Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2024/03/07 08:41
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 18 added, 0 removed)
- 1654849068701-275.png
- 1654850511545-399.png
- 1654850829385-439.png
- 1654851029373-510.png
- 1654852175653-550.png
- 1654852253176-749.png
- image-20220610161353-7.png
- image-20220610161538-8.png
- image-20220610161538-9.png
- image-20220610161724-10.png
- image-20220610165129-11.png
- image-20220610172003-1.png
- image-20220610172003-2.png
- image-20220610172400-3.png
- image-20220610172924-4.png
- image-20220610172924-5.png
- image-20220610172924-6.png
- image-20220610173409-7.png
Details
- Page properties
-
- Content
-
... ... @@ -71,15 +71,20 @@ 71 71 72 72 === 1.3.2 Effective measurement range Reference beam pattern === 73 73 74 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** [[image:image-20220610155021-2.png||height="440" width="1189"]]74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 75 75 76 76 77 77 78 - **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]78 +[[image:1654852253176-749.png]] 79 79 80 -(% style="display:none" %) (%%) 81 81 81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 82 82 83 + 84 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 85 + 86 + 87 + 83 83 == 1.5 Applications == 84 84 85 85 * Horizontal distance measurement ... ... @@ -92,7 +92,6 @@ 92 92 * Sewer 93 93 * Bottom water level monitoring 94 94 95 - 96 96 == 1.6 Pin mapping and power on == 97 97 98 98 ... ... @@ -99,6 +99,7 @@ 99 99 [[image:1654847583902-256.png]] 100 100 101 101 106 + 102 102 = 2. Configure LDDS75 to connect to LoRaWAN network = 103 103 104 104 == 2.1 How it works == ... ... @@ -112,6 +112,7 @@ 112 112 ))) 113 113 114 114 120 + 115 115 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 116 116 117 117 ((( ... ... @@ -141,44 +141,43 @@ 141 141 142 142 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 143 143 150 +**Add APP EUI in the application** 144 144 145 - **Register the device**152 +[[image:image-20220610161353-4.png]] 146 146 154 +[[image:image-20220610161353-5.png]] 147 147 148 -[[image: 1654592600093-601.png]]156 +[[image:image-20220610161353-6.png]] 149 149 150 150 159 +[[image:image-20220610161353-7.png]] 151 151 152 -**Add APP EUI and DEV EUI** 153 153 154 - [[image:1654592619856-881.png]]162 +You can also choose to create the device manually. 155 155 164 + [[image:image-20220610161538-8.png]] 156 156 157 157 158 -**Add APP EUI in the application** 159 159 160 - [[image:1654592632656-512.png]]168 +**Add APP KEY and DEV EUI** 161 161 170 +[[image:image-20220610161538-9.png]] 162 162 163 163 164 -**Add APP KEY** 165 165 166 - [[image:1654592653453-934.png]]174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 167 167 168 168 169 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12 170 - 171 - 172 172 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 173 173 174 -[[image:image-2022060 7170442-2.png]]179 +[[image:image-20220610161724-10.png]] 175 175 176 176 177 177 ((( 178 -(% style="color:blue" %)**Step 3**(%%)**:** The L LDS12will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 179 179 ))) 180 180 181 -[[image:16548 33501679-968.png]]186 +[[image:1654849068701-275.png]] 182 182 183 183 184 184 ... ... @@ -185,11 +185,10 @@ 185 185 == 2.3 Uplink Payload == 186 186 187 187 ((( 188 -LLDS12 will uplink payload via LoRaWAN with below payload format: 189 -))) 193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 190 190 191 - (((192 - Uplink payload includesintotal11bytes.195 +Uplink payload includes in total 4 bytes. 196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 193 193 ))) 194 194 195 195 ((( ... ... @@ -199,23 +199,23 @@ 199 199 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 200 200 |=(% style="width: 62.5px;" %)((( 201 201 **Size (bytes)** 202 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1** 203 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 204 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 205 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 206 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 207 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 208 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 209 -))) 206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 208 +[[Distance>>||anchor="H2.3.3A0Distance"]] 210 210 211 -[[image:1654833689380-972.png]] 210 +(unit: mm) 211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 213 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 212 212 215 +[[image:1654850511545-399.png]] 213 213 214 214 218 + 215 215 === 2.3.1 Battery Info === 216 216 217 217 218 -Check the battery voltage for L LDS12.222 +Check the battery voltage for LDDS75. 219 219 220 220 Ex1: 0x0B45 = 2885mV 221 221 ... ... @@ -223,49 +223,20 @@ 223 223 224 224 225 225 226 -=== 2.3.2 D S18B20 Temperaturesensor===230 +=== 2.3.2 Distance === 227 227 228 - Thisisoptional, usercanconnectexternalDS18B20sensor to the +3.3v, 1-wireand GND pin . and this field will report temperature.232 +Get the distance. Flat object range 280mm - 7500mm. 229 229 234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 230 230 231 -**Example**: 232 232 233 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 234 234 235 - If payload is: FF3FH : (FF3F & FC00==1) , temp=(FF3FH - 65536)/10 = -19.3degrees.240 +=== 2.3.3 Interrupt Pin === 236 236 237 - 238 - 239 -=== 2.3.3 Distance === 240 - 241 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 242 - 243 - 244 -**Example**: 245 - 246 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 247 - 248 - 249 - 250 -=== 2.3.4 Distance signal strength === 251 - 252 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 253 - 254 - 255 -**Example**: 256 - 257 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 258 - 259 -Customers can judge whether they need to adjust the environment based on the signal strength. 260 - 261 - 262 - 263 -=== 2.3.5 Interrupt Pin === 264 - 265 265 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 266 266 267 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 268 - 269 269 **Example:** 270 270 271 271 0x00: Normal uplink packet. ... ... @@ -274,52 +274,44 @@ 274 274 275 275 276 276 277 -=== 2.3. 6LiDARtemp ===252 +=== 2.3.4 DS18B20 Temperature sensor === 278 278 279 - Characterizetheinternaltemperature valueofthesensor.254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 280 280 281 -**Example: ** 282 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 283 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 256 +**Example**: 284 284 258 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 285 285 260 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 286 286 287 -= ==2.3.7MessageType===262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 288 288 289 -((( 290 -For a normal uplink payload, the message type is always 0x01. 291 -))) 292 292 293 -((( 294 -Valid Message Type: 295 -))) 296 296 266 +=== 2.3.5 Sensor Flag === 297 297 298 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %) 299 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 300 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 301 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 268 +0x01: Detect Ultrasonic Sensor 302 302 303 - ===2.3.8 Decodepayload inTheThingsNetwork ===270 +0x00: No Ultrasonic Sensor 304 304 272 + 273 +=== 274 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 275 + 305 305 While using TTN network, you can add the payload format to decode the payload. 306 306 307 307 308 -[[image:16545 92762713-715.png]]279 +[[image:1654850829385-439.png]] 309 309 310 -((( 311 -The payload decoder function for TTN is here: 312 -))) 281 +The payload decoder function for TTN V3 is here: 313 313 314 -((( 315 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]] 316 -))) 283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 317 317 318 318 319 319 320 320 == 2.4 Uplink Interval == 321 321 322 -The L LDS12by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 323 323 324 324 325 325 ... ... @@ -350,47 +350,25 @@ 350 350 351 351 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 352 352 353 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12product.**320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 354 354 355 -[[image:16548 32691989-514.png]]322 +[[image:1654851029373-510.png]] 356 356 357 357 358 - [[image:1654592833877-762.png]]325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 359 359 327 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 360 360 361 -[[image:1654832740634-933.png]] 362 362 363 363 364 - 365 -((( 366 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode** 367 -))) 368 - 369 -((( 370 - 371 -))) 372 - 373 -[[image:1654833065139-942.png]] 374 - 375 - 376 - 377 -[[image:1654833092678-390.png]] 378 - 379 - 380 - 381 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 382 - 383 -[[image:1654833163048-332.png]] 384 - 385 - 386 - 387 387 == 2.6 Frequency Plans == 388 388 389 389 ((( 390 -The L LDS12uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 391 391 ))) 392 392 393 393 338 + 394 394 === 2.6.1 EU863-870 (EU868) === 395 395 396 396 ((( ... ... @@ -454,20 +454,51 @@ 454 454 === 2.6.2 US902-928(US915) === 455 455 456 456 ((( 457 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 458 -))) 402 +Used in USA, Canada and South America. Default use CHE=2 459 459 460 -((( 461 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 462 -))) 404 +(% style="color:blue" %)**Uplink:** 463 463 464 -((( 465 -After Join success, the end node will switch to the correct sub band by: 466 -))) 406 +903.9 - SF7BW125 to SF10BW125 467 467 468 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 469 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 408 +904.1 - SF7BW125 to SF10BW125 470 470 410 +904.3 - SF7BW125 to SF10BW125 411 + 412 +904.5 - SF7BW125 to SF10BW125 413 + 414 +904.7 - SF7BW125 to SF10BW125 415 + 416 +904.9 - SF7BW125 to SF10BW125 417 + 418 +905.1 - SF7BW125 to SF10BW125 419 + 420 +905.3 - SF7BW125 to SF10BW125 421 + 422 + 423 +(% style="color:blue" %)**Downlink:** 424 + 425 +923.3 - SF7BW500 to SF12BW500 426 + 427 +923.9 - SF7BW500 to SF12BW500 428 + 429 +924.5 - SF7BW500 to SF12BW500 430 + 431 +925.1 - SF7BW500 to SF12BW500 432 + 433 +925.7 - SF7BW500 to SF12BW500 434 + 435 +926.3 - SF7BW500 to SF12BW500 436 + 437 +926.9 - SF7BW500 to SF12BW500 438 + 439 +927.5 - SF7BW500 to SF12BW500 440 + 441 +923.3 - SF12BW500(RX2 downlink only) 442 + 443 + 444 + 445 +))) 446 + 471 471 === 2.6.3 CN470-510 (CN470) === 472 472 473 473 ((( ... ... @@ -556,28 +556,54 @@ 556 556 557 557 558 558 559 - 560 560 === 2.6.4 AU915-928(AU915) === 561 561 562 562 ((( 563 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 564 -))) 538 +Default use CHE=2 565 565 566 -((( 567 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 568 -))) 540 +(% style="color:blue" %)**Uplink:** 569 569 570 -((( 571 - 572 -))) 542 +916.8 - SF7BW125 to SF12BW125 573 573 574 -((( 575 -After Join success, the end node will switch to the correct sub band by: 576 -))) 544 +917.0 - SF7BW125 to SF12BW125 577 577 578 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 579 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 546 +917.2 - SF7BW125 to SF12BW125 580 580 548 +917.4 - SF7BW125 to SF12BW125 549 + 550 +917.6 - SF7BW125 to SF12BW125 551 + 552 +917.8 - SF7BW125 to SF12BW125 553 + 554 +918.0 - SF7BW125 to SF12BW125 555 + 556 +918.2 - SF7BW125 to SF12BW125 557 + 558 + 559 +(% style="color:blue" %)**Downlink:** 560 + 561 +923.3 - SF7BW500 to SF12BW500 562 + 563 +923.9 - SF7BW500 to SF12BW500 564 + 565 +924.5 - SF7BW500 to SF12BW500 566 + 567 +925.1 - SF7BW500 to SF12BW500 568 + 569 +925.7 - SF7BW500 to SF12BW500 570 + 571 +926.3 - SF7BW500 to SF12BW500 572 + 573 +926.9 - SF7BW500 to SF12BW500 574 + 575 +927.5 - SF7BW500 to SF12BW500 576 + 577 +923.3 - SF12BW500(RX2 downlink only) 578 + 579 + 580 + 581 +))) 582 + 581 581 === 2.6.5 AS920-923 & AS923-925 (AS923) === 582 582 583 583 ((( ... ... @@ -686,7 +686,6 @@ 686 686 687 687 688 688 689 - 690 690 === 2.6.6 KR920-923 (KR920) === 691 691 692 692 ((( ... ... @@ -759,7 +759,6 @@ 759 759 760 760 761 761 762 - 763 763 === 2.6.7 IN865-867 (IN865) === 764 764 765 765 ((( ... ... @@ -796,18 +796,20 @@ 796 796 797 797 798 798 799 - 800 800 == 2.7 LED Indicator == 801 801 802 -The L LDS12has an internal LED which is to show the status of different state.801 +The LDDS75 has an internal LED which is to show the status of different state. 803 803 804 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected. 803 + 804 +* Blink once when device power on. 805 +* The device detects the sensor and flashes 5 times. 806 +* Solid ON for 5 seconds once device successful Join the network. 805 805 * Blink once when device transmit a packet. 806 806 807 807 == 2.8 Firmware Change Log == 808 808 809 809 810 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/L LDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 811 811 812 812 813 813 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] ... ... @@ -814,71 +814,58 @@ 814 814 815 815 816 816 817 -= 3.LiDAR ToFMeasurement=819 +== 2.9 Mechanical == 818 818 819 -== 3.1 Principle of Distance Measurement == 820 820 821 - The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contactingobject.Theproduct obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.822 +[[image:image-20220610172003-1.png]] 822 822 823 -[[image: 1654831757579-263.png]]824 +[[image:image-20220610172003-2.png]] 824 824 825 825 827 +== 2.10 Battery Analysis == 826 826 827 -== 3.2Distance MeasurementCharacteristics==829 +=== 2.10.1 Battery Type === 828 828 829 - Withoptimization oflight pathand algorithm,TheLiDARprobehas minimizedinfluence fromexternalenvironmentondistancemeasurementperformance.Despite that,the rangeofdistancemeasurementmaystillbeaffectedbytheenvironment illuminationintensityandthe reflectivityofdetection object. As showninbelow:831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 830 830 831 -[[image:1654831774373-275.png]] 832 832 834 +The battery related documents as below: 833 833 834 -((( 835 - (%style="color:blue"%)**① **(%%)Representsthe detectionblind zone of The LiDARprobe, 0-10cm,withinwhichtheoutput data is unreliable.836 +* ((( 837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 836 836 ))) 837 - 838 -((( 839 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 839 +* ((( 840 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 840 840 ))) 841 - 842 -((( 843 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 842 +* ((( 843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 844 844 ))) 845 845 846 + [[image:image-20220610172400-3.png]] 846 846 847 -((( 848 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 849 -))) 850 850 851 851 852 - [[image:1654831797521-720.png]]850 +=== 2.10.2 Replace the battery === 853 853 852 +((( 853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 854 +))) 854 854 855 855 ((( 856 - Inthe formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.857 + 857 857 ))) 858 858 859 -[[image:1654831810009-716.png]] 860 - 861 - 862 862 ((( 863 - If the lightspotreachestwoobjectswithdifferent distances,asshown inFigure3, theoutput distancevaluewillbeavaluebetween theactual distancevaluesofthe twoobjects.Forahighaccuracy requirementinpractice,theabove situation should benoticedtoavoid themeasurementrror.861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 864 864 ))) 865 865 866 866 867 867 868 -= =3.3Notice ofusage:==866 += 3. Configure LLDS12 via AT Command or LoRaWAN Downlink = 869 869 870 -Possible invalid /wrong reading for LiDAR ToF tech: 871 - 872 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 873 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong. 874 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 875 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window. 876 - 877 -= 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 878 - 879 879 ((( 880 880 ((( 881 -Use can configure L LDS12via AT Command or LoRaWAN Downlink.870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink. 882 882 ))) 883 883 ))) 884 884 ... ... @@ -899,7 +899,7 @@ 899 899 ))) 900 900 901 901 ((( 902 -There are two kinds of commands to configure L LDS12, they are:891 +There are two kinds of commands to configure LDDS75, they are: 903 903 ))) 904 904 ))) 905 905 ... ... @@ -940,156 +940,87 @@ 940 940 941 941 * ((( 942 942 ((( 943 -(% style="color:#4f81bd" %)** Commands special design for L LDS12**932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75** 944 944 ))) 945 945 ))) 946 946 947 947 ((( 948 948 ((( 949 -These commands only valid for L LDS12, as below:938 +These commands only valid for LDDS75, as below: 950 950 ))) 951 951 ))) 952 952 953 953 954 954 955 -== 4.1SetTransmitInterval Time==944 +== 3.1 Access AT Commands == 956 956 957 - Feature:ChangeLoRaWANEndNode TransmitInterval.946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below. 958 958 959 - (% style="color:#037691"%)**AT Command: AT+TDC**948 +[[image:image-20220610172924-4.png||height="483" width="988"]] 960 960 961 -[[image:image-20220607171554-8.png]] 962 962 951 +Or if you have below board, use below connection: 963 963 964 -((( 965 -(% style="color:#037691" %)**Downlink Command: 0x01** 966 -))) 967 967 968 -((( 969 -Format: Command Code (0x01) followed by 3 bytes time value. 970 -))) 954 +[[image:image-20220610172924-5.png]] 971 971 972 -((( 973 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 974 -))) 975 975 976 -* ((( 977 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 978 -))) 979 -* ((( 980 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 981 -))) 957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 982 982 983 -== 4.2 Set Interrupt Mode == 984 984 985 - Feature, Set Interruptmode for GPIO_EXIT.960 + [[image:image-20220610172924-6.png||height="601" width="860"]] 986 986 987 -(% style="color:#037691" %)**AT Command: AT+INTMOD** 988 988 989 -[[image:image-20220610105806-2.png]] 990 990 964 +== 3.2 Set Transmit Interval Time == 991 991 992 -((( 993 -(% style="color:#037691" %)**Downlink Command: 0x06** 994 -))) 966 +Feature: Change LoRaWAN End Node Transmit Interval. 995 995 996 -((( 997 -Format: Command Code (0x06) followed by 3 bytes. 998 -))) 968 +(% style="color:#037691" %)**AT Command: AT+TDC** 999 999 1000 -((( 1001 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1002 -))) 970 +[[image:image-20220610173409-7.png]] 1003 1003 1004 -* ((( 1005 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1006 -))) 1007 -* ((( 1008 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1009 -))) 1010 1010 1011 -== 4.3 Get Firmware Version Info == 1012 1012 1013 -Feature: use downlink to get firmware version. 1014 1014 1015 -(% style="color:#037691" %)**Downlink Command: 0x26** 975 +((( 976 +(% style="color:#037691" %)**Downlink Command: 0x01** 977 +))) 1016 1016 1017 -[[image:image-20220607171917-10.png]] 979 +((( 980 +((( 981 +Format: Command Code (0x01) followed by 3 bytes time value. 1018 1018 1019 -* Reply to the confirmation package: 26 01 1020 -* Reply to non-confirmed packet: 26 00 983 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 1021 1021 1022 -Device will send an uplink after got this downlink command. With below payload: 985 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 986 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 987 +))) 1023 1023 1024 -Configures info payload: 1025 1025 1026 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 1027 -|=((( 1028 -**Size(bytes)** 1029 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1** 1030 -|**Value**|Software Type|((( 1031 -Frequency 1032 - 1033 -Band 1034 -)))|Sub-band|((( 1035 -Firmware 1036 - 1037 -Version 1038 -)))|Sensor Type|Reserve|((( 1039 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 1040 -Always 0x02 990 + 1041 1041 ))) 1042 1042 1043 - **SoftwareType**:Always 0x03 forLLDS12993 +== 3.3 Set Interrupt Mode == 1044 1044 995 +Feature, Set Interrupt mode for GPIO_EXIT. 1045 1045 1046 -**Frequency Band**: 1047 1047 1048 - *0x01:EU868998 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD** 1049 1049 1050 - *0x02: US9151000 +[[image:image-20220610105907-1.png]] 1051 1051 1052 -*0x03: IN865 1053 1053 1054 -*0x0 4: AU9151003 +(% style="color:#037691" %)**Downlink Command: 0x06** 1055 1055 1056 - *0x05: KZ8651005 +Format: Command Code (0x06) followed by 3 bytes. 1057 1057 1058 - *0x06:RU8641007 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1059 1059 1060 -*0x07: AS923 1009 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1010 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1061 1061 1062 -*0x08: AS923-1 1063 1063 1064 -*0x09: AS923-2 1065 - 1066 -*0xa0: AS923-3 1067 - 1068 - 1069 -**Sub-Band**: value 0x00 ~~ 0x08 1070 - 1071 - 1072 -**Firmware Version**: 0x0100, Means: v1.0.0 version 1073 - 1074 - 1075 -**Sensor Type**: 1076 - 1077 -0x01: LSE01 1078 - 1079 -0x02: LDDS75 1080 - 1081 -0x03: LDDS20 1082 - 1083 -0x04: LLMS01 1084 - 1085 -0x05: LSPH01 1086 - 1087 -0x06: LSNPK01 1088 - 1089 -0x07: LLDS12 1090 - 1091 - 1092 - 1093 1093 = 5. Battery & How to replace = 1094 1094 1095 1095 == 5.1 Battery Type ==
- 1654849068701-275.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850511545-399.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850829385-439.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654851029373-510.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654852175653-550.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.2 KB - Content
- 1654852253176-749.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.6 KB - Content
- image-20220610161353-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.1 KB - Content
- image-20220610161538-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.2 KB - Content
- image-20220610161538-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +28.7 KB - Content
- image-20220610161724-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +180.0 KB - Content
- image-20220610165129-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +50.5 KB - Content
- image-20220610172003-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.9 KB - Content
- image-20220610172003-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.6 KB - Content
- image-20220610172400-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220610172924-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20220610172924-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +901.4 KB - Content
- image-20220610172924-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20220610173409-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.8 KB - Content