<
From version < 133.4 >
edited by Xiaoling
on 2022/06/10 16:28
To version < 147.2 >
edited by Xiaoling
on 2022/06/10 17:34
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -57,6 +57,7 @@
57 57  * IP66 Waterproof Enclosure
58 58  * 4000mAh or 8500mAh Battery for long term use
59 59  
60 +
60 60  == 1.3  Specification ==
61 61  
62 62  === 1.3.1  Rated environmental conditions ===
... ... @@ -71,15 +71,20 @@
71 71  
72 72  === 1.3.2  Effective measurement range Reference beam pattern ===
73 73  
74 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
75 75  
76 76  
77 77  
78 -**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79 +[[image:1654852253176-749.png]]
79 79  
80 -(% style="display:none" %) (%%)
81 81  
82 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 82  
84 +
85 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
86 +
87 +
88 +
83 83  == 1.5 ​ Applications ==
84 84  
85 85  * Horizontal distance measurement
... ... @@ -99,6 +99,7 @@
99 99  [[image:1654847583902-256.png]]
100 100  
101 101  
108 +
102 102  = 2.  Configure LDDS75 to connect to LoRaWAN network =
103 103  
104 104  == 2.1  How it works ==
... ... @@ -112,6 +112,7 @@
112 112  )))
113 113  
114 114  
122 +
115 115  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
116 116  
117 117  (((
... ... @@ -184,7 +184,7 @@
184 184  == 2.3  ​Uplink Payload ==
185 185  
186 186  (((
187 -LDDS75 will uplink payload via LoRaWAN with below payload format:
195 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
188 188  
189 189  Uplink payload includes in total 4 bytes.
190 190  Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
... ... @@ -206,7 +206,7 @@
206 206  [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
207 207  )))|[[Sensor Flag>>path:#Sensor_Flag]]
208 208  
209 -[[image:1654833689380-972.png]]
217 +[[image:1654850511545-399.png]]
210 210  
211 211  
212 212  
... ... @@ -213,7 +213,7 @@
213 213  === 2.3.1  Battery Info ===
214 214  
215 215  
216 -Check the battery voltage for LLDS12.
224 +Check the battery voltage for LDDS75.
217 217  
218 218  Ex1: 0x0B45 = 2885mV
219 219  
... ... @@ -221,49 +221,21 @@
221 221  
222 222  
223 223  
224 -=== 2.3.2  DS18B20 Temperature sensor ===
232 +=== 2.3.2  Distance ===
225 225  
226 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
234 +Get the distance. Flat object range 280mm - 7500mm.
227 227  
236 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
228 228  
229 -**Example**:
230 230  
231 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
239 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
240 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
232 232  
233 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
234 234  
243 +=== 2.3.3  Interrupt Pin ===
235 235  
236 -
237 -=== 2.3.3  Distance ===
238 -
239 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
240 -
241 -
242 -**Example**:
243 -
244 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
245 -
246 -
247 -
248 -=== 2.3.4  Distance signal strength ===
249 -
250 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
251 -
252 -
253 -**Example**:
254 -
255 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
256 -
257 -Customers can judge whether they need to adjust the environment based on the signal strength.
258 -
259 -
260 -
261 -=== 2.3.5  Interrupt Pin ===
262 -
263 263  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
264 264  
265 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
266 -
267 267  **Example:**
268 268  
269 269  0x00: Normal uplink packet.
... ... @@ -272,52 +272,44 @@
272 272  
273 273  
274 274  
275 -=== 2.3.6  LiDAR temp ===
255 +=== 2.3.4  DS18B20 Temperature sensor ===
276 276  
277 -Characterize the internal temperature value of the sensor.
257 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
278 278  
279 -**Example: **
280 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
281 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
259 +**Example**:
282 282  
261 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
283 283  
263 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
284 284  
285 -=== 2.3.7  Message Type ===
265 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
286 286  
287 -(((
288 -For a normal uplink payload, the message type is always 0x01.
289 -)))
290 290  
291 -(((
292 -Valid Message Type:
293 -)))
294 294  
269 +=== 2.3.5  Sensor Flag ===
295 295  
296 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
297 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
298 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
299 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
271 +0x01: Detect Ultrasonic Sensor
300 300  
301 -=== 2.3.8  Decode payload in The Things Network ===
273 +0x00: No Ultrasonic Sensor
302 302  
275 +
276 +===
277 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
278 +
303 303  While using TTN network, you can add the payload format to decode the payload.
304 304  
305 305  
306 -[[image:1654592762713-715.png]]
282 +[[image:1654850829385-439.png]]
307 307  
308 -(((
309 -The payload decoder function for TTN is here:
310 -)))
284 +The payload decoder function for TTN V3 is here:
311 311  
312 -(((
313 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
314 -)))
286 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
315 315  
316 316  
317 317  
318 318  == 2.4  Uplink Interval ==
319 319  
320 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
292 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321 321  
322 322  
323 323  
... ... @@ -348,47 +348,25 @@
348 348  
349 349  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
350 350  
351 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
323 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
352 352  
353 -[[image:1654832691989-514.png]]
325 +[[image:1654851029373-510.png]]
354 354  
355 355  
356 -[[image:1654592833877-762.png]]
328 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
357 357  
330 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
358 358  
359 -[[image:1654832740634-933.png]]
360 360  
361 361  
362 -
363 -(((
364 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
365 -)))
366 -
367 -(((
368 -
369 -)))
370 -
371 -[[image:1654833065139-942.png]]
372 -
373 -
374 -
375 -[[image:1654833092678-390.png]]
376 -
377 -
378 -
379 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
380 -
381 -[[image:1654833163048-332.png]]
382 -
383 -
384 -
385 385  == 2.6  Frequency Plans ==
386 386  
387 387  (((
388 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
337 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
389 389  )))
390 390  
391 391  
341 +
392 392  === 2.6.1  EU863-870 (EU868) ===
393 393  
394 394  (((
... ... @@ -452,20 +452,51 @@
452 452  === 2.6.2  US902-928(US915) ===
453 453  
454 454  (((
455 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
456 -)))
405 +Used in USA, Canada and South America. Default use CHE=2
457 457  
458 -(((
459 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
460 -)))
407 +(% style="color:blue" %)**Uplink:**
461 461  
462 -(((
463 -After Join success, the end node will switch to the correct sub band by:
464 -)))
409 +903.9 - SF7BW125 to SF10BW125
465 465  
466 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
467 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
411 +904.1 - SF7BW125 to SF10BW125
468 468  
413 +904.3 - SF7BW125 to SF10BW125
414 +
415 +904.5 - SF7BW125 to SF10BW125
416 +
417 +904.7 - SF7BW125 to SF10BW125
418 +
419 +904.9 - SF7BW125 to SF10BW125
420 +
421 +905.1 - SF7BW125 to SF10BW125
422 +
423 +905.3 - SF7BW125 to SF10BW125
424 +
425 +
426 +(% style="color:blue" %)**Downlink:**
427 +
428 +923.3 - SF7BW500 to SF12BW500
429 +
430 +923.9 - SF7BW500 to SF12BW500
431 +
432 +924.5 - SF7BW500 to SF12BW500
433 +
434 +925.1 - SF7BW500 to SF12BW500
435 +
436 +925.7 - SF7BW500 to SF12BW500
437 +
438 +926.3 - SF7BW500 to SF12BW500
439 +
440 +926.9 - SF7BW500 to SF12BW500
441 +
442 +927.5 - SF7BW500 to SF12BW500
443 +
444 +923.3 - SF12BW500(RX2 downlink only)
445 +
446 +
447 +
448 +)))
449 +
469 469  === 2.6.3  CN470-510 (CN470) ===
470 470  
471 471  (((
... ... @@ -554,28 +554,54 @@
554 554  
555 555  
556 556  
557 -
558 558  === 2.6.4  AU915-928(AU915) ===
559 559  
560 560  (((
561 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
562 -)))
541 +Default use CHE=2
563 563  
564 -(((
565 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
566 -)))
543 +(% style="color:blue" %)**Uplink:**
567 567  
568 -(((
569 -
570 -)))
545 +916.8 - SF7BW125 to SF12BW125
571 571  
572 -(((
573 -After Join success, the end node will switch to the correct sub band by:
574 -)))
547 +917.0 - SF7BW125 to SF12BW125
575 575  
576 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
577 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
549 +917.2 - SF7BW125 to SF12BW125
578 578  
551 +917.4 - SF7BW125 to SF12BW125
552 +
553 +917.6 - SF7BW125 to SF12BW125
554 +
555 +917.8 - SF7BW125 to SF12BW125
556 +
557 +918.0 - SF7BW125 to SF12BW125
558 +
559 +918.2 - SF7BW125 to SF12BW125
560 +
561 +
562 +(% style="color:blue" %)**Downlink:**
563 +
564 +923.3 - SF7BW500 to SF12BW500
565 +
566 +923.9 - SF7BW500 to SF12BW500
567 +
568 +924.5 - SF7BW500 to SF12BW500
569 +
570 +925.1 - SF7BW500 to SF12BW500
571 +
572 +925.7 - SF7BW500 to SF12BW500
573 +
574 +926.3 - SF7BW500 to SF12BW500
575 +
576 +926.9 - SF7BW500 to SF12BW500
577 +
578 +927.5 - SF7BW500 to SF12BW500
579 +
580 +923.3 - SF12BW500(RX2 downlink only)
581 +
582 +
583 +
584 +)))
585 +
579 579  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
580 580  
581 581  (((
... ... @@ -684,7 +684,6 @@
684 684  
685 685  
686 686  
687 -
688 688  === 2.6.6  KR920-923 (KR920) ===
689 689  
690 690  (((
... ... @@ -757,7 +757,6 @@
757 757  
758 758  
759 759  
760 -
761 761  === 2.6.7  IN865-867 (IN865) ===
762 762  
763 763  (((
... ... @@ -794,18 +794,21 @@
794 794  
795 795  
796 796  
797 -
798 798  == 2.7  LED Indicator ==
799 799  
800 -The LLDS12 has an internal LED which is to show the status of different state.
804 +The LDDS75 has an internal LED which is to show the status of different state.
801 801  
802 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
806 +
807 +* Blink once when device power on.
808 +* The device detects the sensor and flashes 5 times.
809 +* Solid ON for 5 seconds once device successful Join the network.
803 803  * Blink once when device transmit a packet.
804 804  
812 +
805 805  == 2.8  ​Firmware Change Log ==
806 806  
807 807  
808 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
816 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
809 809  
810 810  
811 811  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -812,71 +812,58 @@
812 812  
813 813  
814 814  
815 -= 3LiDAR ToF Measurement =
823 +== 2.9  Mechanical ==
816 816  
817 -== 3.1 Principle of Distance Measurement ==
818 818  
819 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
826 +[[image:image-20220610172003-1.png]]
820 820  
821 -[[image:1654831757579-263.png]]
828 +[[image:image-20220610172003-2.png]]
822 822  
823 823  
831 +== 2.10  Battery Analysis ==
824 824  
825 -== 3.2 Distance Measurement Characteristics ==
833 +=== 2.10.1  Battery Type ===
826 826  
827 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
835 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
828 828  
829 -[[image:1654831774373-275.png]]
830 830  
838 +The battery related documents as below:
831 831  
832 -(((
833 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
840 +* (((
841 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
834 834  )))
835 -
836 -(((
837 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
843 +* (((
844 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
838 838  )))
839 -
840 -(((
841 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
846 +* (((
847 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
842 842  )))
843 843  
850 + [[image:image-20220610172400-3.png]]
844 844  
845 -(((
846 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
847 -)))
848 848  
849 849  
850 -[[image:1654831797521-720.png]]
854 +=== 2.10.2  Replace the battery ===
851 851  
856 +(((
857 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
858 +)))
852 852  
853 853  (((
854 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
861 +
855 855  )))
856 856  
857 -[[image:1654831810009-716.png]]
858 -
859 -
860 860  (((
861 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
865 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
862 862  )))
863 863  
864 864  
865 865  
866 -== 3.3 Notice of usage: ==
870 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
867 867  
868 -Possible invalid /wrong reading for LiDAR ToF tech:
869 -
870 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
871 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
872 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
873 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
874 -
875 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
876 -
877 877  (((
878 878  (((
879 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
874 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
880 880  )))
881 881  )))
882 882  
... ... @@ -897,7 +897,7 @@
897 897  )))
898 898  
899 899  (((
900 -There are two kinds of commands to configure LLDS12, they are:
895 +There are two kinds of commands to configure LDDS75, they are:
901 901  )))
902 902  )))
903 903  
... ... @@ -938,55 +938,49 @@
938 938  
939 939  * (((
940 940  (((
941 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
936 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
942 942  )))
943 943  )))
944 944  
945 945  (((
946 946  (((
947 -These commands only valid for LLDS12, as below:
942 +These commands only valid for LDDS75, as below:
948 948  )))
949 949  )))
950 950  
951 951  
952 952  
953 -== 4.1  Set Transmit Interval Time ==
948 +== 3.1  Access AT Commands ==
954 954  
955 -Feature: Change LoRaWAN End Node Transmit Interval.
950 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
956 956  
957 -(% style="color:#037691" %)**AT Command: AT+TDC**
952 +[[image:image-20220610172924-4.png||height="483" width="988"]]
958 958  
959 -[[image:image-20220607171554-8.png]]
960 960  
955 +Or if you have below board, use below connection:
961 961  
962 -(((
963 -(% style="color:#037691" %)**Downlink Command: 0x01**
964 -)))
965 965  
966 -(((
967 -Format: Command Code (0x01) followed by 3 bytes time value.
968 -)))
958 +[[image:image-20220610172924-5.png]]
969 969  
970 -(((
971 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
972 -)))
973 973  
974 -* (((
975 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
976 -)))
977 -* (((
978 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
979 -)))
961 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
980 980  
981 -== 4.2  Set Interrupt Mode ==
982 982  
983 -Feature, Set Interrupt mode for GPIO_EXIT.
964 + [[image:image-20220610172924-6.png||height="601" width="860"]]
984 984  
985 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
986 986  
987 -[[image:image-20220610105806-2.png]]
988 988  
968 +== 3.2  Set Transmit Interval Time ==
989 989  
970 +Feature: Change LoRaWAN End Node Transmit Interval.
971 +
972 +(% style="color:#037691" %)**AT Command: AT+TDC**
973 +
974 +[[image:image-20220610173409-7.png]]
975 +
976 +
977 +
978 +
990 990  (((
991 991  (% style="color:#037691" %)**Downlink Command: 0x06**
992 992  )))
... ... @@ -1006,7 +1006,7 @@
1006 1006  Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1007 1007  )))
1008 1008  
1009 -== 4.3  Get Firmware Version Info ==
998 +== 3.3  Get Firmware Version Info ==
1010 1010  
1011 1011  Feature: use downlink to get firmware version.
1012 1012  
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0