<
From version < 150.11 >
edited by Xiaoling
on 2022/06/11 08:40
To version < 120.1 >
edited by Xiaoling
on 2022/06/10 15:44
>
Change comment: Uploaded new attachment "1654847051249-359.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -3,7 +3,6 @@
3 3  
4 4  **Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -11,7 +11,6 @@
11 11  
12 12  
13 13  
14 -
15 15  = 1.  Introduction =
16 16  
17 17  == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
... ... @@ -35,12 +35,12 @@
35 35  Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
36 36  
37 37  
38 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
36 +(% style="color:#4472c4" %) ***** (%%)Actually lifetime depends on network coverage and uplink interval and other factors
39 39  )))
40 40  )))
41 41  
42 42  
43 -[[image:1654847051249-359.png]]
41 +[[image:1654826306458-414.png]]
44 44  
45 45  
46 46  
... ... @@ -47,53 +47,41 @@
47 47  == ​1.2  Features ==
48 48  
49 49  * LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Distance Detection by Ultrasonic technology
52 -* Flat object range 280mm - 7500mm
53 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
54 -* Cable Length : 25cm
48 +* Ultra-low power consumption
49 +* Laser technology for distance detection
50 +* Operating Range - 0.1m~~12m
51 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
52 +* Monitor Battery Level
55 55  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 56  * AT Commands to change parameters
57 57  * Uplink on periodically
58 58  * Downlink to change configure
59 -* IP66 Waterproof Enclosure
60 -* 4000mAh or 8500mAh Battery for long term use
57 +* 8500mAh Battery for long term use
61 61  
59 +== 1.3  Probe Specification ==
62 62  
61 +* Storage temperature :-20℃~~75℃
62 +* Operating temperature - -20℃~~60℃
63 +* Operating Range - 0.1m~~12m①
64 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
65 +* Distance resolution - 5mm
66 +* Ambient light immunity - 70klux
67 +* Enclosure rating - IP65
68 +* Light source - LED
69 +* Central wavelength - 850nm
70 +* FOV - 3.6°
71 +* Material of enclosure - ABS+PC
72 +* Wire length - 25cm
63 63  
64 -== 1.3  Specification ==
74 +== 1.4  Probe Dimension ==
65 65  
66 -=== 1.3.1  Rated environmental conditions ===
67 67  
68 -[[image:image-20220610154839-1.png]]
77 +[[image:1654827224480-952.png]]
69 69  
70 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
71 71  
72 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
73 -
74 -
75 -
76 -=== 1.3.2  Effective measurement range Reference beam pattern ===
77 -
78 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
79 -
80 -
81 -
82 -[[image:1654852253176-749.png]]
83 -
84 -
85 -
86 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
87 -
88 -
89 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
90 -
91 -
92 -
93 93  == 1.5 ​ Applications ==
94 94  
95 95  * Horizontal distance measurement
96 -* Liquid level measurement
97 97  * Parking management system
98 98  * Object proximity and presence detection
99 99  * Intelligent trash can management system
... ... @@ -100,32 +100,26 @@
100 100  * Robot obstacle avoidance
101 101  * Automatic control
102 102  * Sewer
103 -* Bottom water level monitoring
104 104  
105 -
106 -
107 -
108 108  == 1.6  Pin mapping and power on ==
109 109  
110 110  
111 -[[image:1654847583902-256.png]]
93 +[[image:1654827332142-133.png]]
112 112  
113 113  
96 += 2.  Configure LLDS12 to connect to LoRaWAN network =
114 114  
115 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
116 -
117 117  == 2.1  How it works ==
118 118  
119 119  (((
120 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
101 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
121 121  )))
122 122  
123 123  (((
124 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
105 +In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
125 125  )))
126 126  
127 127  
128 -
129 129  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
130 130  
131 131  (((
... ... @@ -133,7 +133,7 @@
133 133  )))
134 134  
135 135  (((
136 -[[image:1654848616367-242.png]]
116 +[[image:1654827857527-556.png]]
137 137  )))
138 138  
139 139  (((
... ... @@ -141,57 +141,57 @@
141 141  )))
142 142  
143 143  (((
144 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
124 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
145 145  )))
146 146  
147 147  (((
148 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
128 +Each LSPH01 is shipped with a sticker with the default device EUI as below:
149 149  )))
150 150  
151 151  [[image:image-20220607170145-1.jpeg]]
152 152  
153 153  
154 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
155 155  
156 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
135 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
157 157  
158 -**Add APP EUI in the application**
159 159  
160 -[[image:image-20220610161353-4.png]]
138 +**Register the device**
161 161  
162 -[[image:image-20220610161353-5.png]]
163 163  
164 -[[image:image-20220610161353-6.png]]
141 +[[image:1654592600093-601.png]]
165 165  
166 166  
167 -[[image:image-20220610161353-7.png]]
168 168  
145 +**Add APP EUI and DEV EUI**
169 169  
170 -You can also choose to create the device manually.
147 +[[image:1654592619856-881.png]]
171 171  
172 - [[image:image-20220610161538-8.png]]
173 173  
174 174  
151 +**Add APP EUI in the application**
175 175  
176 -**Add APP KEY and DEV EUI**
153 +[[image:1654592632656-512.png]]
177 177  
178 -[[image:image-20220610161538-9.png]]
179 179  
180 180  
157 +**Add APP KEY**
181 181  
182 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
159 +[[image:1654592653453-934.png]]
183 183  
184 184  
162 +(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
163 +
164 +
185 185  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
186 186  
187 -[[image:image-20220610161724-10.png]]
167 +[[image:image-20220607170442-2.png]]
188 188  
189 189  
190 190  (((
191 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
171 +(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
192 192  )))
193 193  
194 -[[image:1654849068701-275.png]]
174 +[[image:1654833501679-968.png]]
195 195  
196 196  
197 197  
... ... @@ -198,10 +198,11 @@
198 198  == 2.3  ​Uplink Payload ==
199 199  
200 200  (((
201 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
181 +LLDS12 will uplink payload via LoRaWAN with below payload format: 
182 +)))
202 202  
203 -Uplink payload includes in total 4 bytes.
204 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
184 +(((
185 +Uplink payload includes in total 11 bytes.
205 205  )))
206 206  
207 207  (((
... ... @@ -211,23 +211,23 @@
211 211  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
212 212  |=(% style="width: 62.5px;" %)(((
213 213  **Size (bytes)**
214 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
215 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
216 -[[Distance>>||anchor="H2.3.3A0Distance"]]
195 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
196 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
197 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
198 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
199 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
200 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
201 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
202 +)))
217 217  
218 -(unit: mm)
219 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
220 -[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
221 -)))|[[Sensor Flag>>path:#Sensor_Flag]]
204 +[[image:1654833689380-972.png]]
222 222  
223 -[[image:1654850511545-399.png]]
224 224  
225 225  
226 -
227 227  === 2.3.1  Battery Info ===
228 228  
229 229  
230 -Check the battery voltage for LDDS75.
211 +Check the battery voltage for LLDS12.
231 231  
232 232  Ex1: 0x0B45 = 2885mV
233 233  
... ... @@ -235,66 +235,103 @@
235 235  
236 236  
237 237  
238 -=== 2.3.2  Distance ===
219 +=== 2.3.2  DS18B20 Temperature sensor ===
239 239  
240 -Get the distance. Flat object range 280mm - 7500mm.
221 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
241 241  
242 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
243 243  
224 +**Example**:
244 244  
245 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
246 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
226 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
247 247  
248 -=== 2.3.3  Interrupt Pin ===
228 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
249 249  
250 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
251 251  
252 -**Example:**
253 253  
254 -0x00: Normal uplink packet.
232 +=== 2.3.3  Distance ===
255 255  
256 -0x01: Interrupt Uplink Packet.
234 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
257 257  
258 258  
237 +**Example**:
259 259  
260 -=== 2.3.4  DS18B20 Temperature sensor ===
239 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
261 261  
262 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
263 263  
242 +
243 +=== 2.3.4  Distance signal strength ===
244 +
245 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
246 +
247 +
264 264  **Example**:
265 265  
266 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
250 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
267 267  
268 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
252 +Customers can judge whether they need to adjust the environment based on the signal strength.
269 269  
270 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
271 271  
272 272  
256 +=== 2.3.5  Interrupt Pin ===
273 273  
274 -=== 2.3.5  Sensor Flag ===
258 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
275 275  
276 -0x01: Detect Ultrasonic Sensor
260 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
277 277  
278 -0x00: No Ultrasonic Sensor
262 +**Example:**
279 279  
264 +0x00: Normal uplink packet.
280 280  
266 +0x01: Interrupt Uplink Packet.
281 281  
282 -=== 2.3.6  Decode payload in The Things Network ===
283 283  
269 +
270 +=== 2.3.6  LiDAR temp ===
271 +
272 +Characterize the internal temperature value of the sensor.
273 +
274 +**Example: **
275 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
276 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
277 +
278 +
279 +
280 +=== 2.3.7  Message Type ===
281 +
282 +(((
283 +For a normal uplink payload, the message type is always 0x01.
284 +)))
285 +
286 +(((
287 +Valid Message Type:
288 +)))
289 +
290 +
291 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
292 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
293 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
294 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
295 +
296 +=== 2.3.8  Decode payload in The Things Network ===
297 +
284 284  While using TTN network, you can add the payload format to decode the payload.
285 285  
286 286  
287 -[[image:1654850829385-439.png]]
301 +[[image:1654592762713-715.png]]
288 288  
289 -The payload decoder function for TTN V3 is here:
303 +(((
304 +The payload decoder function for TTN is here:
305 +)))
290 290  
291 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
307 +(((
308 +LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
309 +)))
292 292  
293 293  
294 294  
295 295  == 2.4  Uplink Interval ==
296 296  
297 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
315 +The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
298 298  
299 299  
300 300  
... ... @@ -325,25 +325,47 @@
325 325  
326 326  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
327 327  
328 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
346 +(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
329 329  
330 -[[image:1654851029373-510.png]]
348 +[[image:1654832691989-514.png]]
331 331  
332 332  
333 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
351 +[[image:1654592833877-762.png]]
334 334  
335 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
336 336  
354 +[[image:1654832740634-933.png]]
337 337  
338 338  
339 -== 2.6  Frequency Plans ==
340 340  
341 341  (((
342 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
359 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
343 343  )))
344 344  
362 +(((
363 +
364 +)))
345 345  
366 +[[image:1654833065139-942.png]]
346 346  
368 +
369 +
370 +[[image:1654833092678-390.png]]
371 +
372 +
373 +
374 +After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
375 +
376 +[[image:1654833163048-332.png]]
377 +
378 +
379 +
380 +== 2.6  Frequency Plans ==
381 +
382 +(((
383 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
384 +)))
385 +
386 +
347 347  === 2.6.1  EU863-870 (EU868) ===
348 348  
349 349  (((
... ... @@ -407,51 +407,20 @@
407 407  === 2.6.2  US902-928(US915) ===
408 408  
409 409  (((
410 -Used in USA, Canada and South America. Default use CHE=2
450 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
451 +)))
411 411  
412 -(% style="color:blue" %)**Uplink:**
453 +(((
454 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
455 +)))
413 413  
414 -903.9 - SF7BW125 to SF10BW125
415 -
416 -904.1 - SF7BW125 to SF10BW125
417 -
418 -904.3 - SF7BW125 to SF10BW125
419 -
420 -904.5 - SF7BW125 to SF10BW125
421 -
422 -904.7 - SF7BW125 to SF10BW125
423 -
424 -904.9 - SF7BW125 to SF10BW125
425 -
426 -905.1 - SF7BW125 to SF10BW125
427 -
428 -905.3 - SF7BW125 to SF10BW125
429 -
430 -
431 -(% style="color:blue" %)**Downlink:**
432 -
433 -923.3 - SF7BW500 to SF12BW500
434 -
435 -923.9 - SF7BW500 to SF12BW500
436 -
437 -924.5 - SF7BW500 to SF12BW500
438 -
439 -925.1 - SF7BW500 to SF12BW500
440 -
441 -925.7 - SF7BW500 to SF12BW500
442 -
443 -926.3 - SF7BW500 to SF12BW500
444 -
445 -926.9 - SF7BW500 to SF12BW500
446 -
447 -927.5 - SF7BW500 to SF12BW500
448 -
449 -923.3 - SF12BW500(RX2 downlink only)
450 -
451 -
452 -
457 +(((
458 +After Join success, the end node will switch to the correct sub band by:
453 453  )))
454 454  
461 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
462 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
463 +
455 455  === 2.6.3  CN470-510 (CN470) ===
456 456  
457 457  (((
... ... @@ -540,54 +540,28 @@
540 540  
541 541  
542 542  
552 +
543 543  === 2.6.4  AU915-928(AU915) ===
544 544  
545 545  (((
546 -Default use CHE=2
556 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
557 +)))
547 547  
548 -(% style="color:blue" %)**Uplink:**
559 +(((
560 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
561 +)))
549 549  
550 -916.8 - SF7BW125 to SF12BW125
551 -
552 -917.0 - SF7BW125 to SF12BW125
553 -
554 -917.2 - SF7BW125 to SF12BW125
555 -
556 -917.4 - SF7BW125 to SF12BW125
557 -
558 -917.6 - SF7BW125 to SF12BW125
559 -
560 -917.8 - SF7BW125 to SF12BW125
561 -
562 -918.0 - SF7BW125 to SF12BW125
563 -
564 -918.2 - SF7BW125 to SF12BW125
565 -
566 -
567 -(% style="color:blue" %)**Downlink:**
568 -
569 -923.3 - SF7BW500 to SF12BW500
570 -
571 -923.9 - SF7BW500 to SF12BW500
572 -
573 -924.5 - SF7BW500 to SF12BW500
574 -
575 -925.1 - SF7BW500 to SF12BW500
576 -
577 -925.7 - SF7BW500 to SF12BW500
578 -
579 -926.3 - SF7BW500 to SF12BW500
580 -
581 -926.9 - SF7BW500 to SF12BW500
582 -
583 -927.5 - SF7BW500 to SF12BW500
584 -
585 -923.3 - SF12BW500(RX2 downlink only)
586 -
587 -
563 +(((
588 588  
589 589  )))
590 590  
567 +(((
568 +After Join success, the end node will switch to the correct sub band by:
569 +)))
570 +
571 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
572 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
573 +
591 591  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
592 592  
593 593  (((
... ... @@ -696,6 +696,7 @@
696 696  
697 697  
698 698  
682 +
699 699  === 2.6.6  KR920-923 (KR920) ===
700 700  
701 701  (((
... ... @@ -768,6 +768,7 @@
768 768  
769 769  
770 770  
755 +
771 771  === 2.6.7  IN865-867 (IN865) ===
772 772  
773 773  (((
... ... @@ -804,20 +804,18 @@
804 804  
805 805  
806 806  
792 +
807 807  == 2.7  LED Indicator ==
808 808  
809 -The LDDS75 has an internal LED which is to show the status of different state.
795 +The LLDS12 has an internal LED which is to show the status of different state.
810 810  
811 -
812 -* Blink once when device power on.
813 -* The device detects the sensor and flashes 5 times.
814 -* Solid ON for 5 seconds once device successful Join the network.
797 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
815 815  * Blink once when device transmit a packet.
816 816  
817 817  == 2.8  ​Firmware Change Log ==
818 818  
819 819  
820 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
803 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
821 821  
822 822  
823 823  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -824,58 +824,71 @@
824 824  
825 825  
826 826  
827 -== 2.9  Mechanical ==
810 += 3LiDAR ToF Measurement =
828 828  
812 +== 3.1 Principle of Distance Measurement ==
829 829  
830 -[[image:image-20220610172003-1.png]]
814 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
831 831  
832 -[[image:image-20220610172003-2.png]]
816 +[[image:1654831757579-263.png]]
833 833  
834 834  
835 -== 2.10  Battery Analysis ==
836 836  
837 -=== 2.10.1  Battery Type ===
820 +== 3.2 Distance Measurement Characteristics ==
838 838  
839 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
822 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
840 840  
824 +[[image:1654831774373-275.png]]
841 841  
842 -The battery related documents as below:
843 843  
844 -* (((
845 -[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
827 +(((
828 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
846 846  )))
847 -* (((
848 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
830 +
831 +(((
832 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
849 849  )))
850 -* (((
851 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
834 +
835 +(((
836 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
852 852  )))
853 853  
854 - [[image:image-20220610172400-3.png]]
855 855  
840 +(((
841 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
842 +)))
856 856  
857 857  
858 -=== 2.10.2  Replace the battery ===
845 +[[image:1654831797521-720.png]]
859 859  
860 -(((
861 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
862 -)))
863 863  
864 864  (((
865 -
849 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
866 866  )))
867 867  
852 +[[image:1654831810009-716.png]]
853 +
854 +
868 868  (((
869 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
856 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
870 870  )))
871 871  
872 872  
873 873  
874 -= 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
861 +== 3.3 Notice of usage: ==
875 875  
863 +Possible invalid /wrong reading for LiDAR ToF tech:
864 +
865 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
866 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
867 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
868 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
869 +
870 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
871 +
876 876  (((
877 877  (((
878 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
874 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
879 879  )))
880 880  )))
881 881  
... ... @@ -896,7 +896,7 @@
896 896  )))
897 897  
898 898  (((
899 -There are two kinds of commands to configure LDDS75, they are:
895 +There are two kinds of commands to configure LLDS12, they are:
900 900  )))
901 901  )))
902 902  
... ... @@ -937,148 +937,352 @@
937 937  
938 938  * (((
939 939  (((
940 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
936 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
941 941  )))
942 942  )))
943 943  
944 944  (((
945 945  (((
946 -These commands only valid for LDDS75, as below:
942 +These commands only valid for LLDS12, as below:
947 947  )))
948 948  )))
949 949  
950 950  
951 951  
952 -== 3.1  Access AT Commands ==
948 +== 4.1  Set Transmit Interval Time ==
953 953  
954 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
950 +Feature: Change LoRaWAN End Node Transmit Interval.
955 955  
956 -[[image:image-20220610172924-4.png||height="483" width="988"]]
952 +(% style="color:#037691" %)**AT Command: AT+TDC**
957 957  
954 +[[image:image-20220607171554-8.png]]
958 958  
959 -Or if you have below board, use below connection:
960 960  
957 +(((
958 +(% style="color:#037691" %)**Downlink Command: 0x01**
959 +)))
961 961  
962 -[[image:image-20220610172924-5.png]]
961 +(((
962 +Format: Command Code (0x01) followed by 3 bytes time value.
963 +)))
963 963  
965 +(((
966 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
967 +)))
964 964  
965 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
969 +* (((
970 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
971 +)))
972 +* (((
973 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
974 +)))
966 966  
976 +== 4.2  Set Interrupt Mode ==
967 967  
968 - [[image:image-20220610172924-6.png||height="601" width="860"]]
978 +Feature, Set Interrupt mode for GPIO_EXIT.
969 969  
980 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
970 970  
982 +[[image:image-20220610105806-2.png]]
971 971  
972 -== 3.2  Set Transmit Interval Time ==
973 973  
974 -Feature: Change LoRaWAN End Node Transmit Interval.
985 +(((
986 +(% style="color:#037691" %)**Downlink Command: 0x06**
987 +)))
975 975  
976 -(% style="color:#037691" %)**AT Command: AT+TDC**
989 +(((
990 +Format: Command Code (0x06) followed by 3 bytes.
991 +)))
977 977  
978 -[[image:image-20220610173409-7.png]]
993 +(((
994 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
995 +)))
979 979  
997 +* (((
998 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
999 +)))
1000 +* (((
1001 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1002 +)))
980 980  
1004 +== 4.3  Get Firmware Version Info ==
1005 +
1006 +Feature: use downlink to get firmware version.
1007 +
1008 +(% style="color:#037691" %)**Downlink Command: 0x26**
1009 +
1010 +[[image:image-20220607171917-10.png]]
1011 +
1012 +* Reply to the confirmation package: 26 01
1013 +* Reply to non-confirmed packet: 26 00
1014 +
1015 +Device will send an uplink after got this downlink command. With below payload:
1016 +
1017 +Configures info payload:
1018 +
1019 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1020 +|=(((
1021 +**Size(bytes)**
1022 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1023 +|**Value**|Software Type|(((
1024 +Frequency
1025 +
1026 +Band
1027 +)))|Sub-band|(((
1028 +Firmware
1029 +
1030 +Version
1031 +)))|Sensor Type|Reserve|(((
1032 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1033 +Always 0x02
1034 +)))
1035 +
1036 +**Software Type**: Always 0x03 for LLDS12
1037 +
1038 +
1039 +**Frequency Band**:
1040 +
1041 +*0x01: EU868
1042 +
1043 +*0x02: US915
1044 +
1045 +*0x03: IN865
1046 +
1047 +*0x04: AU915
1048 +
1049 +*0x05: KZ865
1050 +
1051 +*0x06: RU864
1052 +
1053 +*0x07: AS923
1054 +
1055 +*0x08: AS923-1
1056 +
1057 +*0x09: AS923-2
1058 +
1059 +*0xa0: AS923-3
1060 +
1061 +
1062 +**Sub-Band**: value 0x00 ~~ 0x08
1063 +
1064 +
1065 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1066 +
1067 +
1068 +**Sensor Type**:
1069 +
1070 +0x01: LSE01
1071 +
1072 +0x02: LDDS75
1073 +
1074 +0x03: LDDS20
1075 +
1076 +0x04: LLMS01
1077 +
1078 +0x05: LSPH01
1079 +
1080 +0x06: LSNPK01
1081 +
1082 +0x07: LLDS12
1083 +
1084 +
1085 +
1086 += 5.  Battery & How to replace =
1087 +
1088 +== 5.1  Battery Type ==
1089 +
981 981  (((
982 -(% style="color:#037691" %)**Downlink Command: 0x01**
1091 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
983 983  )))
984 984  
985 985  (((
1095 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1096 +)))
1097 +
1098 +[[image:1654593587246-335.png]]
1099 +
1100 +
1101 +Minimum Working Voltage for the LLDS12:
1102 +
1103 +LLDS12:  2.45v ~~ 3.6v
1104 +
1105 +
1106 +
1107 +== 5.2  Replace Battery ==
1108 +
986 986  (((
987 -Format: Command Code (0x01) followed by 3 bytes time value.
1110 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1111 +)))
988 988  
989 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1113 +(((
1114 +And make sure the positive and negative pins match.
1115 +)))
990 990  
991 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
992 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1117 +
1118 +
1119 +== 5.3  Power Consumption Analyze ==
1120 +
1121 +(((
1122 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
993 993  )))
994 994  
1125 +(((
1126 +Instruction to use as below:
1127 +)))
995 995  
996 -
1129 +
1130 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1131 +
1132 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1133 +
1134 +
1135 +**Step 2**: Open it and choose
1136 +
1137 +* Product Model
1138 +* Uplink Interval
1139 +* Working Mode
1140 +
1141 +And the Life expectation in difference case will be shown on the right.
1142 +
1143 +[[image:1654593605679-189.png]]
1144 +
1145 +
1146 +The battery related documents as below:
1147 +
1148 +* (((
1149 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
997 997  )))
1151 +* (((
1152 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1153 +)))
1154 +* (((
1155 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1156 +)))
998 998  
999 -== 3.3  Set Interrupt Mode ==
1158 +[[image:image-20220607172042-11.png]]
1000 1000  
1001 -Feature, Set Interrupt mode for GPIO_EXIT.
1002 1002  
1003 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1004 1004  
1005 -[[image:image-20220610174917-9.png]]
1162 +=== 5.3.1  ​Battery Note ===
1006 1006  
1164 +(((
1165 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1166 +)))
1007 1007  
1008 -(% style="color:#037691" %)**Downlink Command: 0x06**
1009 1009  
1010 -Format: Command Code (0x06) followed by 3 bytes.
1011 1011  
1012 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1170 +=== ​5.3.2  Replace the battery ===
1013 1013  
1014 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1015 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1172 +(((
1173 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1174 +)))
1016 1016  
1017 -= 4.  FAQ =
1176 +(((
1177 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1178 +)))
1018 1018  
1019 -== 4.1  What is the frequency plan for LDDS75? ==
1020 1020  
1021 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1022 1022  
1182 += 6.  Use AT Command =
1023 1023  
1184 +== 6.1  Access AT Commands ==
1024 1024  
1025 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1186 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1026 1026  
1027 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1028 -When downloading the images, choose the required image file for download. ​
1188 +[[image:1654593668970-604.png]]
1029 1029  
1190 +**Connection:**
1030 1030  
1192 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1031 1031  
1032 -== 4.3  Can I use LDDS75 in condensation environment? ==
1194 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1033 1033  
1034 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1196 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1035 1035  
1036 1036  
1199 +(((
1200 +(((
1201 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1202 +)))
1037 1037  
1038 -= 5.  Trouble Shooting =
1204 +(((
1205 +LLDS12 will output system info once power on as below:
1206 +)))
1207 +)))
1039 1039  
1040 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1041 1041  
1042 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1210 + [[image:1654593712276-618.png]]
1043 1043  
1212 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1044 1044  
1045 -== 5.2  AT Command input doesn't work ==
1046 1046  
1215 += 7.  FAQ =
1216 +
1217 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1218 +
1219 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1220 +When downloading the images, choose the required image file for download. ​
1221 +
1222 +
1223 += 8.  Trouble Shooting =
1224 +
1225 +== 8.1  AT Commands input doesn’t work ==
1226 +
1227 +
1228 +(((
1047 1047  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1230 +)))
1048 1048  
1232 +
1233 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1234 +
1235 +
1049 1049  (((
1237 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1238 +)))
1239 +
1240 +(((
1241 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1242 +)))
1243 +
1244 +(((
1050 1050  
1051 1051  )))
1052 1052  
1248 +(((
1249 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1250 +)))
1053 1053  
1054 -= 6.  Order Info =
1252 +(((
1253 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1254 +)))
1055 1055  
1056 1056  
1057 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1058 1058  
1258 += 9.  Order Info =
1059 1059  
1060 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1061 1061  
1062 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1063 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1064 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1065 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1066 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1067 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1068 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1069 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1261 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1070 1070  
1071 -(% style="color:blue" %)**YY**(%%): Battery Option
1072 1072  
1073 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1074 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1264 +(% style="color:blue" %)**XX**(%%): The default frequency band
1075 1075  
1076 -= 7. ​ Packing Info =
1266 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1267 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1268 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1269 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1270 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1271 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1272 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1273 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1077 1077  
1078 1078  
1276 += 10. ​ Packing Info =
1277 +
1278 +
1079 1079  **Package Includes**:
1080 1080  
1081 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1281 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1082 1082  
1083 1083  **Dimension and weight**:
1084 1084  
... ... @@ -1087,7 +1087,8 @@
1087 1087  * Package Size / pcs : cm
1088 1088  * Weight / pcs : g
1089 1089  
1090 -= 8.  ​Support =
1091 1091  
1291 += 11.  ​Support =
1292 +
1092 1092  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1093 1093  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654847583902-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0