 +(((
506 +
507 +)))
822 822  
509 +(((
823 823  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
511 +)))
824 824  
825 825  
826 826  
... ... @@ -829,9 +829,11 @@
829 829  
830 830  [[image:image-20220610172003-1.png]]
831 831  
520 +
832 832  [[image:image-20220610172003-2.png]]
833 833  
834 834  
524 +
835 835  == 2.10  Battery Analysis ==
836 836  
837 837  === 2.10.1  Battery Type ===
... ... @@ -842,7 +842,7 @@
842 842  The battery related documents as below:
843 843  
844 844  * (((
845 -[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
535 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
846 846  )))
847 847  * (((
848 848  [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
... ... @@ -858,7 +858,7 @@
858 858  === 2.10.2  Replace the battery ===
859 859  
860 860  (((
861 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there wont be voltage drop between battery and main board.
551 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
862 862  )))
863 863  
864 864  (((
... ... @@ -866,12 +866,12 @@
866 866  )))
867 867  
868 868  (((
869 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
559 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
870 870  )))
871 871  
872 872  
873 873  
874 -= 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
564 += 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
875 875  
876 876  (((
877 877  (((
... ... @@ -881,7 +881,7 @@
881 881  
882 882  * (((
883 883  (((
884 -AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
574 +AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
885 885  )))
886 886  )))
887 887  * (((
... ... @@ -962,7 +962,9 @@
962 962  [[image:image-20220610172924-5.png]]
963 963  
964 964  
655 +(((
965 965  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
657 +)))
966 966  
967 967  
968 968   [[image:image-20220610172924-6.png||height="601" width="860"]]
... ... @@ -986,16 +986,19 @@
986 986  (((
987 987  Format: Command Code (0x01) followed by 3 bytes time value.
988 988  
681 +(((
989 989  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
683 +)))
990 990  
991 991  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
992 992  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
993 993  )))
688 +)))
994 994  
995 995  
996 -
997 -)))
998 998  
692 +
693 +
999 999  == 3.3  Set Interrupt Mode ==
1000 1000  
1001 1001  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1009,7 +1009,9 @@
1009 1009  
1010 1010  Format: Command Code (0x06) followed by 3 bytes.
1011 1011  
707 +(((
1012 1012  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
709 +)))
1013 1013  
1014 1014  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1015 1015  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1655254599445-662.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +10.5 KB
Content