<
From version < 119.2 >
edited by Xiaoling
on 2022/06/10 15:29
To version < 138.6 >
edited by Xiaoling
on 2022/06/10 17:05
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -12,38 +12,33 @@
12 12  
13 13  = 1.  Introduction =
14 14  
15 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16 16  
17 17  (((
18 18  
19 19  
20 20  (((
21 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
22 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
23 23  
24 -(((
25 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
26 -)))
27 27  
28 -(((
29 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -(((
33 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
34 -)))
35 35  
36 -(((
37 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 39  
40 -(((
41 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
42 42  )))
43 43  )))
44 44  
45 45  
46 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
47 47  
48 48  
49 49  
... ... @@ -50,41 +50,48 @@
50 50  == ​1.2  Features ==
51 51  
52 52  * LoRaWAN 1.0.3 Class A
53 -* Ultra-low power consumption
54 -* Laser technology for distance detection
55 -* Operating Range - 0.1m~~12m
56 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
57 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
58 58  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
59 59  * AT Commands to change parameters
60 60  * Uplink on periodically
61 61  * Downlink to change configure
62 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
63 63  
64 -== 1.3  Probe Specification ==
65 65  
66 -* Storage temperature :-20℃~~75℃
67 -* Operating temperature - -20℃~~60℃
68 -* Operating Range - 0.1m~~12m①
69 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
70 -* Distance resolution - 5mm
71 -* Ambient light immunity - 70klux
72 -* Enclosure rating - IP65
73 -* Light source - LED
74 -* Central wavelength - 850nm
75 -* FOV - 3.6°
76 -* Material of enclosure - ABS+PC
77 -* Wire length - 25cm
78 78  
79 -== 1.4  Probe Dimension ==
62 +== 1.3  Specification ==
80 80  
64 +=== 1.3.1  Rated environmental conditions ===
81 81  
82 -[[image:1654827224480-952.png]]
66 +[[image:image-20220610154839-1.png]]
83 83  
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
84 84  
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 +
72 +
73 +
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
75 +
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
77 +
78 +
79 +
80 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
81 +
82 +(% style="display:none" %) (%%)
83 +
84 +
85 +
85 85  == 1.5 ​ Applications ==
86 86  
87 87  * Horizontal distance measurement
89 +* Liquid level measurement
88 88  * Parking management system
89 89  * Object proximity and presence detection
90 90  * Intelligent trash can management system
... ... @@ -91,26 +91,31 @@
91 91  * Robot obstacle avoidance
92 92  * Automatic control
93 93  * Sewer
96 +* Bottom water level monitoring
94 94  
98 +
99 +
95 95  == 1.6  Pin mapping and power on ==
96 96  
97 97  
98 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
99 99  
100 100  
101 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
102 102  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
108 +
103 103  == 2.1  How it works ==
104 104  
105 105  (((
106 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
107 107  )))
108 108  
109 109  (((
110 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
111 111  )))
112 112  
113 113  
120 +
114 114  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
115 115  
116 116  (((
... ... @@ -118,7 +118,7 @@
118 118  )))
119 119  
120 120  (((
121 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
122 122  )))
123 123  
124 124  (((
... ... @@ -126,57 +126,57 @@
126 126  )))
127 127  
128 128  (((
129 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
130 130  )))
131 131  
132 132  (((
133 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
134 134  )))
135 135  
136 136  [[image:image-20220607170145-1.jpeg]]
137 137  
138 138  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
139 139  
140 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
141 141  
150 +**Add APP EUI in the application**
142 142  
143 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
144 144  
154 +[[image:image-20220610161353-5.png]]
145 145  
146 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
147 147  
148 148  
159 +[[image:image-20220610161353-7.png]]
149 149  
150 -**Add APP EUI and DEV EUI**
151 151  
152 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
153 153  
164 + [[image:image-20220610161538-8.png]]
154 154  
155 155  
156 -**Add APP EUI in the application**
157 157  
158 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
159 159  
170 +[[image:image-20220610161538-9.png]]
160 160  
161 161  
162 -**Add APP KEY**
163 163  
164 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
165 165  
166 166  
167 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
168 -
169 -
170 170  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
171 171  
172 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
173 173  
174 174  
175 175  (((
176 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 177  )))
178 178  
179 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
180 180  
181 181  
182 182  
... ... @@ -183,11 +183,10 @@
183 183  == 2.3  ​Uplink Payload ==
184 184  
185 185  (((
186 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
187 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
188 188  
189 -(((
190 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
191 191  )))
192 192  
193 193  (((
... ... @@ -197,23 +197,23 @@
197 197  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
198 198  |=(% style="width: 62.5px;" %)(((
199 199  **Size (bytes)**
200 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
201 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
202 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
203 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
204 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
205 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
206 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
207 -)))
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
208 208  
209 -[[image:1654833689380-972.png]]
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
210 210  
215 +[[image:1654850511545-399.png]]
211 211  
212 212  
218 +
213 213  === 2.3.1  Battery Info ===
214 214  
215 215  
216 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
217 217  
218 218  Ex1: 0x0B45 = 2885mV
219 219  
... ... @@ -221,49 +221,23 @@
221 221  
222 222  
223 223  
224 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
225 225  
226 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
227 227  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
228 228  
229 -**Example**:
230 230  
231 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
232 232  
233 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
234 234  
235 235  
236 236  
237 -=== 2.3.3  Distance ===
243 +=== 2.3.3  Interrupt Pin ===
238 238  
239 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
240 -
241 -
242 -**Example**:
243 -
244 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
245 -
246 -
247 -
248 -=== 2.3.4  Distance signal strength ===
249 -
250 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
251 -
252 -
253 -**Example**:
254 -
255 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
256 -
257 -Customers can judge whether they need to adjust the environment based on the signal strength.
258 -
259 -
260 -
261 -=== 2.3.5  Interrupt Pin ===
262 -
263 263  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
264 264  
265 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
266 -
267 267  **Example:**
268 268  
269 269  0x00: Normal uplink packet.
... ... @@ -272,52 +272,44 @@
272 272  
273 273  
274 274  
275 -=== 2.3.6  LiDAR temp ===
255 +=== 2.3.4  DS18B20 Temperature sensor ===
276 276  
277 -Characterize the internal temperature value of the sensor.
257 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
278 278  
279 -**Example: **
280 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
281 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
259 +**Example**:
282 282  
261 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
283 283  
263 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
284 284  
285 -=== 2.3.7  Message Type ===
265 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
286 286  
287 -(((
288 -For a normal uplink payload, the message type is always 0x01.
289 -)))
290 290  
291 -(((
292 -Valid Message Type:
293 -)))
294 294  
269 +=== 2.3.5  Sensor Flag ===
295 295  
296 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
297 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
298 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
299 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
271 +0x01: Detect Ultrasonic Sensor
300 300  
301 -=== 2.3.8  Decode payload in The Things Network ===
273 +0x00: No Ultrasonic Sensor
302 302  
275 +
276 +===
277 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
278 +
303 303  While using TTN network, you can add the payload format to decode the payload.
304 304  
305 305  
306 -[[image:1654592762713-715.png]]
282 +[[image:1654850829385-439.png]]
307 307  
308 -(((
309 -The payload decoder function for TTN is here:
310 -)))
284 +The payload decoder function for TTN V3 is here:
311 311  
312 -(((
313 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
314 -)))
286 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
315 315  
316 316  
317 317  
318 318  == 2.4  Uplink Interval ==
319 319  
320 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
292 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321 321  
322 322  
323 323  
... ... @@ -348,47 +348,25 @@
348 348  
349 349  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
350 350  
351 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
323 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
352 352  
353 -[[image:1654832691989-514.png]]
325 +[[image:1654851029373-510.png]]
354 354  
355 355  
356 -[[image:1654592833877-762.png]]
328 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
357 357  
330 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
358 358  
359 -[[image:1654832740634-933.png]]
360 360  
361 361  
362 -
363 -(((
364 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
365 -)))
366 -
367 -(((
368 -
369 -)))
370 -
371 -[[image:1654833065139-942.png]]
372 -
373 -
374 -
375 -[[image:1654833092678-390.png]]
376 -
377 -
378 -
379 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
380 -
381 -[[image:1654833163048-332.png]]
382 -
383 -
384 -
385 385  == 2.6  Frequency Plans ==
386 386  
387 387  (((
388 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
337 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
389 389  )))
390 390  
391 391  
341 +
392 392  === 2.6.1  EU863-870 (EU868) ===
393 393  
394 394  (((
... ... @@ -452,20 +452,51 @@
452 452  === 2.6.2  US902-928(US915) ===
453 453  
454 454  (((
455 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
456 -)))
405 +Used in USA, Canada and South America. Default use CHE=2
457 457  
458 -(((
459 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
460 -)))
407 +(% style="color:blue" %)**Uplink:**
461 461  
462 -(((
463 -After Join success, the end node will switch to the correct sub band by:
464 -)))
409 +903.9 - SF7BW125 to SF10BW125
465 465  
466 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
467 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
411 +904.1 - SF7BW125 to SF10BW125
468 468  
413 +904.3 - SF7BW125 to SF10BW125
414 +
415 +904.5 - SF7BW125 to SF10BW125
416 +
417 +904.7 - SF7BW125 to SF10BW125
418 +
419 +904.9 - SF7BW125 to SF10BW125
420 +
421 +905.1 - SF7BW125 to SF10BW125
422 +
423 +905.3 - SF7BW125 to SF10BW125
424 +
425 +
426 +(% style="color:blue" %)**Downlink:**
427 +
428 +923.3 - SF7BW500 to SF12BW500
429 +
430 +923.9 - SF7BW500 to SF12BW500
431 +
432 +924.5 - SF7BW500 to SF12BW500
433 +
434 +925.1 - SF7BW500 to SF12BW500
435 +
436 +925.7 - SF7BW500 to SF12BW500
437 +
438 +926.3 - SF7BW500 to SF12BW500
439 +
440 +926.9 - SF7BW500 to SF12BW500
441 +
442 +927.5 - SF7BW500 to SF12BW500
443 +
444 +923.3 - SF12BW500(RX2 downlink only)
445 +
446 +
447 +
448 +)))
449 +
469 469  === 2.6.3  CN470-510 (CN470) ===
470 470  
471 471  (((
... ... @@ -558,24 +558,51 @@
558 558  === 2.6.4  AU915-928(AU915) ===
559 559  
560 560  (((
561 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
562 -)))
542 +Default use CHE=2
563 563  
564 -(((
565 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
566 -)))
544 +(% style="color:blue" %)**Uplink:**
567 567  
568 -(((
569 -
570 -)))
546 +916.8 - SF7BW125 to SF12BW125
571 571  
572 -(((
573 -After Join success, the end node will switch to the correct sub band by:
574 -)))
548 +917.0 - SF7BW125 to SF12BW125
575 575  
576 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
577 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
550 +917.2 - SF7BW125 to SF12BW125
578 578  
552 +917.4 - SF7BW125 to SF12BW125
553 +
554 +917.6 - SF7BW125 to SF12BW125
555 +
556 +917.8 - SF7BW125 to SF12BW125
557 +
558 +918.0 - SF7BW125 to SF12BW125
559 +
560 +918.2 - SF7BW125 to SF12BW125
561 +
562 +
563 +(% style="color:blue" %)**Downlink:**
564 +
565 +923.3 - SF7BW500 to SF12BW500
566 +
567 +923.9 - SF7BW500 to SF12BW500
568 +
569 +924.5 - SF7BW500 to SF12BW500
570 +
571 +925.1 - SF7BW500 to SF12BW500
572 +
573 +925.7 - SF7BW500 to SF12BW500
574 +
575 +926.3 - SF7BW500 to SF12BW500
576 +
577 +926.9 - SF7BW500 to SF12BW500
578 +
579 +927.5 - SF7BW500 to SF12BW500
580 +
581 +923.3 - SF12BW500(RX2 downlink only)
582 +
583 +
584 +
585 +)))
586 +
579 579  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
580 580  
581 581  (((
... ... @@ -802,7 +802,6 @@
802 802  * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 803  * Blink once when device transmit a packet.
804 804  
805 -
806 806  == 2.8  ​Firmware Change Log ==
807 807  
808 808  
... ... @@ -1278,8 +1278,6 @@
1278 1278  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1279 1279  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1280 1280  
1281 -
1282 -
1283 1283  = 10. ​ Packing Info =
1284 1284  
1285 1285  
... ... @@ -1294,8 +1294,6 @@
1294 1294  * Package Size / pcs : cm
1295 1295  * Weight / pcs : g
1296 1296  
1297 -
1298 -
1299 1299  = 11.  ​Support =
1300 1300  
1301 1301  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0