Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Xiaoling on 2025/04/27 16:45
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 14 removed)
- 1654846127817-788.png
- 1654847051249-359.png
- 1654847583902-256.png
- 1654848616367-242.png
- image-20220610154839-1.png
- image-20220610155021-2.png
- image-20220610155021-3.png
- image-20220610161353-4.png
- image-20220610161353-5.png
- image-20220610161353-6.png
- image-20220610161353-7.png
- image-20220610161538-8.png
- image-20220610161538-9.png
- image-20220610161724-10.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LD DS75-DetectionSensor User Manual1 +LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,8 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image: 1654846127817-788.png]]2 +[[image:image-20220610095606-1.png]] 3 3 4 + 4 4 **Contents:** 5 5 7 +{{toc/}} 6 6 7 7 8 8 ... ... @@ -12,33 +12,38 @@ 12 12 13 13 = 1. Introduction = 14 14 15 -== 1.1 What is LoRaWAN Distance DetectionSensor ==17 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 16 16 17 17 ((( 18 18 19 19 20 20 ((( 21 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 23 +The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 24 +))) 22 22 26 +((( 27 +The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 +))) 23 23 24 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 30 +((( 31 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 32 +))) 25 25 34 +((( 35 +The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 +))) 26 26 27 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 38 +((( 39 +LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 40 +))) 28 28 29 - 30 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 - 32 - 33 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 - 35 - 36 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 42 +((( 43 +Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 ))) 39 39 40 40 41 -[[image:16548 47051249-359.png]]48 +[[image:1654826306458-414.png]] 42 42 43 43 44 44 ... ... @@ -45,45 +45,41 @@ 45 45 == 1.2 Features == 46 46 47 47 * LoRaWAN 1.0.3 Class A 48 -* Ultra 49 -* DistanceDetectionbyUltrasonic technology50 -* Flatobject range280mm-7500mm51 -* Accuracy :±(1cm+S*0.3%) (S: Distance)52 -* Cable Length : 25cm55 +* Ultra-low power consumption 56 +* Laser technology for distance detection 57 +* Operating Range - 0.1m~~12m① 58 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m) 59 +* Monitor Battery Level 53 53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 54 * AT Commands to change parameters 55 55 * Uplink on periodically 56 56 * Downlink to change configure 57 -* IP66 Waterproof Enclosure 58 -* 4000mAh or 8500mAh Battery for long term use 64 +* 8500mAh Battery for long term use 59 59 60 -== 1.3 Specification == 66 +== 1.3 Probe Specification == 61 61 62 -=== 1.3.1 Rated environmental conditions === 68 +* Storage temperature :-20℃~~75℃ 69 +* Operating temperature - -20℃~~60℃ 70 +* Operating Range - 0.1m~~12m① 71 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m) 72 +* Distance resolution - 5mm 73 +* Ambient light immunity - 70klux 74 +* Enclosure rating - IP65 75 +* Light source - LED 76 +* Central wavelength - 850nm 77 +* FOV - 3.6° 78 +* Material of enclosure - ABS+PC 79 +* Wire length - 25cm 63 63 64 - [[image:image-20220610154839-1.png]]81 +== 1.4 Probe Dimension == 65 65 66 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 67 67 68 - **b. When the ambient temperatureis40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**84 +[[image:1654827224480-952.png]] 69 69 70 70 71 - 72 -=== 1.3.2 Effective measurement range Reference beam pattern === 73 - 74 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]] 75 - 76 - 77 - 78 -**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]] 79 - 80 -(% style="display:none" %) (%%) 81 - 82 - 83 83 == 1.5 Applications == 84 84 85 85 * Horizontal distance measurement 86 -* Liquid level measurement 87 87 * Parking management system 88 88 * Object proximity and presence detection 89 89 * Intelligent trash can management system ... ... @@ -90,25 +90,23 @@ 90 90 * Robot obstacle avoidance 91 91 * Automatic control 92 92 * Sewer 93 -* Bottom water level monitoring 94 94 95 - 96 96 == 1.6 Pin mapping and power on == 97 97 98 98 99 -[[image:16548 47583902-256.png]]100 +[[image:1654827332142-133.png]] 100 100 101 101 102 -= 2. Configure LD DS75to connect to LoRaWAN network =103 += 2. Configure LLDS12 to connect to LoRaWAN network = 103 103 104 104 == 2.1 How it works == 105 105 106 106 ((( 107 -The LD DS75is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. Ifthereis coverage of the LoRaWAN network,it will automatically join the network via OTAA and start to send the sensor value108 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 108 108 ))) 109 109 110 110 ((( 111 -In case you can 't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.112 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12. 112 112 ))) 113 113 114 114 ... ... @@ -119,7 +119,7 @@ 119 119 ))) 120 120 121 121 ((( 122 -[[image:16548 48616367-242.png]]123 +[[image:1654827857527-556.png]] 123 123 ))) 124 124 125 125 ((( ... ... @@ -127,50 +127,50 @@ 127 127 ))) 128 128 129 129 ((( 130 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from L DDS75.131 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01. 131 131 ))) 132 132 133 133 ((( 134 -Each L DDS75is shipped with a sticker with the default devicekeys,user can find thissticker in thebox. it looks likebelow.135 +Each LSPH01 is shipped with a sticker with the default device EUI as below: 135 135 ))) 136 136 137 137 [[image:image-20220607170145-1.jpeg]] 138 138 139 139 140 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 141 141 142 - Enter thesekeysin the LoRaWAN Server portal. Below is TTNV3screen shot:142 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 143 143 144 -**Add APP EUI in the application** 145 145 146 - [[image:image-20220610161353-4.png]]145 +**Register the device** 147 147 148 -[[image:image-20220610161353-5.png]] 149 149 150 -[[image: image-20220610161353-6.png]]148 +[[image:1654592600093-601.png]] 151 151 152 152 153 -[[image:image-20220610161353-7.png]] 154 154 152 +**Add APP EUI and DEV EUI** 155 155 156 - You can also choose to create the devicemanually.154 +[[image:1654592619856-881.png]] 157 157 158 - [[image:image-20220610161538-8.png]] 159 159 160 160 158 +**Add APP EUI in the application** 161 161 162 - **Add APP KEYand DEV EUI**160 +[[image:1654592632656-512.png]] 163 163 164 -[[image:image-20220610161538-9.png]] 165 165 166 166 164 +**Add APP KEY** 167 167 168 - (% style="color:blue" %)**Step2**(%%): Power on LDDS75166 +[[image:1654592653453-934.png]] 169 169 170 170 169 +(% style="color:blue" %)**Step 2**(%%): Power on LLDS12 170 + 171 + 171 171 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 172 172 173 -[[image:image-202206 10161724-10.png]]174 +[[image:image-20220607170442-2.png]] 174 174 175 175 176 176 ((( ... ... @@ -830,37 +830,25 @@ 830 830 [[image:1654831774373-275.png]] 831 831 832 832 833 -((( 834 834 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 835 -))) 836 836 837 -((( 838 838 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 839 -))) 840 840 841 -((( 842 842 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 843 -))) 844 844 845 845 846 -((( 847 847 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 848 -))) 849 849 850 850 851 851 [[image:1654831797521-720.png]] 852 852 853 853 854 -((( 855 855 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 856 -))) 857 857 858 858 [[image:1654831810009-716.png]] 859 859 860 860 861 -((( 862 862 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 863 -))) 864 864 865 865 866 866 ... ... @@ -873,81 +873,57 @@ 873 873 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 874 874 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window. 875 875 865 + 866 + 876 876 = 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 877 877 878 878 ((( 879 -((( 880 880 Use can configure LLDS12 via AT Command or LoRaWAN Downlink. 881 881 ))) 882 -))) 883 883 884 884 * ((( 885 -((( 886 886 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]]. 887 887 ))) 888 -))) 889 889 * ((( 890 -((( 891 891 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 892 892 ))) 893 -))) 894 894 895 895 ((( 896 -((( 897 897 898 -))) 899 899 900 -((( 901 901 There are two kinds of commands to configure LLDS12, they are: 902 902 ))) 903 -))) 904 904 905 905 * ((( 906 -((( 907 907 (% style="color:#4f81bd" %)** General Commands**. 908 908 ))) 909 -))) 910 910 911 911 ((( 912 -((( 913 913 These commands are to configure: 914 914 ))) 915 -))) 916 916 917 917 * ((( 918 -((( 919 919 General system settings like: uplink interval. 920 920 ))) 921 -))) 922 922 * ((( 923 -((( 924 924 LoRaWAN protocol & radio related command. 925 925 ))) 926 -))) 927 927 928 928 ((( 929 -((( 930 930 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 931 931 ))) 932 -))) 933 933 934 934 ((( 935 -((( 936 936 937 937 ))) 938 -))) 939 939 940 940 * ((( 941 -((( 942 942 (% style="color:#4f81bd" %)** Commands special design for LLDS12** 943 943 ))) 944 -))) 945 945 946 946 ((( 947 -((( 948 948 These commands only valid for LLDS12, as below: 949 949 ))) 950 -))) 951 951 952 952 953 953 ... ... @@ -960,6 +960,7 @@ 960 960 [[image:image-20220607171554-8.png]] 961 961 962 962 928 + 963 963 ((( 964 964 (% style="color:#037691" %)**Downlink Command: 0x01** 965 965 ))) ... ... @@ -977,6 +977,9 @@ 977 977 ))) 978 978 * ((( 979 979 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 946 + 947 + 948 + 980 980 ))) 981 981 982 982 == 4.2 Set Interrupt Mode == ... ... @@ -1203,14 +1203,10 @@ 1203 1203 1204 1204 1205 1205 ((( 1206 -((( 1207 1207 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12. 1208 -))) 1209 1209 1210 -((( 1211 1211 LLDS12 will output system info once power on as below: 1212 1212 ))) 1213 -))) 1214 1214 1215 1215 1216 1216 [[image:1654593712276-618.png]] ... ... @@ -1231,9 +1231,7 @@ 1231 1231 == 8.1 AT Commands input doesn’t work == 1232 1232 1233 1233 1234 -((( 1235 1235 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1236 -))) 1237 1237 1238 1238 1239 1239 == 8.2 Significant error between the output distant value of LiDAR and actual distance ==
- 1654846127817-788.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -107.3 KB - Content
- 1654847051249-359.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -76.8 KB - Content
- 1654847583902-256.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1654848616367-242.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -76.8 KB - Content
- image-20220610154839-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.3 KB - Content
- image-20220610155021-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -164.8 KB - Content
- image-20220610155021-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -181.8 KB - Content
- image-20220610161353-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -32.2 KB - Content
- image-20220610161353-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.7 KB - Content
- image-20220610161353-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20220610161353-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.1 KB - Content
- image-20220610161538-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.2 KB - Content
- image-20220610161538-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -28.7 KB - Content
- image-20220610161724-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -180.0 KB - Content