<
From version < 147.2 >
edited by Xiaoling
on 2022/06/10 17:34
To version < 124.2 >
edited by Xiaoling
on 2022/06/10 15:53
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -33,7 +33,7 @@
33 33  Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 34  
35 35  
36 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
36 +(% style="color:#4472c4" %) ***** (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 37  )))
38 38  )))
39 39  
... ... @@ -72,20 +72,15 @@
72 72  
73 73  === 1.3.2  Effective measurement range Reference beam pattern ===
74 74  
75 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
75 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
76 76  
77 77  
78 78  
79 -[[image:1654852253176-749.png]]
79 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
80 80  
81 +(% style="display:none" %) (%%)
81 81  
82 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
83 83  
84 -
85 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
86 -
87 -
88 -
89 89  == 1.5 ​ Applications ==
90 90  
91 91  * Horizontal distance measurement
... ... @@ -99,6 +99,7 @@
99 99  * Bottom water level monitoring
100 100  
101 101  
97 +
102 102  == 1.6  Pin mapping and power on ==
103 103  
104 104  
... ... @@ -105,21 +105,19 @@
105 105  [[image:1654847583902-256.png]]
106 106  
107 107  
104 += 2.  Configure LLDS12 to connect to LoRaWAN network =
108 108  
109 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
110 -
111 111  == 2.1  How it works ==
112 112  
113 113  (((
114 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
109 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
115 115  )))
116 116  
117 117  (((
118 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
113 +In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
119 119  )))
120 120  
121 121  
122 -
123 123  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
124 124  
125 125  (((
... ... @@ -127,7 +127,7 @@
127 127  )))
128 128  
129 129  (((
130 -[[image:1654848616367-242.png]]
124 +[[image:1654827857527-556.png]]
131 131  )))
132 132  
133 133  (((
... ... @@ -135,57 +135,57 @@
135 135  )))
136 136  
137 137  (((
138 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
132 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
139 139  )))
140 140  
141 141  (((
142 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
136 +Each LSPH01 is shipped with a sticker with the default device EUI as below:
143 143  )))
144 144  
145 145  [[image:image-20220607170145-1.jpeg]]
146 146  
147 147  
148 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
149 149  
150 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
143 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
151 151  
152 -**Add APP EUI in the application**
153 153  
154 -[[image:image-20220610161353-4.png]]
146 +**Register the device**
155 155  
156 -[[image:image-20220610161353-5.png]]
157 157  
158 -[[image:image-20220610161353-6.png]]
149 +[[image:1654592600093-601.png]]
159 159  
160 160  
161 -[[image:image-20220610161353-7.png]]
162 162  
153 +**Add APP EUI and DEV EUI**
163 163  
164 -You can also choose to create the device manually.
155 +[[image:1654592619856-881.png]]
165 165  
166 - [[image:image-20220610161538-8.png]]
167 167  
168 168  
159 +**Add APP EUI in the application**
169 169  
170 -**Add APP KEY and DEV EUI**
161 +[[image:1654592632656-512.png]]
171 171  
172 -[[image:image-20220610161538-9.png]]
173 173  
174 174  
165 +**Add APP KEY**
175 175  
176 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
167 +[[image:1654592653453-934.png]]
177 177  
178 178  
170 +(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
171 +
172 +
179 179  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
180 180  
181 -[[image:image-20220610161724-10.png]]
175 +[[image:image-20220607170442-2.png]]
182 182  
183 183  
184 184  (((
185 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
179 +(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
186 186  )))
187 187  
188 -[[image:1654849068701-275.png]]
182 +[[image:1654833501679-968.png]]
189 189  
190 190  
191 191  
... ... @@ -192,10 +192,11 @@
192 192  == 2.3  ​Uplink Payload ==
193 193  
194 194  (((
195 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
189 +LLDS12 will uplink payload via LoRaWAN with below payload format: 
190 +)))
196 196  
197 -Uplink payload includes in total 4 bytes.
198 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
192 +(((
193 +Uplink payload includes in total 11 bytes.
199 199  )))
200 200  
201 201  (((
... ... @@ -205,23 +205,23 @@
205 205  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 206  |=(% style="width: 62.5px;" %)(((
207 207  **Size (bytes)**
208 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
209 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
210 -[[Distance>>||anchor="H2.3.3A0Distance"]]
203 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
204 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
205 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
206 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
207 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
208 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
209 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
210 +)))
211 211  
212 -(unit: mm)
213 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
214 -[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
215 -)))|[[Sensor Flag>>path:#Sensor_Flag]]
212 +[[image:1654833689380-972.png]]
216 216  
217 -[[image:1654850511545-399.png]]
218 218  
219 219  
220 -
221 221  === 2.3.1  Battery Info ===
222 222  
223 223  
224 -Check the battery voltage for LDDS75.
219 +Check the battery voltage for LLDS12.
225 225  
226 226  Ex1: 0x0B45 = 2885mV
227 227  
... ... @@ -229,21 +229,49 @@
229 229  
230 230  
231 231  
232 -=== 2.3.2  Distance ===
227 +=== 2.3.2  DS18B20 Temperature sensor ===
233 233  
234 -Get the distance. Flat object range 280mm - 7500mm.
229 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
235 235  
236 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
237 237  
232 +**Example**:
238 238  
239 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
240 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
234 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
241 241  
236 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
242 242  
243 -=== 2.3.3  Interrupt Pin ===
244 244  
239 +
240 +=== 2.3.3  Distance ===
241 +
242 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
243 +
244 +
245 +**Example**:
246 +
247 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
248 +
249 +
250 +
251 +=== 2.3.4  Distance signal strength ===
252 +
253 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
254 +
255 +
256 +**Example**:
257 +
258 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
259 +
260 +Customers can judge whether they need to adjust the environment based on the signal strength.
261 +
262 +
263 +
264 +=== 2.3.5  Interrupt Pin ===
265 +
245 245  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
246 246  
268 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
269 +
247 247  **Example:**
248 248  
249 249  0x00: Normal uplink packet.
... ... @@ -252,44 +252,52 @@
252 252  
253 253  
254 254  
255 -=== 2.3.4  DS18B20 Temperature sensor ===
278 +=== 2.3.6  LiDAR temp ===
256 256  
257 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
280 +Characterize the internal temperature value of the sensor.
258 258  
259 -**Example**:
282 +**Example: **
283 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
284 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
260 260  
261 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
262 262  
263 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
264 264  
265 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
288 +=== 2.3.7  Message Type ===
266 266  
290 +(((
291 +For a normal uplink payload, the message type is always 0x01.
292 +)))
267 267  
294 +(((
295 +Valid Message Type:
296 +)))
268 268  
269 -=== 2.3.5  Sensor Flag ===
270 270  
271 -0x01: Detect Ultrasonic Sensor
299 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
300 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
301 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
302 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
272 272  
273 -0x00: No Ultrasonic Sensor
304 +=== 2.3.8  Decode payload in The Things Network ===
274 274  
275 -
276 -===
277 -(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
278 -
279 279  While using TTN network, you can add the payload format to decode the payload.
280 280  
281 281  
282 -[[image:1654850829385-439.png]]
309 +[[image:1654592762713-715.png]]
283 283  
284 -The payload decoder function for TTN V3 is here:
311 +(((
312 +The payload decoder function for TTN is here:
313 +)))
285 285  
286 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
315 +(((
316 +LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
317 +)))
287 287  
288 288  
289 289  
290 290  == 2.4  Uplink Interval ==
291 291  
292 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
323 +The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
293 293  
294 294  
295 295  
... ... @@ -320,25 +320,47 @@
320 320  
321 321  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
322 322  
323 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
354 +(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
324 324  
325 -[[image:1654851029373-510.png]]
356 +[[image:1654832691989-514.png]]
326 326  
327 327  
328 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
359 +[[image:1654592833877-762.png]]
329 329  
330 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
331 331  
362 +[[image:1654832740634-933.png]]
332 332  
333 333  
334 -== 2.6  Frequency Plans ==
335 335  
336 336  (((
337 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
367 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
338 338  )))
339 339  
370 +(((
371 +
372 +)))
340 340  
374 +[[image:1654833065139-942.png]]
341 341  
376 +
377 +
378 +[[image:1654833092678-390.png]]
379 +
380 +
381 +
382 +After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
383 +
384 +[[image:1654833163048-332.png]]
385 +
386 +
387 +
388 +== 2.6  Frequency Plans ==
389 +
390 +(((
391 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
392 +)))
393 +
394 +
342 342  === 2.6.1  EU863-870 (EU868) ===
343 343  
344 344  (((
... ... @@ -402,51 +402,20 @@
402 402  === 2.6.2  US902-928(US915) ===
403 403  
404 404  (((
405 -Used in USA, Canada and South America. Default use CHE=2
458 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
459 +)))
406 406  
407 -(% style="color:blue" %)**Uplink:**
461 +(((
462 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
463 +)))
408 408  
409 -903.9 - SF7BW125 to SF10BW125
410 -
411 -904.1 - SF7BW125 to SF10BW125
412 -
413 -904.3 - SF7BW125 to SF10BW125
414 -
415 -904.5 - SF7BW125 to SF10BW125
416 -
417 -904.7 - SF7BW125 to SF10BW125
418 -
419 -904.9 - SF7BW125 to SF10BW125
420 -
421 -905.1 - SF7BW125 to SF10BW125
422 -
423 -905.3 - SF7BW125 to SF10BW125
424 -
425 -
426 -(% style="color:blue" %)**Downlink:**
427 -
428 -923.3 - SF7BW500 to SF12BW500
429 -
430 -923.9 - SF7BW500 to SF12BW500
431 -
432 -924.5 - SF7BW500 to SF12BW500
433 -
434 -925.1 - SF7BW500 to SF12BW500
435 -
436 -925.7 - SF7BW500 to SF12BW500
437 -
438 -926.3 - SF7BW500 to SF12BW500
439 -
440 -926.9 - SF7BW500 to SF12BW500
441 -
442 -927.5 - SF7BW500 to SF12BW500
443 -
444 -923.3 - SF12BW500(RX2 downlink only)
445 -
446 -
447 -
465 +(((
466 +After Join success, the end node will switch to the correct sub band by:
448 448  )))
449 449  
469 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
470 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
471 +
450 450  === 2.6.3  CN470-510 (CN470) ===
451 451  
452 452  (((
... ... @@ -535,54 +535,28 @@
535 535  
536 536  
537 537  
560 +
538 538  === 2.6.4  AU915-928(AU915) ===
539 539  
540 540  (((
541 -Default use CHE=2
564 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
565 +)))
542 542  
543 -(% style="color:blue" %)**Uplink:**
567 +(((
568 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
569 +)))
544 544  
545 -916.8 - SF7BW125 to SF12BW125
546 -
547 -917.0 - SF7BW125 to SF12BW125
548 -
549 -917.2 - SF7BW125 to SF12BW125
550 -
551 -917.4 - SF7BW125 to SF12BW125
552 -
553 -917.6 - SF7BW125 to SF12BW125
554 -
555 -917.8 - SF7BW125 to SF12BW125
556 -
557 -918.0 - SF7BW125 to SF12BW125
558 -
559 -918.2 - SF7BW125 to SF12BW125
560 -
561 -
562 -(% style="color:blue" %)**Downlink:**
563 -
564 -923.3 - SF7BW500 to SF12BW500
565 -
566 -923.9 - SF7BW500 to SF12BW500
567 -
568 -924.5 - SF7BW500 to SF12BW500
569 -
570 -925.1 - SF7BW500 to SF12BW500
571 -
572 -925.7 - SF7BW500 to SF12BW500
573 -
574 -926.3 - SF7BW500 to SF12BW500
575 -
576 -926.9 - SF7BW500 to SF12BW500
577 -
578 -927.5 - SF7BW500 to SF12BW500
579 -
580 -923.3 - SF12BW500(RX2 downlink only)
581 -
582 -
571 +(((
583 583  
584 584  )))
585 585  
575 +(((
576 +After Join success, the end node will switch to the correct sub band by:
577 +)))
578 +
579 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
580 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
581 +
586 586  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
587 587  
588 588  (((
... ... @@ -691,6 +691,7 @@
691 691  
692 692  
693 693  
690 +
694 694  === 2.6.6  KR920-923 (KR920) ===
695 695  
696 696  (((
... ... @@ -763,6 +763,7 @@
763 763  
764 764  
765 765  
763 +
766 766  === 2.6.7  IN865-867 (IN865) ===
767 767  
768 768  (((
... ... @@ -799,21 +799,18 @@
799 799  
800 800  
801 801  
800 +
802 802  == 2.7  LED Indicator ==
803 803  
804 -The LDDS75 has an internal LED which is to show the status of different state.
803 +The LLDS12 has an internal LED which is to show the status of different state.
805 805  
806 -
807 -* Blink once when device power on.
808 -* The device detects the sensor and flashes 5 times.
809 -* Solid ON for 5 seconds once device successful Join the network.
805 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
810 810  * Blink once when device transmit a packet.
811 811  
812 -
813 813  == 2.8  ​Firmware Change Log ==
814 814  
815 815  
816 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
811 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
817 817  
818 818  
819 819  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -820,58 +820,71 @@
820 820  
821 821  
822 822  
823 -== 2.9  Mechanical ==
818 += 3LiDAR ToF Measurement =
824 824  
820 +== 3.1 Principle of Distance Measurement ==
825 825  
826 -[[image:image-20220610172003-1.png]]
822 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
827 827  
828 -[[image:image-20220610172003-2.png]]
824 +[[image:1654831757579-263.png]]
829 829  
830 830  
831 -== 2.10  Battery Analysis ==
832 832  
833 -=== 2.10.1  Battery Type ===
828 +== 3.2 Distance Measurement Characteristics ==
834 834  
835 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
830 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
836 836  
832 +[[image:1654831774373-275.png]]
837 837  
838 -The battery related documents as below:
839 839  
840 -* (((
841 -[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
835 +(((
836 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
842 842  )))
843 -* (((
844 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
838 +
839 +(((
840 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
845 845  )))
846 -* (((
847 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
842 +
843 +(((
844 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
848 848  )))
849 849  
850 - [[image:image-20220610172400-3.png]]
851 851  
848 +(((
849 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
850 +)))
852 852  
853 853  
854 -=== 2.10.2  Replace the battery ===
853 +[[image:1654831797521-720.png]]
855 855  
856 -(((
857 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
858 -)))
859 859  
860 860  (((
861 -
857 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
862 862  )))
863 863  
860 +[[image:1654831810009-716.png]]
861 +
862 +
864 864  (((
865 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
864 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
866 866  )))
867 867  
868 868  
869 869  
870 -= 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
869 +== 3.3 Notice of usage: ==
871 871  
871 +Possible invalid /wrong reading for LiDAR ToF tech:
872 +
873 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
874 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
875 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
876 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
877 +
878 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
879 +
872 872  (((
873 873  (((
874 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
882 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
875 875  )))
876 876  )))
877 877  
... ... @@ -892,7 +892,7 @@
892 892  )))
893 893  
894 894  (((
895 -There are two kinds of commands to configure LDDS75, they are:
903 +There are two kinds of commands to configure LLDS12, they are:
896 896  )))
897 897  )))
898 898  
... ... @@ -933,49 +933,55 @@
933 933  
934 934  * (((
935 935  (((
936 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
944 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
937 937  )))
938 938  )))
939 939  
940 940  (((
941 941  (((
942 -These commands only valid for LDDS75, as below:
950 +These commands only valid for LLDS12, as below:
943 943  )))
944 944  )))
945 945  
946 946  
947 947  
948 -== 3.1  Access AT Commands ==
956 +== 4.1  Set Transmit Interval Time ==
949 949  
950 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
958 +Feature: Change LoRaWAN End Node Transmit Interval.
951 951  
952 -[[image:image-20220610172924-4.png||height="483" width="988"]]
960 +(% style="color:#037691" %)**AT Command: AT+TDC**
953 953  
962 +[[image:image-20220607171554-8.png]]
954 954  
955 -Or if you have below board, use below connection:
956 956  
965 +(((
966 +(% style="color:#037691" %)**Downlink Command: 0x01**
967 +)))
957 957  
958 -[[image:image-20220610172924-5.png]]
969 +(((
970 +Format: Command Code (0x01) followed by 3 bytes time value.
971 +)))
959 959  
973 +(((
974 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
975 +)))
960 960  
961 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
977 +* (((
978 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
979 +)))
980 +* (((
981 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
982 +)))
962 962  
984 +== 4.2  Set Interrupt Mode ==
963 963  
964 - [[image:image-20220610172924-6.png||height="601" width="860"]]
986 +Feature, Set Interrupt mode for GPIO_EXIT.
965 965  
988 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
966 966  
990 +[[image:image-20220610105806-2.png]]
967 967  
968 -== 3.2  Set Transmit Interval Time ==
969 969  
970 -Feature: Change LoRaWAN End Node Transmit Interval.
971 -
972 -(% style="color:#037691" %)**AT Command: AT+TDC**
973 -
974 -[[image:image-20220610173409-7.png]]
975 -
976 -
977 -
978 -
979 979  (((
980 980  (% style="color:#037691" %)**Downlink Command: 0x06**
981 981  )))
... ... @@ -995,7 +995,7 @@
995 995  Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
996 996  )))
997 997  
998 -== 3.3  Get Firmware Version Info ==
1012 +== 4.3  Get Firmware Version Info ==
999 999  
1000 1000  Feature: use downlink to get firmware version.
1001 1001  
... ... @@ -1266,6 +1266,7 @@
1266 1266  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1267 1267  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1268 1268  
1283 +
1269 1269  = 10. ​ Packing Info =
1270 1270  
1271 1271  
... ... @@ -1280,6 +1280,7 @@
1280 1280  * Package Size / pcs : cm
1281 1281  * Weight / pcs : g
1282 1282  
1298 +
1283 1283  = 11.  ​Support =
1284 1284  
1285 1285  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1654848616367-242.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.6 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0