Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2024/03/07 08:41
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 9 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -57,6 +57,8 @@ 57 57 * IP66 Waterproof Enclosure 58 58 * 4000mAh or 8500mAh Battery for long term use 59 59 60 + 61 + 60 60 == 1.3 Specification == 61 61 62 62 === 1.3.1 Rated environmental conditions === ... ... @@ -71,15 +71,20 @@ 71 71 72 72 === 1.3.2 Effective measurement range Reference beam pattern === 73 73 74 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** [[image:image-20220610155021-2.png||height="440" width="1189"]]76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 75 75 76 76 77 77 78 - **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]80 +[[image:1654852253176-749.png]] 79 79 80 -(% style="display:none" %) (%%) 81 81 83 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 82 82 85 + 86 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 87 + 88 + 89 + 83 83 == 1.5 Applications == 84 84 85 85 * Horizontal distance measurement ... ... @@ -93,6 +93,7 @@ 93 93 * Bottom water level monitoring 94 94 95 95 103 + 96 96 == 1.6 Pin mapping and power on == 97 97 98 98 ... ... @@ -99,6 +99,7 @@ 99 99 [[image:1654847583902-256.png]] 100 100 101 101 110 + 102 102 = 2. Configure LDDS75 to connect to LoRaWAN network = 103 103 104 104 == 2.1 How it works == ... ... @@ -112,6 +112,7 @@ 112 112 ))) 113 113 114 114 124 + 115 115 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 116 116 117 117 ((( ... ... @@ -184,7 +184,7 @@ 184 184 == 2.3 Uplink Payload == 185 185 186 186 ((( 187 -LDDS75 will uplink payload via LoRaWAN with below payload format: 197 +LDDS75 will uplink payload via LoRaWAN with below payload format: 188 188 189 189 Uplink payload includes in total 4 bytes. 190 190 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance ... ... @@ -206,7 +206,7 @@ 206 206 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 207 207 )))|[[Sensor Flag>>path:#Sensor_Flag]] 208 208 209 -[[image:16548 33689380-972.png]]219 +[[image:1654850511545-399.png]] 210 210 211 211 212 212 ... ... @@ -213,7 +213,7 @@ 213 213 === 2.3.1 Battery Info === 214 214 215 215 216 -Check the battery voltage for L LDS12.226 +Check the battery voltage for LDDS75. 217 217 218 218 Ex1: 0x0B45 = 2885mV 219 219 ... ... @@ -221,49 +221,22 @@ 221 221 222 222 223 223 224 -=== 2.3.2 D S18B20 Temperaturesensor===234 +=== 2.3.2 Distance === 225 225 226 - Thisisoptional, usercanconnectexternalDS18B20sensor to the +3.3v, 1-wireand GND pin . and this field will report temperature.236 +Get the distance. Flat object range 280mm - 7500mm. 227 227 238 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 228 228 229 -**Example**: 230 230 231 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 241 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 242 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 232 232 233 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 234 234 235 235 246 +=== 2.3.3 Interrupt Pin === 236 236 237 -=== 2.3.3 Distance === 238 - 239 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 240 - 241 - 242 -**Example**: 243 - 244 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 245 - 246 - 247 - 248 -=== 2.3.4 Distance signal strength === 249 - 250 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 251 - 252 - 253 -**Example**: 254 - 255 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 256 - 257 -Customers can judge whether they need to adjust the environment based on the signal strength. 258 - 259 - 260 - 261 -=== 2.3.5 Interrupt Pin === 262 - 263 263 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 264 264 265 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 266 - 267 267 **Example:** 268 268 269 269 0x00: Normal uplink packet. ... ... @@ -272,52 +272,44 @@ 272 272 273 273 274 274 275 -=== 2.3. 6LiDARtemp ===258 +=== 2.3.4 DS18B20 Temperature sensor === 276 276 277 - Characterizetheinternaltemperature valueofthesensor.260 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 278 278 279 -**Example: ** 280 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 281 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 262 +**Example**: 282 282 264 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 283 283 266 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 284 284 285 -= ==2.3.7MessageType===268 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 286 286 287 -((( 288 -For a normal uplink payload, the message type is always 0x01. 289 -))) 290 290 291 -((( 292 -Valid Message Type: 293 -))) 294 294 272 +=== 2.3.5 Sensor Flag === 295 295 296 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %) 297 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 298 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 299 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 274 +0x01: Detect Ultrasonic Sensor 300 300 301 - ===2.3.8 Decodepayload inTheThingsNetwork ===276 +0x00: No Ultrasonic Sensor 302 302 278 + 279 +=== 280 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 281 + 303 303 While using TTN network, you can add the payload format to decode the payload. 304 304 305 305 306 -[[image:16545 92762713-715.png]]285 +[[image:1654850829385-439.png]] 307 307 308 -((( 309 -The payload decoder function for TTN is here: 310 -))) 287 +The payload decoder function for TTN V3 is here: 311 311 312 -((( 313 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]] 314 -))) 289 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 315 315 316 316 317 317 318 318 == 2.4 Uplink Interval == 319 319 320 -The L LDS12by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]295 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 321 321 322 322 323 323 ... ... @@ -348,47 +348,25 @@ 348 348 349 349 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 350 350 351 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12product.**326 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 352 352 353 -[[image:16548 32691989-514.png]]328 +[[image:1654851029373-510.png]] 354 354 355 355 356 - [[image:1654592833877-762.png]]331 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 357 357 333 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 358 358 359 -[[image:1654832740634-933.png]] 360 360 361 361 362 - 363 -((( 364 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode** 365 -))) 366 - 367 -((( 368 - 369 -))) 370 - 371 -[[image:1654833065139-942.png]] 372 - 373 - 374 - 375 -[[image:1654833092678-390.png]] 376 - 377 - 378 - 379 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 380 - 381 -[[image:1654833163048-332.png]] 382 - 383 - 384 - 385 385 == 2.6 Frequency Plans == 386 386 387 387 ((( 388 -The L LDS12uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.340 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 389 389 ))) 390 390 391 391 344 + 392 392 === 2.6.1 EU863-870 (EU868) === 393 393 394 394 ((( ... ... @@ -452,20 +452,51 @@ 452 452 === 2.6.2 US902-928(US915) === 453 453 454 454 ((( 455 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 456 -))) 408 +Used in USA, Canada and South America. Default use CHE=2 457 457 458 -((( 459 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 460 -))) 410 +(% style="color:blue" %)**Uplink:** 461 461 462 -((( 463 -After Join success, the end node will switch to the correct sub band by: 464 -))) 412 +903.9 - SF7BW125 to SF10BW125 465 465 466 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 467 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 414 +904.1 - SF7BW125 to SF10BW125 468 468 416 +904.3 - SF7BW125 to SF10BW125 417 + 418 +904.5 - SF7BW125 to SF10BW125 419 + 420 +904.7 - SF7BW125 to SF10BW125 421 + 422 +904.9 - SF7BW125 to SF10BW125 423 + 424 +905.1 - SF7BW125 to SF10BW125 425 + 426 +905.3 - SF7BW125 to SF10BW125 427 + 428 + 429 +(% style="color:blue" %)**Downlink:** 430 + 431 +923.3 - SF7BW500 to SF12BW500 432 + 433 +923.9 - SF7BW500 to SF12BW500 434 + 435 +924.5 - SF7BW500 to SF12BW500 436 + 437 +925.1 - SF7BW500 to SF12BW500 438 + 439 +925.7 - SF7BW500 to SF12BW500 440 + 441 +926.3 - SF7BW500 to SF12BW500 442 + 443 +926.9 - SF7BW500 to SF12BW500 444 + 445 +927.5 - SF7BW500 to SF12BW500 446 + 447 +923.3 - SF12BW500(RX2 downlink only) 448 + 449 + 450 + 451 +))) 452 + 469 469 === 2.6.3 CN470-510 (CN470) === 470 470 471 471 ((( ... ... @@ -554,28 +554,54 @@ 554 554 555 555 556 556 557 - 558 558 === 2.6.4 AU915-928(AU915) === 559 559 560 560 ((( 561 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 562 -))) 544 +Default use CHE=2 563 563 564 -((( 565 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 566 -))) 546 +(% style="color:blue" %)**Uplink:** 567 567 568 -((( 569 - 570 -))) 548 +916.8 - SF7BW125 to SF12BW125 571 571 572 -((( 573 -After Join success, the end node will switch to the correct sub band by: 574 -))) 550 +917.0 - SF7BW125 to SF12BW125 575 575 576 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 577 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 552 +917.2 - SF7BW125 to SF12BW125 578 578 554 +917.4 - SF7BW125 to SF12BW125 555 + 556 +917.6 - SF7BW125 to SF12BW125 557 + 558 +917.8 - SF7BW125 to SF12BW125 559 + 560 +918.0 - SF7BW125 to SF12BW125 561 + 562 +918.2 - SF7BW125 to SF12BW125 563 + 564 + 565 +(% style="color:blue" %)**Downlink:** 566 + 567 +923.3 - SF7BW500 to SF12BW500 568 + 569 +923.9 - SF7BW500 to SF12BW500 570 + 571 +924.5 - SF7BW500 to SF12BW500 572 + 573 +925.1 - SF7BW500 to SF12BW500 574 + 575 +925.7 - SF7BW500 to SF12BW500 576 + 577 +926.3 - SF7BW500 to SF12BW500 578 + 579 +926.9 - SF7BW500 to SF12BW500 580 + 581 +927.5 - SF7BW500 to SF12BW500 582 + 583 +923.3 - SF12BW500(RX2 downlink only) 584 + 585 + 586 + 587 +))) 588 + 579 579 === 2.6.5 AS920-923 & AS923-925 (AS923) === 580 580 581 581 ((( ... ... @@ -684,7 +684,6 @@ 684 684 685 685 686 686 687 - 688 688 === 2.6.6 KR920-923 (KR920) === 689 689 690 690 ((( ... ... @@ -757,7 +757,6 @@ 757 757 758 758 759 759 760 - 761 761 === 2.6.7 IN865-867 (IN865) === 762 762 763 763 ((( ... ... @@ -794,18 +794,22 @@ 794 794 795 795 796 796 797 - 798 798 == 2.7 LED Indicator == 799 799 800 -The L LDS12has an internal LED which is to show the status of different state.807 +The LDDS75 has an internal LED which is to show the status of different state. 801 801 802 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected. 809 + 810 +* Blink once when device power on. 811 +* The device detects the sensor and flashes 5 times. 812 +* Solid ON for 5 seconds once device successful Join the network. 803 803 * Blink once when device transmit a packet. 804 804 815 + 816 + 805 805 == 2.8 Firmware Change Log == 806 806 807 807 808 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/L LDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]820 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 809 809 810 810 811 811 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] ... ... @@ -812,68 +812,55 @@ 812 812 813 813 814 814 815 -= 3.LiDAR ToFMeasurement=827 +== 2.9 Mechanical == 816 816 817 -== 3.1 Principle of Distance Measurement == 818 818 819 - The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contactingobject.Theproduct obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.830 +[[image:image-20220610172003-1.png]] 820 820 821 -[[image: 1654831757579-263.png]]832 +[[image:image-20220610172003-2.png]] 822 822 823 823 835 +== 2.10 Battery Analysis == 824 824 825 -== 3.2Distance MeasurementCharacteristics==837 +=== 2.10.1 Battery Type === 826 826 827 - Withoptimization oflight pathand algorithm,TheLiDARprobehas minimizedinfluence fromexternalenvironmentondistancemeasurementperformance.Despite that,the rangeofdistancemeasurementmaystillbeaffectedbytheenvironment illuminationintensityandthe reflectivityofdetection object. As showninbelow:839 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 828 828 829 -[[image:1654831774373-275.png]] 830 830 842 +The battery related documents as below: 831 831 832 -((( 833 - (%style="color:blue"%)**① **(%%)Representsthe detectionblind zone of The LiDARprobe, 0-10cm,withinwhichtheoutput data is unreliable.844 +* ((( 845 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 834 834 ))) 835 - 836 -((( 837 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 847 +* ((( 848 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 838 838 ))) 839 - 840 -((( 841 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 850 +* ((( 851 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 842 842 ))) 843 843 854 + [[image:image-20220610172400-3.png]] 844 844 845 -((( 846 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 847 -))) 848 848 849 849 850 - [[image:1654831797521-720.png]]858 +=== 2.10.2 Replace the battery === 851 851 860 +((( 861 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 862 +))) 852 852 853 853 ((( 854 - Inthe formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.865 + 855 855 ))) 856 856 857 -[[image:1654831810009-716.png]] 858 - 859 - 860 860 ((( 861 - If the lightspotreachestwoobjectswithdifferent distances,asshown inFigure3, theoutput distancevaluewillbeavaluebetween theactual distancevaluesofthe twoobjects.Forahighaccuracy requirementinpractice,theabove situation should benoticedtoavoid themeasurementrror.869 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 862 862 ))) 863 863 864 864 865 865 866 -= =3.3Notice ofusage:==874 += 3. Configure LLDS12 via AT Command or LoRaWAN Downlink = 867 867 868 -Possible invalid /wrong reading for LiDAR ToF tech: 869 - 870 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 871 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong. 872 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 873 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window. 874 - 875 -= 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 876 - 877 877 ((( 878 878 ((( 879 879 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
- 1654850511545-399.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850829385-439.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654851029373-510.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654852175653-550.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.2 KB - Content
- 1654852253176-749.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.6 KB - Content
- image-20220610165129-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +50.5 KB - Content
- image-20220610172003-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.9 KB - Content
- image-20220610172003-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.6 KB - Content
- image-20220610172400-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content